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Compact metric spaces have binary bases
Y :
M. Strok and A. Szymanhski (Katowice)

Abstract. 0’Connor has shown that every compact metric space is supercompact.
However his proof is valid only for spaces dense-in-itself.
" This result is strengthened here, namely by proving that every compact metrie
space has a binary base.

A family R of subsets of a topological space is saad. to be binary
(see [7]) if every subfamily R’ of R such that () {cld: AeR} =0
containg two elements with disjoint closures.

A space X is said to be supercompact (see de Groot [2]) if there exists
an open subbase T, called supersubbase, such that in every cover of X by
means of elements of § there exist two elements which cover X.

It is clear that if X iz a compact Hausdorff space and B is a binary
base of open sets in X, then the family § consisting of sets of the form
XNelU, where Ue 3B, is a supersubbase on X.

In the paper [4] O’Connor proved that every compact metric space
is supercompact; his proof consists on construction of a special embedding
of a given compact metric space into Hilbert cube. However his proof
is valid only in the case when the space has no isolated points. In fact,
the assertion ([4], p. 32) that the points T»Dy ...TyDi(a) and TyDsy ...
. Ih.Dy(b) lie on opposite sides of zy for a, b ¢ M, whenever D, ... T;D\(a)
and D, ... T, D,(b) lie, does not follow from Lemma 2, because that lemma
aggures this only for a, b € K, where K is a dense-in-itself subset of a given
uncountable compact metric space M.

In this paper we prove a theorem (Theorem 2) which asserts that
every compact metric gpace has a binary base. Clearly, this result con-
taing O’Connor’s one. Qur proof is based on the Freudenthal’s theorem
on inverse expansions [1].

The question of the existence of supersubbases or binary bases for
arbitrary compact Hausdorff spaces are still open. The first of these
questions was raised by de Groot [2].

§ 1. Natural projections, pseudopolyhedra and non-tangent sets. By
a polyhedron we mean a compact Huelidean polyhedron. The symbol |P]
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der.mtes a po_lyhedron with a triangulation P. If we say about a triangu-
}atmn of a simplex, then we mean on the standard triangulation eonsigt-
ing of all faces of that simplex.

Let @ ¢ [P|. Then we define the carrier and the star of w:

carpr = () {seP: wes},
Stpr= U {seP: wes\U {seP: w¢s}.

Clearly, the carrier of & is a simplex and & belongs to the geometrical
interior of it. o

The foll.owing definition and lemma ave taken from Rogers’s paper [6].

It |P| is a polyhedron, o simple subdivision of P is o comiﬂex P’
whose ve?tlees consist of just one point p, from the geometrieal interior
of e@ch mmpllex s of P, such that the simplex determined by a set V of
vert‘mes of P’ belongs to P’ if and only if there is a sequence 80y veey 81
of simplexes of P, each except the last is a face of the next, such that
T-fz {pf".’ "".p‘“}' If P is of dimension n and & is & positive integer,
then P’ iy szgd to be of order k if the barycentric coordinate of Ps on each
vertex of s is not smaller than (n+1)"% for each s of P.

Lmmya 1. If P’ is a simple subdivision of the n- dimensional complex P
of order %, then meshP’ < (1— (n+1)"*)mesh P. .

Let § be a simplex. If p is a vertex of §, th '

: . g » then |8(p)| denotes the
opp.os.fule to p face of 8. Let ¢ be a vertex from S (p). Then by a natural
projection o [8]=|8(p)| we mean a linear map which identifies the
vertex p with the vertex ¢ and is identity on |S(p)].

Remark 1. Bach linear onto map between two simplexes can be
represented as a composition of natural Drojections,

.Let [Pl be a polyhedron and let @ be contained in P. Then
U {intgeoms: s € Q} is called a pseudopolyhedron. |

Using the Lefschetz’s construction (13 Ch bai
tollowing.bup. T ([3], Ch. 8, § 1, (5.2)) we obtain

LJ?MMA 2. If [Py, ..., [Py are polyhedra contained in a polyhedron | 1)
(thfwa 18 o dependence between triangulations P,, . : n
lation P), then there exists a subdivision P’ o
on each P;.

wy P and the triangu-
of P which induces subdivisions

Levya 3. The wnion and the ntersecti o
a3, 4 tion of two pseudopolyhedra
(polyhedra) is also a pseudopolyhedron (polyhedron). The prism m;o?r 151’014:1&
polyhedron (polyhedron) is a pseudopolyhedron (polyhedron),
The following corollary is a consequence of Remark 1 and Temma 3

CoROLLARY 1. The counterima
LARY . ge. of pseudopolyhedron l
under a simplicial map 18 a pseudopolyhedron (poly%edron). (weluhedron)
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A subset M of a polyhedron |P| is said to be non-tangent in P if
cl(s » M) == s ~clM for each s of P, or equivalently, if xeclM, then
wecl(s ~ M), where s is the carrier of z. A family consisting of non-
tangent in P sets will be called non-tangent family.

LEMMA 4. Let 7 be a simplicial map of a polyhedron |P| onto « poly-
hedron [P'| and let M be non-tangent in P'. Then m™(M) is non-tangent
in P and a~l(cl M) = cla™ ().

Proof. Note, that the both conclusions follow from the following
implication:

@ e (L) = x e cl{n™ (M) ~s) where s= carp®.

To prove this implication let # belongs to =~'(cl M), let s be the
carrier of @ and let s’ be the carrier of n (). Since M is non-tangent in P’,
hence @(z) belongs to cl(M ~¢'). Then there exists a sequence {ys: %
=1,2,..} of points of M ~ s’ converging to z(»). We claim that there
exigts a sequence {wy: n=1,2,..} of points of = (M) ~ s converging

. %o @. Consider = as a map from s onto §', which i§ sufficient for further

considerations; 8o we can assume that s* is a face of s.

1. If dims == dims’, then let @y = ya.

2. It dims = dims'--1, then we can assume that = is a natural
projection which identifies vertices p and g, where g belongs to s Let H
be the (dims)-plane which containg the point # and the face of s’
opposite to ¢. Then let z, Dbe a (unique) point of H such that
7 (Tn) = Yn.

Passing to the general situation, the proof reduces in view of Re-
mark 1 to the cases 1 and 2.

Now we infer that @ e el(z™ (M) ~ s).

§ 2. Construction of some special binary bases on simplexes. Let |S] be
a simplex and let p and ¢ be different vertices of 8. A symbol sf denotes
the one face of § which containg p and ¢. If a point & belongs o s7,
then H* denotes the minimal hyperplane in (8| passing through # and
18(p)(q)|. If a point x belongs to s}, and p # # # g, then H7 denotes the
intersection of |§| with the open half-space determined by H™ to which

‘ p Dbelongs (do the same with g). If # and y are different points in s§ such

that p s @ % ¢ and p #y # ¢, then Hj denotes the intersection of HY
and HZ. The sets HY, Hy will be called strata of |S| (with respect to p
and g). We ghall omit indices in the symbols H if misunderstanding is

excluded. )
Letb @, [S]—]8(p)| be the natural projection and let R be an arbitrary

family of subsets of |S(p)l.
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By a lift of the family R to |S| by means of ®, We mean the family
of subsets of |8 of the form:

1. oY (4) ~ H, if A4 is disjoint with [8(p)(q)],

2. w{l(A), it An~|8(p)g) 9,

4 being member of R, H being a stratum.

Lumma 8. If A 4s @ non-tangent in S(p) subsct of |8(p
I8(p)(Q)], then ellp(A) ~ H) = el(pg*(4)) ~ cLH for every stratum H.

Proof. Note that cl(p;*(4) ~ H) = cl(p;(4) ~ cLH), H being open.
Thevefore it suffices to prove only the followmg; inclusion:

cloi(4) o clH Cel(pg*(4) )~ clH).

Since the map ¢ |H*: H*—[8(p)| is a homcomorphism and, by
Lemma 4, elg;}(4) = g7 (cl4) hence

clgg'(4) 0 H* = g7 (el 4) ~ H* = (p,|H*) (el 4)
= Clga(p, | H*)"H(4) = cl{p;}(4) ~ B

The desidered inclusion follows now from the observation that clH ig
. the union of some sety H*

LDMMA 6. If A is a non-~ t(mgeub in 8(p) subset of [S(
I8 (p)(9)], then

Aoy (4) ~H A s) = elg (4) A olH ~ s =

for each s €8 and every stratum H.

Proof. Let s be a face of §. First let us consider the following two
cages:

L. pesandg¢s;if His HY or HE, then ¢lH ~ s C ]S( )(1 )| and there-
fore cly;(4) ~ elH A s = @ 1f H is sz then s CelHy and thercforo
elogH(4) ~clH s = clgg l(A) ns = ellp;(4) A s) = cl( YA4)~H )
(the second equality follows from Lemnm 4).

2. p es and g < s; then observe that g, Yp(s)) = s and then Lemmas 4
and b imply equahtles

) di S]()M?l with

(p)| disjoint with

Alpyi(4) ~ H)n~s,

de;(d) nclH ns= @g (cld) ~ 99;1(%(3)) A clH = ;1(014 ~ %(3)) ~ el

=7 (cl A~ gys ) N olH = elg; (4 n g () ~ 6LH
= cl(gaa Y4 A g fs) ~ H) = cl(qoq W4) ~ g pg(9) A ZI)
= cl((pq (4) ~nH ~ ). '
The proof of the required equality in the remaining two cases, is
analogous to that of the case 1, or obvious.

COROLLARY 2. T'he property to be non-tangent is preserved by the lift
operation.
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TuroreM 1. In every simplex || there emsts a binary base $ mon-
tangent in S, consisting of open pseudopolyhedra the intersections of which
with each face of |S| form a binary family and such that

(#) if U,V eB, se8 and the sets elU ~ clV, clU ~s and clV ~s are .
non-empty, then the set clU ~ clV ~s is so.

Proof. The construction of such a base will be given by the induction
on the dimension of |S|.

If dim|S|= 1, then the family of all non-tangent in S open in |8
intervals is the desidered one.

Let us assume that there exists a binary base %' consisting of open

. pseudopolyhedra on. an (n—1)-simplex |5| of S being non-tangent in §,

which induces a binary family on each face of |§| and fulfils the con-
dition ().

Let p and g be vertices of § such that p ¢ |§] and ¢ < |5]. Let @ 18]
—+18(p)| = |§| be the corresponding natural projection. Now we prove
that the lift B of the base %’ to |8] by means of ¢, is the family in duestion.

It follows from Corollary 2 that $ is non-tangent in 8.

Clearly &% is a base, having sets of arbitraliry small diameters.

To prove that B is binary and induces a binary family on each face
of |8| let s be a simplex of §and let U,, ..., Ux € B be such that el (U, ~s) n
A cl(Ug ns) =@, We can assume that U;= o7 (Vi) ~ Hy, =1, ...
v by l<k and Ujs=o7(V;), j=1+1,..,k where V; belong to %’
and H; are strata. Non-trivial ig only the case when p, g e s.and there
exists H* such that H*C ¢lHy ~ ... n clH,. By Lemma 6 we get

el '(Vy) » wncdH ns=@.
Using the equality pg*(p(s)) = ¢ we have
o7 (clVy A

The assumption H*CclH; ~ ... nclH, implies that elV, ~ ...~ clVi
~ g (8) = @. Since ¢,(s) is a face of |§(p)| and B’ induces a binary family
on each face of |§(p)| hence there exist V; and V; from {V,, ..., Vi} such
that clVi~ elV; A @,(s) = @. Consequently, elU; ~clU; ~s =@, and all
the more (Ui n§) ~el(U;ms)=@.

In order to prove the condition (x) let U, V and s be such that
U,VeB, sl and the sets clU ~clV, clU s, clV ~s are non-
empty. We can assume that p and g belong to s (other cases are trivial).
Since U and V are in $, hence U= g;Y(F) ~n F, and V = ¢ () ~ B,
where I and @ belong to B’ and H,, H, are strata of |§]. Let, on the con-
trary, clU ~ elV ~ s = @. Using Lemma 6 and the formula g7 %p,(s)) = s
we get

v el (V) & elHy A

Vi A gys) A AH, A A, =0

@7 (ClF ~ G A gys)) n By ~clB, =0 .
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Since clU ~ clV 5= @ hence there existy a hyperplane H* which is con-
tained in clB; ~clE,. But in this case clF ~clG ~ ¢, (s) = @; a contra-
diction with the fact that F, G ¢ B’ which fulfils ().

The fact that 3 consists of pseudopolyhedra follows immediately
from Lemma 3.

§ 3. Further lemmas.

Lemwa 7. For every simpler |8| and o positive § there ewist a finile
number of points of |8, say wy, .., »;, and open (in |8]) neighbourhoods
of that points, say Uy, ..., U;, which cover |8 and such that

1 Uiisa pseudopolyhédron noti-tangent in S and diam U, << 8,
(2) A elU; C sbigws ,
(8)  clUin clU; @ implies that cargmy 48 o face of cargw; or conversely,

(4)  {Uyy .., U} is a binary family which induces a binary family on
each face of 8, -

(5) if se8 and dall the sets clU; n cllUj, clU; s and clU; ~s are non-
empty, then the set AlU; ~clU; ~ s is so. '

Proof. Let B be a base constructed in Theorem 1. Let {@,, ..., Tn,}
be the 0-skeleton of 8. Since % is a bage hence there exist clements
Uyy ooy Uny of B with disjoint closures satysfying the conditions (1)~(b)
(the conditions (3)-(8) in vacuum).

Let 8% be the k-skeleton of §. Let us assume that we have points
By ooy Tngy vony Ty, 0 |8®] and sets Ty, ..., U, ..., U,, from % which
satisfy conditions (1)~(5) and such that [8¥|C U, U ... U U,,.

Now let s“** be a (k-1)-simplex’ of §%*D, The compactness of the
set D = s*N(T, U ... v U,,) implies that there exist points Doty -vy Ep
in D and sets Uppyqy ey Up in $ which cover D, which satisty (1) and
such that

we Uy CUsCstgry  and  diamU,< § for all £

and if a set V from {Uy,..., U,} is such that eIV ~ gt = @, then
AV A A (Tpypy e Up) = @. ‘

It is easy to see that the points Tygveny Bppy ooy @y and the sets
Uyy oy Upyy oory Up satisfy conditions (1)-(5). Applying this construction
succesively to remaining (k+1)-simplexes. of 8%+ we obtain, in finitely
many steps, the points @y, ..., @,,,, in [S*+9] and the sets Uiyoy Upppa
in $ which satisfy conditions (1)-(5) and such that [8ED C U, U ...

oV U

. Now the lemama follows by the indﬁction.
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LiemMA 8. Let |8 be a simplew and let [P'| be a polyhedron such that
P'CS. Let G be a finite binary family of subpolyhedra of |P'| such that

(6) " if |V|eB®, then TVCP.

Let @ be a binary family on |S| constructed as in Lemma . T. ,

Then the intersections of elements of Q v B with |P'| form o binary
Samily on |P'| non-tangent in P’.

Proof. The fact that the family in question is non-tangent in P’
holds, because @ is non-tangent in P’ and elements of B are closed.

In oxder to prove the binarity let Ui, ..., Uje @ and [Vy], ., [Vi| € B
be such that the closures of each two members of {Uy, ..., Uy, |Vyl, -, [Vl}
have non-empty intersection and each of elU; has non-empty intersection
with |[P’].

Let @, ..,#; be points corresponding to sets Uy,.., U; as in
Lemma 7.

It follows from the fact that clU, ~ [V | # O and from (2) that
@y € |V, for each p and ¢. Hence

Byy ey By Vi) A oo |V A [P

It is easy to prove using (3), by the induction on j, that all the points
@iy 4=1,...,], lie in one simplex § from V, ~ ... ~n V3 ~ P’, ¢ being the
carrier of one of them. This, together with (5), imply that

LU~ ncdUynel|Vynaonc|Ve]| n [P £@.

In the case of the lack of V—s the proof holds with obvious simplifi-
cations, In the case of the lack of U—s conclusion follows immediately
from thé hypotheses. .

LuMMA 9. Let |P| be a polyhedron, let R be a finite binary family consisi-
g of pseudopolyhedra non-tangent in P and let & be a positive number.

Then there ewists a finite open covering T of |P| consisting of open
pseudopolyhedra such that meshd < 8 and T v R is a binary family non-
tangent in P. '

Proof. It follows from Lemma 2 that there exists a subdivision P’
of P which induces a triangulation on each nonempty intersection of
clogure of elements of each subfamily of R, the elements of R are pseudo-
polyhedra. We can assume that P’ C 8, where [S] i a simplex. Let G
== {clA: 4 ¢ R}. Define T to be the family of all intersections of elements
of @ with |P’|, where  is a §-covering taken for § acgording to Lemma 7.
Lemma 8 assures that § o 6 is binary. Thus § v R is binary. The same
Lemma 8 assures that & o R is non-tangent in P. .

LemMA 10. Let |P| be o polyhedron and let Wy, ..., Wa be open in |P|
pseudopolyhedra non-tangent in P, Then there exists a simple subdivision P
of P of order 2 such that all Wy, ..., Wn are non-tangent in P®,
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Proof. For each se P we denote by U(s) the set of all points of
s having all the barycentric coordinates in s not smaller than (dim P-1)7%,
Now the thesis of our lemma may be stated as follows.

Tor each s of P there exists ps e U(s) such that for each sequence

(7 N ENFE ... FHES

and for each face 4 of (g, «y Doy D)y the simplex determined by vertices
Dags ooy Doy Ds, there is for each 4, 4 < m

[

) A(d AWy =4~ dW,.

The proof of our leroma will be done by the induction on cli,m;s.

If dims = 0, then p, equals s and (8) follows easily from the as--

sumption that Wy are non-tangent in P,

Let ps be already defined for simplexes of the n-skeleton of I and
let s € P be a (n-+1)-simplex. Now we are going to define p, such that (8)
holds for each A of each simpleX (pPgs .y Pgys Ps)y WHELe 8oy ey Sk
satisty (7).

Take on each polyhedron cl(s ~ W) a triangulation 7' such that T’
induces on s ~bdW; (bd stands for the topologieal boundary in |P[)
a triangulation which we denote T'; (the existence of such T follows
from Lemma 2). Note that s ~ bdW; is equal, in virtue of the non-tangence
of W in P, to bdss ~ W) (bds stands for the topological boundary in s).

Consgider all the hyperplanes in s with the dimension not greater
than % determined by arbitrary families of simplexes of Ty, ..., T, and
of points Py, , ..., Py, already defined which satisfy (7). Let 4 be the union
of all such hyperplanes. It follows from the fact that A is nowhere dense
in s that there exists a point ps such that pse U(s)— 4.

Let 4 be a face of (P, «vy Pgys Do)y Where s, ..., s be such that (7)
holds. To prove (8), let p e 4 ~ clW;. :

To prove that p e cl(d ~ W;) it suffices, in virtue of the inductive
hypothesis, to consider only the case when p «intgooms, ie. when s
= carpp. In consequence ps € car,p. Clearly we can assume that p ¢ bAW;
~ bdgeom4, Wy being non-tangent in P.

It M is a subset of |P|, then by H (M) we denote the hyperplano
determined by M.

Let t' = car,_p;p_a,nd let ¢ ¢ T; be such that ¢ C¢”’ and ¢ ~ Win
s %@, Let t= intgeomi’. Clearly, tC Wins, ' Celi and dimH (¢)
> dim H (t').

Let Doy +es Doy, be all points from {p,,, ..., p,} which lie in car,p.
We have H(car,p i) =H({p%, ""ﬁ’si,}u't/% because p; belongs to
the set on the right side. Then, by the definition of p, we infer that
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dimH (caxp w ') == n-}-1. This implies, in virtue of p e H (car,p) ~
~H (') C H(car,p) ~ H(1),

dim (H (car,p))+ dim H (') = dim(H (car,p) ~ H({")+n-+1,
~ dim H (car, p)- dim H (1) = dim (H (car,p) ~ H(t)+n+1.
But dimH (1) > dimH ("), So

dim (H (car,p) o H (1) > dim (H (car,p) ~ H(t') -
Let
q e H(caryp) ~INH (car,p) ~ H(t') .

Then the open interval (p, ) is contained in H (cax,p) ~ 1. So there exists
an re(p,q) such that (p,#)Ct~4CWyn A and hence p e (Wi ~ 4)
what ends the proof of the equality (8). Hence the inductive thesis is
proved. B

TEvmA 11, Let R be a finite family of open in |P| pseudopolyhedra i
a polyhedron |P| non-tangent in P and let € be a positive number. Then there
ewists a subdivision P' of P such that mesh P’ < ¢ and each element of R is
non-tangent in P’.

Proof. By Lemma 10, there exists a simple subdivision PW of P of
order 2 such that all elements of R are non-tangent in P®. By Lemma 1,
mesh PO < (1— (dim P-1)7%) mesh P. This implies that if we shall iterate
the process described above, then we can find an r such that P is a sub-
division in question.

§ 4. Construction of a binary base on a compact metric ‘space.

THrOREM 2. Bvery compact meiric space X has a binary base.

Proof. Wo shall construct an inverse sequence of polyhedra | Pn]
(the metric dy on |Py| let be such that du(|Pal) < 1) with simplicial onto
bonding maps @.,, whose inverse limit Y with the standard metrie

@ 4
d{w,y) == 27 zwndn(ﬂn(m); m(y))
=1

whero s, denotes the standard projection of ¥ onto Py, is homeomorphic
to X, and ha# a binary base $ = {n (A): A eRpy, n=1,2,..}, where
R, is a cortain finite open covering of |Px|. To do this it suffices in the
procedure of the proof of Treudenthal’s theorem, [1] (on the existence
of such an expansion without the existence of a binary base on Y) in

" the form of Pasynkov [5] (proof of Prop. 2, pp. 97-98; for u being the

class of all polyhedra; we assume that the technique of maps of X into
nerves of open finite coverings of X is known to the reader), which
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congists on the inductive construction of [P,| and a?_,, to take into con-
sideration the following two observations:

(1) if we have been already defined sequences ]I’1|<2-}4P2|»¢-

N al .
v [Py g € | Paly Ry, oy R A0 8y, ..oy Oy, such that, for 1< ¢ << n,

(a) | P4 is a polyhedron such that diam|P) < 1 and =_, is a simplicial
map of |By| onto |P;_,|, where P;_, is a certain subdivision of P,_,,

(b) R is a finite family consisting of pscudopolyhedrs open in |Py,
non-tangent in P for i<t and in P, for ¢ = n, such that meshR,; < d¢,
Ry covers | Py and Rew {(wf)"(Ar): Ag e Rp, k< i} is a binary family,

(c) 0¢ is a positive number such that it 4 C|P;| and diamd < & ,
then for each j <4, diamazi(4) < 1/2%, then for every positive number &

~there exists a subdivision P;, of P, such that mesh P, < ¢ and each ele-
ment of Ry v {(#5)7(Ar): Ax € R, k< n} is non-tangent in P, and

(2) if we have been already defined a simplicial map aptt of [P,
onto |P,|, where P, satisfies conditions from (1), then we can find

() a positive number 8, ., such that if 4 C [Ppyq] and diam 4 < §
then for each j<n41 diamal™(4)< 1/2" and

(f) an open (in [P, ,|) covering R, ., of |P, .| with mesh®
consisting of pseudopolyhedra such that family

Ry @ {5 Ar): Ag e Rey b<n41}

is binary and each element of that family is 'non-tangent in Py

In fact, (1) assures (see the note of Pasynkov loco cit.) the existence
of polyhedron |P, | and a simplicial map n™: |21 1Py ], where P, is
as in (1) (for sufficiently small &), such that they satisfy the conclusions
of the Pasynkov’s construction (in order to get a homeomorphism of X
with the inverse limit of the inverse sequence {|Pal; #2_.}). In virtue of
Lemma 4, the family {(n3*")"Y(As): Ak e Ri, k< n+1} is non-tangent
in P,,,. Now take ®,,, as in (2). ‘

By the induction we have constructed an inverse sequence {|P,|; ar .}
with inverse limit ¥, a homeomorphism of X onto ¥ (by the p]?oce(l‘ure
of Pasynkov loco cit.) and a sequence R, satisfying the conditions of
(1) and (2).

Now, easy caleulation with projections m, and maps = leads, in
virtue of (b), to the formula

feh1y

N1 = (SWH

mp (ClAy) = cl(n;(4x))  for ApeRi, h<n.
Using this formula and applying (b) once again we infer that B is a binary
family on Y.
The fact that B is a base follows easily from (b) and (e).

To complete the proof observe that the assertions (1) and (2) follows
immediately from Lemma 11 and Lemma 9, respectively.
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