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Positive definite functions and coincidences

by
J. Dugundji (Los Angeles, Cal.)

Abstract. The compactness and the completeness of a metric space X is first charac-
terized by the behaviour of certain types of non-negative real-valued functions on X.
These new characterizations are then used to obtain a general coincidence theorem for
maps 8§, T: X—Z (Z an arbitrary space) which contains the usual topological fixed-
point theorems (essentially as special cases of more general coincidence theorems).
A generalization of the coincidence theorem, from which one can obtain “coincidence”
theorems for pairs of upper, and for pairs of lower, semi-continuous set-valued maps
S, T X—+2% is also given.

Given two maps §, T: X—Z of metric spaces, we seek conditions
on 8 and T that will assure they have a coincidence (i.e., S(&) = T(£)
for some & e X).

Rather than attack this question by considering the fixed-point
problem for the associated set-valued map S™%o T: X—2% we present
a method that reduces the coincidence problem to one of constructing
certain types of real-valued functions on X, or on X x X; indeed, the
existence of an appropriate such function is shown to be necessary and
sufficient for a coincidence. This approach extends also to suitable pairs
of semicontinuous set-valued maps 8, T: X—2%, again giving necessary
and sufficient conditions for the existence of a coincidence in terms of
the existence of an appropriate real-valued function. Thus, one can regard
each of the classical fixed-point theorem as resulting from the existence
of a suitable real-valued function; and, by so doing, it is possible to start
with a fixed-point theorem and construct, fairly mechanieally, a coincid-
ence theorem for set-valued maps that reduces to it when one (or both)
of 8, T are single-valued maps.

A non-negative real-valued function on a metric space X is called
positive definite mod A C X if it has a positive lower bound outside each
e-neighborhood of A. Positive definiteness of a given function clearly
depends on the metric used in X; in Sec. 2, we give simple characteri-
zations, which are apparently new, for the compactness of A and for the
completeness of X in terms of the behaviour of certain such functions.
In Sec. 3, we show that each coincidence is characterized by a suitable
positive definite function; the general coincidence theorems are 3.1, 3.2.
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These results are applied in Sec. 4 to obtain the Browder [4], Bdelstein [T}
and Belluee-Kirk [2] fixed-point theorems by constructing appropriate
Positive definite functions. In See. 5, we give a method for constructing
coincidence analogs of fixed-point theorems (i.e. coincidence theorems
producing the given fixed-point theorem when applied to the case of T,
id: X—X); in particular, we find a fixed-point prineiple (5.2) which is
formally similar to (and includes) the Banach contraction, principle, but
which is applicable also to non-contractive maps. In the final section,
the results of Sec. 3 are extended to provide general “coincidence” theo-
rems for two lower (resp. upper) semicontinuous set-valued maps; in
this extension, it appears more appropriate to call £ ¢ X a “coincidence”
of two lower (resp. upper) semicontinuous maps 8, 7: X—2% if S (&)
CT(&) (vesp. S(&) n T(&) # @).

1. Positive definite functions. In all that follows, R, will denote the
subspace {® ¢ R| 2> 0} of the real line R.

1.1. DeFiNITION. Let (X, d) be a metric space and let A CX.
A map (*) P: X—R, is called positive definite mod 4 if

int{P(2)| d(z, 4) > s} >0

It is clear that if P is positive definite mod 4, then P~Y0) C 4; the
possibility P~*0) =@ C A is of course not excluded. However, in
general, even the strong condition P~%(0)= @ does not assuve positive
definiteness mod 4: in X = R,, the (continuous) function & 1— ¢~ vanishes
nowhere on R, yet is mot positive definite mod[0, 1]. Note that (2)
when 4 is closed, if either P is a closed map, or if P is lower semi-
continuous and X is compact, or if P is arbitrary and 4 = @, then P will
be positive definite mod.4 if and only if P|(X—A4) has no zero.

Tt is evident that, if P is positive definite mod 4, then so also is P+ @

for any @: X—R,; the converse need not be true: in R, the function
" wi— e+ e i positive definite mod[—1, +1] although neither term is.
Equally evident are (a): I P, Q are positive definite mod4, so also is
P-@ and (b): If a: (Ry; 0)—(R,, 0) is continuous at 0, and if a o P is positive
definite mod 4, then so also is P.

It is simple to see that, if P is positive definite mod 4, then (a): P iy
positive definite mod any 4'D 4, and (b): Any 8: X—R, satistying
S(z) = P(x) on X— A is also positive definite modA. In particular, if
d(@, 4) < S(x) on X— 4, then § ig positive definite mod 4.

Observe that the positive definiteness mod.A of a given P: X—R,
depends on the metric used in X: for example, with X = R, and 4 = {all

for each ¢ >0.

*) Unless_ specifically stated, a map §: X— ¥ is not required to be continuous.
.(2) W_e will always denote (¢ X| d(z, 4) < e} by (4,¢). With this notation,
1.1 is equivalent to: For each (4, ¢), there ig a B> 0 such that P70, Al c (4, ¢).
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positive integers}, the function P(2)= ¢~%, which is not positive de-
finite mod 4 when the Huclidean metric is used in R,, becomes positive
definite mod 4 when the equivalent metric d(z, y) = |e~%— e~¥] is used (3).

We shall have to consider cartesian produets of metric spaces. For
all cartesian products (X, dx) X (Y, dy) in this paper, we will always use
the metric D[(z,y), (2, y')] = dx(a, 2’ )+ dr(y,y’). The diagonal in
(X, d)x (X, d) will be denoted by 4(X); noting that the metric D used
in XXX has the feature that D[(z, «'), 4] = d(z, ') immediately gives
then the following result which we will use frequently:

1.2. P: XX X—R, is positive definite mod A (X) if and only if for
each ¢ >0 there is a f# >0 such that d(z, y) < ¢ whenever P(z, 7)< 8.

2. Positive definiteness, compacteness, and completeness. In this section,
we characterize compactness and completeness Dy the behaviour of
appropriate positive definite functions.

2.1. TEEOREM. Let (X, d) be a metric space and A C X closed. The
following two properties are equivalent:

1. A is compact.

2. For every lower semi-continuous V: X —R, with infV|X = 0: ¢f V s
positive definite mod A, then V(a) = 0 for some a e A.

Proof. 1 = 2. The function V|4, being lower semicontinuous on
the compact 4, attains its infimum e [6, p. 227 If o >0, then U
= {z e X| V() >0/2} would be an open set containing the compact A4,
so that (4,e) C U for some &>0. Since infV|X = 0, it would follow
that V does not have a positive lower bound outside (4, &), contradicting
its positive definiteness.

2 = 1. Assume that 4 is not compact; then 4 contains an infinite
discrete closed subset {as 7=1,2, ...} which, since 4 is closed in X,
is closed discrete in X. By Tietze’s thecrem [6, p. 151], there is a continu-
ous f: X—70, 1] with f|X—(4,1) = 1 and f(a,) = 1/nforeachn = 1,2, ...
Then the function V(x) = f(x)+ d(z, 4) is positive definite mod.4 (since
V(z) = d(z, 4)), has infV|X = 0 (since V¥ (an) = 1/n), yet vanishes now-
here on 4 (since V(a) = f(a) > 0). This completes the proof.

The d-completeness of (X, d) is characterized by using functions
V. X—R, for which the associated map P: X' X X—R,, given by (=, ¥)
— V{x)+V (y), is positive definite mod the diagonal; we do not impose
any positive definite requirement on the functions V themselves (4).

(8) It is easy to see, however, that if the subset 1 ¢ X is compact, a function posi-
tive definite mod 4 using one metric in X will remain positive definite mod.4 using any
equivalent metric in X.

(“} Recall that positive definiteness of a sumn does not imply that of each summand.
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2.2. THEOREM. Let (X, d) be a metric space. The following two Pro-
perties are equivalent:

1. (X, d) is d-complete.

2. For every lower semicontinuous V: X — Ry with infV|X = 0: if the
map P: XX X—Ry, defined by (x,y)— V(n)--V(y) is positive definite
mod A(X), then V(&) = 0 for some £e¢X.

Furthermore, whenever the conditions in (2) are satisfied: if {£,} is any
sequence in X with V(£,)—0, then &,—E&.

Proof. 1 = 2. Choose any sequence {w,} in X with V()¢ 0 and,

for each n=1,2,.., let Ay = {weX| V(z)< V(z)}. By lower semi-
’ continnity, each A, is closed; by their definition, each A, # & and
A;04,04;,D... We now show inf{diam d,| n=1,2,..}=0: for,
choose any ¢ >0; then, by 1.2, find § >0 so that d (@, ) < ¢ whenever
Pz, y)< B, and finally pick & so large that V (#w) < B[2; now, for any
pair @,y edy we find Plx,y)=V(e)+V(y) < 28/2, consequently
d(z,y) <e and therefore diam Ay < e.

This established, Cantor’s intersection theorem gives a single poing
§ € () Aq; sinee V(&) = 0 because V(&) < ¥ (@) tor all n, this proves 1 = 2,

n

To establish the additional conclusion (%), it suffices to observe thai,
i V(&)< g for all ¢ n, then from the formula D, &) =V (&) -V (&)
= V(&) it follows that d(&, £) < s for all 43> n.

2 = 1. Assume that (X, d) is not complete. Letting (& , d) be its com-
pletion, choose a & ¢ X— X and define V: X—R, by V(x) = d(=, &. Since
ﬁ}X XX =d, we find that P is positive definite mod A (X) (because
P(@,y) = d(z, )+ d(y, 8 > (s, 9) = d(®,y) = D[(x, 1), 4]) and that
inf¥V|X = 0 because X is dense in X. However, V vanishes nowhere on X,
and this completes the proof.

3. Positive definitess and coincidences. Given S y It X—2Z, & coinci-
dence of § and T is a point £eX such that 8(&) = T'(&); obviously,
a coincidence of T, id: X — X is simply a fixed point for 7. We will now
reduce the problem of finding coincidences to one of coustructing positive
definite functions and show, in fact, that these problems ave equivalent
in the eategory of metric spaces.

The graph of a map &: X—Z will be denoted by G(S).

3.1. TuroREM. Let (X, d) be complete, Z o topological space, and
8, T: X—Z continuous. In order that § » T have at least one coincidence £,

(*) The proof given can be easily modified to show, somewhat more gonoerally:
Let X be d-complete and let 7: X j

1 —>R, be lower semicontinuous with inf¥| X = 0.
Assume that there is some map a: (RoX Ry, (0, 0))— (R, 0) continuous at (0, 0) and such
that ao (VX V): Xx X~ R, is positive definite mod 4 (X). Then V(&) = 0 for some & ¢ X,
and if V(&) 0 then & E.
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it is sufficient, and if Z is metrizable also necessary, thai there exist a V:
X X Z—R, such that

1. V is lower semicontinuous and V(0) C G(8).

2. int{V(x, Tx)| e X}=0.

3. The function P: X x X—R, given by (=, y) — V (z, Tx)+V(y, TY)
is positive definite mod A4 (X).

Moreover, when such a V exists:

() If V(%n, Toa)—0 for any sequence {zn} in X, then wa—&.

(b) If V7Y0) = G(S) then & is the only coincidence of 8 and T -

Proof. Sufficiency. Define L: X—R, by 21—V (2, Tz). An apph-
cation of 2.2 gives a & with V (&, T¢)= 0 and, from the hypoth'esm 1,
that TE& = S& This proves the sufficiency. The additional conclusion (a)
being immediate from 2.2, we now prove (b): If ¥71(0) = G(S) and S’,T
had two coincidences & # 7, then

P(E,n) =V, TE+V(n, Tn)= V(& 86)+V(n, Sn) =0

and, since (&, %) ¢ 4, this contradicts the positive definiteness mod4 of P.

Necessity. Assume that §(£) = T(&). Letting d; be a J_netmo m Z,
define V: XxZ—R, by V(z,z) = &z, &)+ dy(z, 8E); this vanishes
only at (£, 8&) e G(S). Because P(z,y)> d(z,&)+d(y, &> d®,y)
= D[(z, y), A], this shows P is positive definite mod 4(X) and, since
V (&, TE) = 0, the proof is complete (°). } -

Note that, if 8, T have more than one coincidence, different functions
¥ must be used to locate the different coincidences. .

The hypothesis of completeness can be removed by relying on 2.1 ra-
ther than on 2.2, giving .

3.2. TEEOREM. Let (X, d) be a metric space, Z a topologwal. space, and
8, T: X—2Z continuous. In order that 8, T have at least -one coincidence .5,
'it’ is sufficient, and if Z 4is melrizable also mnecessary, that there ewust
a V: Xx Z—R, such that

1. V is lower semicontinuwous, and V=(0)C G(8).

9. inf {V(x, To| e X}=0. o

3. The{map ’w I— V (@, Tx) is positive definite 10d some compact ACZX,

The proof is omitted, since it is similar to that of 3.1, and uses the
game function V7 for the necessity. . .

Tt is useful to observe that, if W: ZX Z—R, vzbmsh.es on_lly at points
on 4(Z), then V (z, 2) = W(8z,2) is a function on X x Zwﬂ;l_x 7X0)C G(»_S’.)‘;
using su’oh functions W gives a more symmetric form_ula,tlpn of tl.le s_uih—
ciency in 3.1, 3.2, which is frequently more convenient in applications:

(%) Instead of the sum function in hypothesis 3, one can use a[V(w, Tx), V(y, Tyﬂ)}
where a: (RyX Rq, (0, 0))— (R, 0) is any function eontinuous at (0, 0). Cf. footnote (*).
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3.3. TaroREM. Let (X, d) be a metric space, Z a topological space, and
8, T: X—Z continuous. Then 8, T will have coincidence & whenever
there is a lower semi-continuous W: Z X Z—Ry such that

1. WY0)C 4(2),

2. inf{W(Sz, Tw)| # ¢ X} = 0, and

3'. a—W(Sz, Tw) is positive definste mod some compact 4 CX or

3" (X, d) is complete and (2, 4 V=W (8w, Tu)4-W(Sy, Ty) is positive
definite mod A (X).

4. Appiication to fixed-point theorems. In thig section, we illustrate the
use of positive definite functions, deriving some of the standard fixed-point
theorems by producing an appropriate function.

4.1. THROREM. Let (X,d) be complete and T: X—X such that
ATz, Ty) < d(z, y). If the map L: X X X— Ry given by (@, yy—d(x, y)—
—d( Tz, Ty) is positive definite mod A (X), then T has a unique fized point £,
and T"c—E& for each » e X.

Proof. We show 3.1 ig satisfied with V = d and § = id (so that G(8)
is 4(X)). Since

Liz,y) = dle, y)— d(Tz, Ty) < (@, To)-+d(y, Ty) = Pz, y) )

it follows that P is positive definite mod 4 (&), $0 it remains only to show
that inf{d(z, Tx)| 2 ¢« X} = 0. To this end, let ¢ >0 be given, and let
B=mt{L(z,y)| d(z,y)=¢}; by positive = definiteness, # is positive.
Because L(z, y) > 0 for all (#,y) we find, fixing any (¢, Ta), that the
sequence {d(I™z, T""'x)} is necessarily monotone non-increasing, hence
Cauchy, consequently d(7"s, T™+ip)— A(I™ ', T %) < f for all n> N.
This says L(T%, T(TVz))< g, therefore aA(I%p, T¥ 1) < e. Thus,
infd(z, Tr) = 0 and, since d vanishes on the entire diagonal, the coneclu-
sions all follow from 3.1.

This result contains Browder’s fixed-point theorem [4]; for if w:
[0, M]—R, is monotone non-decreasing right continuous, with w(r) <r
for all r >0, it is easy to see that r— o (r) 18 positive definite mod 0; thus,
if (X, d) is bounded and complete, and if T: XX satisfios d(Tx, Ty)
<w[d(w, y)], then the required positive definiteness in 4.1 follows from
@, y)—old@, y)] < d(z, y)— d(Te, Ty).

Note also that if X is compact, the positive definiteness requirement
in 4.1 iy satisfied if only (@, y)— d(Tz, Ty) > 0 whenever z 54 45 for the
general case, we prove a version of Edelstein’s theorem [7] in arbitrary
metric spaces [8,3.2] rather than complete spaces.

4.2. THEOREM. Let (
Assume that

A d(z, y)— (T2, Ty) >0 whenever o #* .

X, d) be a metric space and T: XX continuous.
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9. Tor some p e X, some subsequence {T™p} of its iterates converges to
a point &. .

Then & is a fiwed point for T.

Proof. We shall use 3.2. Define V: XX X—R, by

Viz,y) = d@,y)—d(Tz, Ty)+d(@, &);

then 7~%(0) C 4 and V (2, Tx) is positive definite mod, so i.t 1'ema.4ms;i tlo
show that int{V (@, Tw)] # € X} = 0. Choose any & >0; again as mth. 1:
it follows that {d(T"p,TI"p)} is a Cauchy sequence, sol " a
@y, gy — @(T%p, T*'p)| < e for all n, 82> some N; Ef ecting
an #:> N such that &(I™p, &) << }c then gives V(If"”‘p, T(ll’tilf‘))<e.
Thus, inf{V (2, Tz)| @< X}=0 and, by 3.2, the proof is complete. o
In cage T: X—X is non-expansive, i.e. d(Tz, 1"y)l< d(=,v), 113113l is
eagy to verify (see [8], for example) that if any one 01‘1)1’[3. is bqunde{i, iﬁ
the function z1—6(x) = diameter {IT"z| n=10,1, ...}.13 _unxf(?rgl yifc?f ,
tinuous on X. The map T: X—X is said to have sh'rmkmgT o%b.%tls y ‘)o;
each & with &(#) > 0, there is an n such that 6 (I™z) < 6 .(m). We W]il usg;
to establish the Belluce—Kirk theorem [2], [9] for arbitrary (rather n,
( lete) metric spaces.
comi;‘ 2J_‘HE()R:El\{.pl}et (X, @) be @ metric space, and let Tt X —X be a fnon;
expansive map with shrinking m‘bits.. If for some p e.X s?m; su?s:g:gin;'
{T™p} of its iterates converges to a point EeX, th.en £ is a fime .pom .
Proof. For any fixed integer s >0, consider the function
V(@) = 8(x)— 6 (T)+d{z, &)
ich is positive definite modé. Since the sequence {6(T”p?| "= 0,1, ..}
zzhxg(])lngitl))ns non-increasing it folzljc.m;s a?(a;}, ;?s <in 4;}); t];;t ;t }s ;]21;;}115 33,
viven any £>0 we have [6(T"p)— ' & 4, 2> 80 .
{g}grg(?singyni =N to satisfy @(I™p, &) <<s gives V(alwgz;f é’zlsnc;r};uf;
infV (z) = 0; consequently, by 2.1, 'g(f) = 0= 6(&;})— (b t].le e bing
arbitrary, this shows that 8 (&) = 6(T%%) f.or all s >0 so, by
orbit property, 6(&) = 0 and the p}"oof is (?omplete. ™
As one more illustration of this technique, we Qstf»b i§ X
4.4. TEroreM. If (X, d) is complete and a contimuous T: X—>
satisfies

(T, Ty) < emax[d(z, Ta), d(y, Ty), <1,

then T has o wnique fized point &, and Thz—& for each x e X.
Proof. From

Dl(0, ), 4] = dlz, 9) < d(@, To)+d(Tz, Ty)+a(Ty, 9)
< 2[d(s, To)+a(y, Ty)]
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follows that (z, y)—d(x, Tw)+d(y, Ty) is positive definite mod 4 (X). We
next show that a(T», T(I"x))—0 for each @: Assuming that no 7"z is
a fixed point, from d(I%, T°») < amax[d(z, Tx), d(Tw, T°2)] and a <1
we must bhave d(Tw, T%) < d(x, Tx) and therefore a(Te Tzw;
< aql(w, Tz). Thus, d(I"=, TT"») < o"d(x, Tz)~0, as asserted, An
application. of 3.1, taking V = d, now completes the proof. ‘

Ip the same way, one obtains the above conclusion under the more
general hypothesis

(T2, Ty) < amax[d(e, Tw), d(y, Ty)] +pd(@, y)+y[d@, Ty)+dly, Ta)]

where a, f, y > 0 and a-§-42y < 1. This relates to sor i
) ‘ - . me of Reich’s
results [10] but with the additional assumption that T be continuous

) 5 Coincidence analogs. We will illustrate some methods for generating
coincidence theorems from fixed-point theorems. °

5.1. DemNITION. Let 8, T: X—Z. An S~7T-orbit of 2
sequence {w,} in X such that Tw, — 8w, for each n > 0. ’
A given @, ¢ X may not have any S~X7'-orbit: ho it §i =
jective, then each #, ¢« X has at least 03;16 S“1T~orbiyt d?tzzinfaiﬁ;;é
vely by choosing an a,,, € §™(Tx,) for each n > 0,.
. It is clear that (a): I @, e 877 (x,) then %, has an 87'T'-orbit (.}
with 2, = @, for each n (it may also have other orbits) and (b): If {wZ}

:‘)ﬁ; an S7'T-orbit of wy, then {z,,,] n= 0,1,2,..} is an 8~7-orbit
& .

e X is any

For id, T: X—X, each # X has the uni id)~! i
: X- que (id)™'T-orbit {T"z};
the following coincidence theorem therefore red g N
Peteyshn L1 educes to that of Browder—
5.1. THEOREM. Let (X, d), (Z, o) be metric spaces, and S, T: X—Z

continuous. If there is an ST -orbst ;
contimon “ % {2a} having @ subsequence {®n}

1. @n—&,
2. d(zn, Py gn) 0,

then 8 and T have the coincidence £.
Proof. Define V: X x Z—R, by

Vi@, 2)=d(=, )+ o(z, TE)
which vanishes only at (£, T¢) ¢ G(T). Since V(z, Sv) i itii i
' . ) is pogitive definit
mod &, the result will follow from 3.2 once we establi’sh that ilzﬁV(m, Sz) ;10(_%
?

and, since

V (@4 yng 821 4n;) < Ay 4 g Tp,)+ A (@ng, &)+ e(Tan, TE),
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this conclusion follows at once from the hypotheses and the continuity
of 7. This completes the proof.

Another simple method to generate coincidence theorems from fixed-
point theorems is to replace the metric by a suitable function T and use 3.3;
the following result specializes to the Banach contraction prineiple:

5.2. TEEOREM. Let (X, d) be complete, Z a topological space, and
8,T: X—Z continuous, with S surjective. Assume that there is some
W: ZX Z—R, such that

1. W ds lower semicontinuous and W=2(0) C 4(Z).

2. There is an a<<1 such that W(Tz, Ty)<< oW (8%, Sy) for all
z,yeX.

3. W(Sz, Tz)--W(Sy, Ty) is positive definite mod4(X).

Then 8, T have at least one coincidence.

Proof. According to 3.3, we need show only that inf W(Sz, Tz) = 0.
Consider any S™'7-orbit {.}; since

WS 1y T0yia] = WL Ttin, T3] < aW IS0, 82451 = aTV (8, Tan]

it follows by induction that W[Sxn, Tmn] < oW [Sx,, Tw,] and, since
o<1, this completes the proof.

Agsuming the Z in 5.2 to be metrizable, note that if § is not bijective,
then the function W = d, cannot satisfy all the requirements; and if W ean
in fact be taken to be dj, then 5.2(3) is redundant.

It should be noted that the form 5.2 of the Banach contraction prin-
ciple may be applicable to find fixed points of maps T X — X in instances
where the clagsical version is not. As a transparent such example, let
X =1[0,% CR and let T: X—X be @i—a?. Clearly, T' is not contractive
(nor even mnon-expansive): however, using the function W, y)=o+y
on X x X, it is easy to see that W (Tx, Ty) < W (z, y) and that W satisfies
the remaining requirements in 5.2.

There is no difficulty in obtaining a coincidence version of 4.4, by
Teplacing d with a suitable W as in 5.2

A coincidence theorem that reduces to the Bailey fixed-point theo-
rem. [1] is

5.3. Trnorem. Let (X, d) be complete, Z an arbitrary space, and
8,T: X—Z continuous, with 8 surjective. Assume that there is
a W: ZxZ-R, such that

1. W is lower semicontinuous and W~Y0) C A(Z).

9. For each & >0 and each pair of S™I-orbits {zn}, {yn}, there is
some n = n(x,y, ) such that W[Swn, Sya]<e.

3. W (8w, Tz)+W(Sy, Ty) is positive definite mod 4 (X).
Then S, T have a coincidence.
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Proof. Again by 3.3, we need only to show that inf W (S», Tw) = 0;
and since W([Suw, Ton] = W[S2u, S2,4,] this follows by considering the
87T -orbits {2y, @1, @, ...} and {@y, ¥, &4, ...}. This completes the proof,

To develop an analog of 4.1, we first formalize the essential observa-
tion used in its proof (and that of 4.2, 4.3):

5.4. LeMMA. Let (X, d) be a meiric space, Z an arbitrary space, and
8, T: X—Z two maps. Assume that there is & W: ZX Z—R, such that
L(z,y) = W(8z, Sy)—W(Lw, Iy) s positive definite mod A(X). Then
Jor any two S~T-orbits {xn}, {yu} and for each & >0,

1. \W (8w, Syn)—W (Swr, Syr)| < & for all large n, k,

2. d(on, yn)—0. .

Proof. 1. Since W[Swn, 8yu] = W[Tan, Tys] = W[Sz,.,, S¥y,44], the
sequence {W(8#,, Syn)} is monotone non-increasing, hence covergent,
hence Cauchy.

2. Choose any e >0; by positive definiteness, d(w, y) < e whenever
L(z,y)<<p, where g >0. Choosing n so large that WISwu, Syn]—
—WIS®ys1, SYnsal < B for all large m, we have L(xn, y2) < B s0
&(@n, yu) < e for all large n. This completes the proof.

This leads to

5.5. TeEmoreM. Let (X, d), (Z, o) be matric spaces, and 8, T: X7
-continuous. Assume that there is a W: Z X Z—R, such that

L. W is lower semicontinuous and W=Y0)C 4(Z).

2. W(Sa, Sy)—W(Tw, Ty) is positive definite mod 4(X).

If some peX has an S87'T-orbit {py} containing o convergent sub-
sequence, then 8, T have a coincidence (7), '

Proof. Letting {p,} be the given orbit of p, then {Ppiq) is an orbit
of p, and, according to the Lemma, d(pn,P,.,)~0. Since some subse-
-quence of {p.} converges, an application of 5.1 completes the proof,

6. Application to set-valued maps, The set of all non-empty closed
subsets of a given space Z will be denoted by 2% the graph of a map
T: X—27 s H(T)=J{(,2)] 2« T} CX X Z.

&

LEV: XX Z—Ry and §: X—27 are given, we define VS, Vg X—R,
by

VE(%) = sup{V (2, 2)| # e Su}, V(@) = inf{V (2, 2)| 2 e Sx).

It is well-known. [3, p. 121] that if V is lower semicontinuous and if § is
& lower (resp. point-compact upper) semicontinuous get map, then V&
{resp. V) is lower semicontinuous.

() Note that, even using W = id, this dees not follow from [8,3.2] by considering

the set-valued map ST X— 2%, since in 5.5, the map 8§77 is not required to be point-
compact. o
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We give two general coincidence theorems for maps 8, T: X—2%,
one when both 8, 7' are lower semicontinuous, the other when both are
upper semicontinuous; observe that, for pairs of upper semicontinuous
set maps, the notion of coincidence natural in our approach is slightly
different from that for pairs of lower semicontinuous set maps.

6.1. THEOREM. Let (X, d) be a metric space, Z an arbitrary space, and
S, T: X —2% lower semicontinuous. In order thai there be a point Ee X
with S(&) C T'(&) it is sufficient, and if Z is metrizable also necessary, that
there exist a V: X X Z—R, such that

1. V s lower semicontinuous and V71(0) C G(T),

2. inf{V8(x)| ® e X} =0, and

3. VS is positive definite mod some compact A C X, or

3. X ds complete and (x,y)—VS(x)-VS(y) is positive definite
mod A (X).

6.2. THBOREM. Let (X, d) be a metric space, Z an arbitrary space,
and 8, T: X —2% upper semicontinuous maps, with S also point-compact.
In order that there be a point & e X with S(&) ~ T(&) # @ it is sufficient,
and if 7Z is metrizable also necessary, that there exist a V: X X Z— R, such that

1. V is lower semicontinuous and V™(0)C G(T),

2. Inf{Vs(o)} e X} =0, and

3'. Vs is positive definite med some compact A C X, or

3", X 4s complete and (%,y)—Vs(z)+Vsy) is positive definiie
mod 4 (X).

Proofs. We ghall prove only 6.1, since the proof of 6.2 is similar.
Sufficiency: Aceording to 2.1 and 2.2, there is a £¢X with V5(§) = 0;
this implies that V(&,2) =0 for all ¢eS(&§) and, since V~Y0) C G(T),
it follows that S(&) C T'(£). Necessity: For the function V(w, z) = d(xz, -5)‘+
+o(z, TE), ¢ a metric for Z, the corresponding VS is pt:JS%tl'\"e definite
mod the compact A = & (vesp. VS(z)+V8(y) is positive definite mod 4 (X)
and is readily wverified to have the desired properties. This completes
the proof. _

Tach of Theorems 6.1, 6.2 clearly reduces to 3.1, 3.2 if §, T are con-
tinnous point-maps. Taking §, T X 2%, with 8(z) = smgleto?:l‘w, the
theorems describe the real-valued functions necessary and sufficient to
agsure that 7 X—2% has a fixed point. Applicaﬁuiox_l yielding the res.ults
in, suy, [8], and their extension to “coincidence” versions, can be obtained
in the manner of Sections 4 and 5.
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Some continuous separation axioms

by
Phillip Zenor (Auburn, Ala.)

Abstract, Let X denote the space of closed subsets of X with the Vietoris topology-
A function @: X X FX-> [0, 1] is a perfect normality operator (abbreviated PN -operator)
if, for each H ¢ FX, H = {z « X: p(z, H)= 0}. X is continuously perfectly normal if X
admits a continuous PN -operator. Notions of continuously normal and continuous
complete regularity are defined in a similar fashion. It is ghown that:

1. X is metrizable = X is continuously perfectly normal =X is continuously
normal = X is continuously completely regular.

2. Every continuously perfectly normal space is a collectionwise normal Fréchet
space.

3. The product of X with the irrationals is continuously completely regular iff X is
continuously perfectly normal.

4. Every locally compact continuously completely regular space ig first countable.

5. X is metrizable if and only if X admits a continuous PN -operator, @, such that
it I is a finite subset of X and if z < K, then o(y, {#}) > @(y, K) for every ¥ e X.

6. Every wd continuously perfectly normal space is metrizable.

G Gruenhage recently showed the author an example of a continuously perfectly
normal, stratifiable, first countable space that is not metrizable. It is not known if every
continuously perfectly normal space is metrizable.

In [14], the author shows that the Ti-space X is metrizable if and only
if there is a continuous function o from FX, the space of closed subsets
of X with the Vietoris topology (*) into CX, the space of continuous,
non-negative, realvalued functions defined on X with the compact-open
topology, such that

(a) it HeFX, then H = {z]| a(H)(z) = 0} and

(b) if K is o finite subset of X and if # ¢ K, then

(a({ah) () = (« () (¥)

The author’s attempts to decide if (b) of this theorem could be removed
led to the notions of continuous perfect normality, continuous normality,

for all ye X .

(*) If X is a space and U is a finite collection of subsets of X, then RU will denote
the set {I e FX| F c|_J U and F intersects each member of U}. Then the collection
{RU| U is a finite collection of open subsets of X} forms a basis for a topology on X.
The topology so induced. is often called the Vietoris topology, the finite topology, o the
exponential topology. Good studies of the Vietoris topology can be found in [7] and in [8].
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