A note on the Hurewicz isomorphism theorem in Borsuk's theory of shape

by

Krystyna Kuperberg (Houston, Tex.)

Abstract. In shape theory, the role of the homotopy groups π_n is played by the so called fundamental groups π_n, introduced by K. Borsuk, and the homology groups which are useful there, are of the Vicktor-Veech type. The classical Hurewicz isomorphism theorem gives a connection between the homotopy groups π_n and the singular homology groups H_n with integral coefficients. An example of a compactum X is constructed, showing that there is no exact analogue of the Hurewicz theorem in shape theory. The example is simple: X is the double suspension of the 3-adic solenoid. The compactum X is arcwise connected and it has the following properties: (i) $\pi_q(X) \neq 0$, for $q = 1, 2, 3$, and (ii) $\pi_3(X)$ and $H_3(X)$ are not isomorphic.

In the theory of shape of compacta K. Borsuk introduced the fundamental groups π_n (see [1], § 14) which are related to the usual homotopy groups π_n in a fashion similar to the way in which the Vicktor-Veech homology groups H_n are related to the singular homology groups H_n.

The natural question that arose then was: is there any isomorphism theorem of the Hurewicz type in shape theory? The following theorem, proved in [3] (Theorem 3.2), is one of that type.

Theorem. If the pointed compactum (X, x_0) is approximatively q-connected for $q = 0, 1, \ldots, n-1$ $(n \geq 2)$, then the limit Hurewicz homomorphism

$$\varphi: \pi_q(X, x_0) \rightarrow H_q(X, x_0)$$

is an isomorphism.

The coefficient group for all homology groups considered in this note is the group of integers.

One may ask if the assumption of the approximative q-connectedness of (X, x_0) for $q = 0, 1, \ldots, n-1$ in the above theorem can be replaced by the weaker assumption $\pi_q(X, x_0) \approx 0$ for $q = 0, 1, \ldots, n-1$, which would make the theorem completely analogous to the classical Hurewicz theorem. Obviously, the independence of π_q from the choice of the base point must be assured by an appropriate assumption. For some special classes of compacta, e.g. for movable pointed compacta, the answer is affirmative (see [3], Corollary 3.7), but as we shall prove, in general it is not the case. The aim of this note is to describe an arcwise connected pointed compactum (X, x_0) with the following properties:
A note on the Hurewicz isomorphism theorem in Borsuk's theory of shape

K. Kuperberg

(i) (X, x_0) is approximatively g-connected for $g = 0, 1, 2$ (in particular $\pi_2(X, x_0) \cong 0$ for $g = 0, 1, 2$).
(ii) $\pi_3(X, x_0) \cong 0$.
(iii) $\pi_4(X, x_0) \cong 0$.
(iv) $H_4(X, x_0) \cong 0$.

Let us recall two well-known constructions.

Let $S^0 = \{z : |z| = 1\}$ be the unit circle on the complex plane. The p-adic solenoid (for an integer $p \geq 2$) is defined to be the inverse limit of the sequence

$$S^0 \leftarrow S^0 \leftarrow \ldots \leftarrow S^0 \leftarrow S^0 \leftarrow \ldots$$

where $f(z) = z^p$.

For a topological space T, the suspension of T, denoted by ΣT, is defined to be the quotient space of $T \times [0,1]$ in which $T \times \{0\}$ is identified to one point and $T \times \{1\}$ is identified to another point.

Let Y be the 3-adic solenoid and define X as the double suspension of Y, $X = \Sigma (\Sigma Y)$. Assume that X is a subset of the Hilbert cube Q and let $x_0 \in X$. (S^0, a) will denote the k-dimensional sphere with the base point a.

Since X is the double suspension of a connected compactum, condition (i) is automatically satisfied.

To prove (ii) observe that X is the inverse limit of the sequence

$$S^0 \leftarrow S^0 \leftarrow \ldots \leftarrow S^0 \leftarrow S^0 \leftarrow \ldots$$

where g is a map of degree 3, i.e. the induced homomorphism $g_* : H_4(S^0) \rightarrow H_4(S^0)$ is $g(x) = 3x$. Hence $H_4(X, x_0) \cong 0$ as the inverse limit of the sequence

$$Z \leftarrow Z \leftarrow \ldots \leftarrow Z \leftarrow Z \leftarrow \ldots$$

where Z is the group of integers, and $\beta(x) = 3x$. By the theorem quoted above, $\pi_4(X, x_0) \cong 0$.

Property (iv) is easily verified: $H_4(X, x_0) \cong 0$ since $\dim X = 3$.

It is well known that the 4th homotopy group of S^0, $\pi_4(S^0, a)$, is isomorphic to Z_2, the group of integers modulo 2. In other words, there is an essential map $h : (S^0, a) \rightarrow (S^0, a)$, and any two essential maps from (S^0, a) to (S^0, a) are homotopic. Now, let $g : (S^0, a) \rightarrow (S^0, a)$ be a map of degree 3. We claim that

(*) the homotopy classes $[h]$ of h and $[gh]$ of gh are identical.

The following, simple proof of (*) was suggested to the author by A. Trybulec:

The homotopy group $\pi_4(S^0, a)$ and the Borsuk's cohomotopy group $\pi_4(S^0, a)$ coincide (see for instance [4], §1–6). Let $h^* : \pi_4(S^0, a) \rightarrow \pi_4(S^0, a)$ be the homomorphism induced by h. Since g is of degree 3, we have

$$[gh] = h^*[g] = h^*[3i] = 3h^*[i] = 3h^*[i] = [h] = [h].$$

To prove (iii) observe that X has compact neighborhoods $A_k (k = 1, 2, \ldots)$ in Q such that $\bigcup_{k=1}^{\infty} A_k = X$, each A_k is homeomorphic to $S^0 \times Q$, and the inclusion $j : A_{k+1} \rightarrow A_k$ is a map of degree 3.

Let $\xi_k : (S^0, a) \rightarrow (A_k, x_0)$ for $k = 1, 2, \ldots$ be an essential map. By (*), $j_{k+1} \xi_k \cong \xi_k$ in (A_k, x_0). Hence $\xi = \bigcup_{k=1}^{\infty} \xi_k$ in (A_k, x_0) is an approximative map. Furthermore, for each k, ξ_k is essential in (A_k, x_0) which implies that ξ is essential. Therefore, $\pi_4(X, x_0) \cong 0$ (as a matter of fact, $\pi_4(X, x_0) \cong Z_2$), i.e. condition (ii) is satisfied.

References

DEPARTMENT OF MATHEMATICS
RICE UNIVERSITY
Houston, Texas

Accepté par la Rédaction le 18.2. 1974