Compact metric spaces have binary bases

by

M. Strok and A. Szymański (Katowice)

Abstract. O'Connor has shown that every compact metric space is supercompact. However, his proof is valid only for spaces dense-in-itself. This result is strengthened here, namely by proving that every compact metric space has a binary base.

A family \(\mathcal{K} \) of subsets of a topological space is said to be binary (see [7]) if every subfamily \(\mathcal{K}' \) of \(\mathcal{K} \) such that \(\bigcap \{ \text{cl} A : A \in \mathcal{K}' \} = \emptyset \) contains two elements with disjoint closures.

A space \(X \) is said to be supercompact (see de Groot [3]) if there exists an open subbase \(\mathcal{S} \), called superbase, such that in every cover of \(X \) by means of elements of \(\mathcal{S} \) there exist two elements which cover \(X \).

It is clear that if \(X \) is a compact Hausdorff space and \(\mathcal{S} \) is a binary base of open sets in \(X \), then the family \(\mathcal{S} \) consisting of sets of the form \(X \setminus dU \), where \(U \in \mathcal{S} \), is a supersubbase on \(X \).

In the paper [4] O'Connor proved that every compact metric space is supercompact; his proof consists on construction of a special embedding of a given compact metric space into Hilbert cube. However, his proof is valid only in the case when the space has no isolated points. In fact, the assertion ([4], p. 32) that the points \(T_aD_a ... T_bD_b(a) \) and \(T_aD_a ... T_bD_b(b) \) lie on opposite sides of \(z_a \) for \(a, b \in M \), whenever \(D_a ... T_bD_b(a) \) and \(D_b ... T_bD_b(b) \) lie, does not follow from Lemma 2, because that lemma assures this only for \(a, b \in K \), where \(K \) is a dense-in-itself subset of a given uncountable compact metric space \(M \).

In this paper we prove a theorem (Theorem 2) which asserts that every compact metric space has a binary base. Clearly, this result contains O'Connor's one. Our proof is based on the Freudenthal's theorem on inverse expansions [1].

The question of the existence of supersubbases or binary bases for arbitrary compact Hausdorff spaces are still open. The first of these questions was raised by de Groot [3].

§ 1. Natural projections, pseudopolyhedra and non-tangent sets. By a polyhedron we mean a compact Euclidean polyhedron. The symbol \([P]\)
denotes a polyhedron with a triangulation P. If we say about a triangulation of a simplex, then we mean on the standard triangulation consisting of all faces of that simplex.

Let $x \in [P]$. Then we define the carrier and the star of x:
\[
\text{car}_{P}x = \bigcap \{ s \in P : x \in s \}, \\
\text{st}_{P}x = \bigcup \{ s \in P : x \in s \} \setminus \bigcup \{ s \in P : x \notin s \}.
\]

Clearly, the carrier of x is a simplex and x belongs to the geometrical interior of it.

The following definition and lemma are taken from Rogers's paper [6].

If $|P|$ is a polyhedron, a simple subdivision of P is a complex P' whose vertices consist of just one point p_i from the geometrical interior of each simplex s of P, such that the simplex determined by a set V of vertices of P' belongs to P' if and only if there is a sequence s_0, \ldots, s_k of simplexes of P, each except the last is a face of the next, such that $V = \{ p_{s_0}, \ldots, p_{s_k} \}$. If P is of dimension n and k is a positive integer, then P' is said to be of order k if the barycentric coordinate of p_i on each vertex of s is not smaller than $(n+1)^{-k}$ for each s of P.

Lemma 1. If P' is a simple subdivision of the n-dimensional complex P of order k, then $\text{mesh} P' \leq (1-\frac{1}{n+1})^k \text{mesh} P$.

Let S be a simplex. If p is a vertex of S, then $[S(p)]$ denotes the opposite to p face of S. Let q be a vertex from $S(p)$. Then by a natural projection $\rho_{S} : [S(p)] \rightarrow [S(p)] = \{ q \}$ we mean a linear map which identifies the vertex p with the vertex q and is identity on $[S(p)]$.

Remark 1. Each linear onto map between two simplexes can be represented as a composition of natural projections.

Let $|P|$ be a polyhedron and let Q be contained in P. Then $\bigcup \{ s \in Q : s \cap P \}$ is called a pseudopolyhedron.

Using the Lefschetz's construction [3], Ch. 8, § 1, (5.2)) we obtain following two lemmas.

Lemma 2. If $|P_0|, \ldots, |P_k|$ are polyhedra contained in a polyhedron $|P|$ (there is no dependence between triangulations P_0, \ldots, P_k and the triangulation P), then there exists a subdivision P' of P which induces subdivisions on each P_i.

Lemma 3. The union and the intersection of two pseudopolyhedra (polyhedra) is also a pseudopolyhedron (polyhedron). The prism over pseudopolyhedron (polyhedron) is a pseudopolyhedron (polyhedron).

The following corollary is a consequence of Remark 1 and Lemma 3.

Corollary 1. The counterimage of pseudopolyhedron (polyhedron) under a simplicial map is a pseudopolyhedron (polyhedron).

A subset M of a polyhedron $|P|$ is said to be non-tangent in $|P|$ if $\text{cl}(s \cap M) = s \cap \text{cl} M$ for each s of P, or equivalently, if $x \in \text{cl} M$, then $x \notin \text{cl}(s \cap M)$, where s is the carrier of x. A family consisting of non-tangent in P sets will be called non-tangent family.

Lemma 4. Let π be a simplicial map of a polyhedron $|P|$ onto a polyhedron $|P'|$ and let M be non-tangent in P'. Then $\pi^{-1}(M)$ is non-tangent in P and $\pi^{-1}(\text{cl} M) = \text{cl} \pi^{-1}(M)$.

Proof. Note, that the both conclusions follow from the following implication:
\[
x \in \pi^{-1}(\text{cl} M) \Rightarrow x \in \text{cl}(\pi^{-1}(M) \cap s) \quad \text{where} \quad s = \text{car}_{P}x.
\]

To prove this implication let x belongs to $\pi^{-1}(\text{cl} M)$, let s be the carrier of x and let s' be the carrier of $\pi(x)$. Since M is non-tangent in P', hence $\pi(s)$ belongs to $\text{cl}(M \cap s')$. Then there exists a sequence $(y_n : n = 1, 2, \ldots)$ of points of $M \cap s'$ converging to $\pi(x)$. We claim that there exists a sequence $(z_n : n = 1, 2, \ldots)$ of points of $\pi^{-1}(M) \cap s$ converging to x. Consider π as a map from s onto s', which is sufficient for further considerations; so we can assume that s' is a face of s.

1. If $\text{dim} s = \text{dim} s'$, then let $z_n = y_n$.

2. If $\text{dim} s = \text{dim} s' + 1$, then we can assume that π is a natural projection which identifies vertices p and q, where q belongs to s'. Let H be the (dim)-plane which contains the point x and the face of s' opposite to q. Then let z_n be a (unique) point of H such that $\pi(z_n) = y_n$.

Passing to the general situation, the proof reduces in view of Remark 1 to the cases 1 and 2.

Now we infer that $x \in \text{cl}(\pi^{-1}(M) \cap s)$.

§ 2. Construction of some special binary bases on simplexes. Let $|S|$ be a simplex and let p and q be different vertices of S. A symbol $e^*_{p,q}$ denotes the one face of S which contains p and q. If a point x belongs to $e^*_{p,q}$, then H^*_x denotes the minimal hyperplane in $|S|$ passing through x and $|S(p)|q$. If a point x belongs to $e^*_{p,q}$ and $p \neq x \neq q$, then H^{1}_{x} denotes the intersection of $|S|$ with the open half-space determined by H^*_x to which p belongs (do the same with q). If x and y are different points in $e^*_{p,q}$ such that $p \neq x \neq y$ and $p \neq q \neq y$, then $H^{2}_{x,y}$ denotes the intersection of H^*_p and H^*_q. The sets H^*_x, H^{1}_{x} will be called strata of $|S|$ with respect to p and q. We shall omit indices in the symbols H^*_x if misunderstanding is excluded.

Let $p^*_x : |S| \rightarrow |S(p)|$ be the natural projection and let S be an arbitrary family of subsets of $|S(p)|$.

By a lift of the family \(\mathcal{X} \) to \([S]\) by means of \(\varphi \), we mean the family of subsets of \([S]\) of the form:

1. \(\varphi^{-1}(\mathcal{A}) \cap H \), if \(\mathcal{A} \) is disjoint with \([S(p)](q)\),
2. \(\varphi^{-1}(\mathcal{A}) \), if \(\mathcal{A} \cap [S(p)](q) \neq \emptyset \),

where \(\mathcal{A} \) is a member of \(\mathcal{X} \) and \(H \) being a stratum.

Lemma 5. If \(\mathcal{A} \) is a non-tangent in \([S(p)] \) of \([S(p)](q)\), then \(\text{cl} \varphi^{-1}(\mathcal{A} \cap H) = \text{cl} \varphi^{-1}(\mathcal{A}) \cap \text{cl} H \), for every stratum \(H \).

Proof. Note that \(\text{cl} \varphi^{-1}(\mathcal{A} \cap H) = \varphi^{-1}(\text{cl} \mathcal{A} \cap \text{cl} H) \), \(H \) being open.

Therefore, it suffices to prove only the following inclusion:

\[\text{cl} \varphi^{-1}(\mathcal{A} \cap H) \subseteq \text{cl} \varphi^{-1}(\mathcal{A}) \cap \text{cl} H. \]

Since the map \(\varphi : H \to [S(p)] \) is a homeomorphism and, by Lemma 4, \(\text{cl} \varphi^{-1}(\mathcal{A}) = \varphi^{-1}(\text{cl} \mathcal{A}) \), we have

\[\text{cl} \varphi^{-1}(\mathcal{A} \cap H) = \varphi^{-1}(\text{cl} \varphi^{-1}(\mathcal{A}) \cap H) = \varphi^{-1}(\text{cl} \mathcal{A} \cap H). \]

The desired inclusion follows now from the observation that \(\text{cl} H \) is the union of some sets \(H_i \).

Lemma 6. If \(\mathcal{A} \) is a non-tangent in \([S(p)] \) of \([S(p)](q)\), then

\[\text{cl} \varphi^{-1}(\mathcal{A} \cap H) \subseteq \text{cl} \mathcal{A} \cap H \cap s = \text{cl} \varphi^{-1}(\mathcal{A} \cap H) \cap s, \]

for each \(s \in S \) and every stratum \(H \).

Proof. Let \(s \) be a face of \(S \). First let us consider the following two cases:

1. \(p \neq s \) and \(q \neq s \); if \(H \) is \(H_+ \) or \(H_- \), then \(\text{cl} H \cap s \subset [S(p)](q) \) and therefore \(\text{cl} \varphi^{-1}(\mathcal{A}) \cap \text{cl} H \cap s = \emptyset \); if \(H \) is \(H^0 \), then \(s \subset \text{cl} H^0 \) and therefore \(\text{cl} \varphi^{-1}(\mathcal{A}) \cap \text{cl} H \cap s = \text{cl} \varphi^{-1}(\mathcal{A} \cap H) \cap s = \text{cl} (\varphi^{-1}(\mathcal{A} \cap H) \cap s) \) (the second equality follows from Lemma 4).
2. \(p \neq s \) and \(q \neq s \); then observe that \(\varphi^{-1}(\varphi^{-1}(s)) = s \) and then Lemmas 4 and 5 imply equalities:

\[\text{cl} \varphi^{-1}(\mathcal{A}) \cap \text{cl} H \cap s = \varphi^{-1}(\text{cl} \mathcal{A} \cap s) \cap \text{cl} H = \varphi^{-1}(\text{cl} \mathcal{A} \cap s) \cap \text{cl} H = \text{cl} \varphi^{-1}(\mathcal{A} \cap H) \cap \text{cl} H \cap s = \text{cl} \varphi^{-1}(\mathcal{A} \cap H) \cap s, \]

The proof of the required equality in the remaining two cases, is analogous to that of the case 1, or obvious.

Corollary 2. The property to be non-tangent is preserved by the lift operation.

Theorem 1. In every simplex \([S]\) there exists a binary base \(S \) non-tangent in \(S \), consisting of open pseudopolyhedra the intersections of which with each face of \([S]\) form a binary family and such that

1. if \(U, V \subseteq S \) and the sets \(U \cap \text{cl} V, U \cap \text{cl} s \) and \(\text{cl} U \cap s \) are non-empty, then the set \(U \cap \text{cl} V \cap s \) is so.

Proof. The construction of such a base will be given by the induction on the dimension of \([S]\).

If \(\dim(S) = 1 \), then the family of all non-tangent in \(S \) open in \([S]\) intervals is the desired one.

Let us assume that there exists a binary base \(S \) consisting of open pseudopolyhedra on an \((n-1) \)-simplex \([S]\) of \(S \) being non-tangent in \(S \), which induces a binary family on each face of \([S]\) and fulfills the condition (1).

Let \(p \) and \(q \) be vertices of \(S \) such that \(p \neq q \) and \(q \neq q \). Let \(\varphi : [S] \to [S(p)](q) \) be the corresponding natural projection. Now we prove that the lift \(S \) of the base \(S \) to \([S]\) by means of \(\varphi \) is the family in question.

It follows from Corollary 2 that \(S \) is non-tangent in \(S \).

Clearly \(S \) is a base, having sets of arbitrarily small diameters.

To prove that \(S \) is binary and induces a binary family on each face of \([S]\) let \(s \) be a simplex of \(S \) and let \(U_1, \ldots, U_n \in S \) be such that \(U_i = \varphi^{-1}(V_i) \cap H, i = 1, \ldots, n, H \subseteq S \) and \(U_i = \varphi^{-1}(V_i), j = 1, \ldots, k, \) where \(V_i \) belong to \(H_i \) and \(H_i \) are strata. Non-trivial is only the case when \(p, q \neq s \) and then \(H \subseteq S \) such that \(H \cap \text{cl} H_1 \cap \cdots \cap \text{cl} H_k \).

By Lemma 6 we get

\[\text{cl} \varphi^{-1}(V_i) \cap \cdots \cap \text{cl} \varphi^{-1}(V_k) \subseteq \text{cl} H_1 \cap \cdots \cap \text{cl} H_k \cap s = O. \]

Using the equality \(\varphi^{-1}(\varphi^{-1}(s)) = s \) we have

\[\varphi^{-1}(\text{cl} V_i \cap \cdots \cap \text{cl} V_k \cap \varphi^{-1}(s)) \subseteq \text{cl} H_1 \cap \cdots \cap \text{cl} H_k \cap s = O. \]

The assumption \(H \subseteq \text{cl} H_1 \cap \cdots \cap \text{cl} H_k \) implies that \(\text{cl} V_1 \cap \cdots \cap \text{cl} V_k \cap \varphi^{-1}(s) = O \). Since \(\varphi^{-1}(s) \) is a face of \([S(p)]\) and \(S \) induces a binary family on each face of \([S(p)] \) hence there exist \(V_i \) and \(V_j \) from \(\{V_1, \ldots, V_k\} \) such that \(\text{cl} V_i \cap \text{cl} V_j \supseteq \varphi^{-1}(s) = O. \) Consequently, \(\text{cl} U_i \cap \text{cl} U_j \cap s = O, \) and all the more \(\text{cl} (U_i \cap s \cap \text{cl} U_j \cap s = O. \)

In order to prove the condition (1) let \(U, V \) and \(s \) be such that \(U, V \subseteq S \), \(s \subseteq S \) and the sets \(U \cap \text{cl} V, U \cap \text{cl} s \) and \(\text{cl} U \cap s \) are non-empty. We can assume that \(p \) and \(q \) belong to \(s \) (other cases are trivial). Since \(U \) and \(V \) are in \(S \), hence \(U = \varphi^{-1}(U \cap s), V = \varphi^{-1}(V \cap s) \), where \(U \) and \(V \) belong to \(S \) and \(E_1, E_2 \) are strata of \([S]\). Let, on the contrary, \(\text{cl} U \cap \text{cl} V \cap s = \emptyset \). Using Lemma 6 and the formula \(\varphi^{-1}(\varphi^{-1}(s)) = s \) we get

\[\varphi^{-1}(\text{cl} U \cap \text{cl} V \cap \varphi^{-1}(s)) \subseteq \text{cl} E_1 \cap \text{cl} E_2 = O. \]
Since $\text{cl}U \cap \text{cl}V \neq \emptyset$ hence there exists a hyperplane H' which is contained in $\text{cl}U \cap \text{cl}E_i$. But in this case $\text{cl}E' \cap \text{cl}\mathcal{G} \cap \mathcal{P}(\mathcal{P}) = \emptyset$; a contradiction with the fact that $P', \mathcal{G} \subseteq \mathcal{S}^\prime$ which fulfills (6).

The fact that S consists of pseudopolyhedra follows immediately from Lemma 3.

§ 3. Further lemmas.

Lemma 7. For every simplex $[S]$ and a positive δ there exists a finite number of points of $[S]$, say x_1, \ldots, x_n, and open (in $[S]$) neighbourhoods of that points, say U_1, \ldots, U_n, which cover $[S]$ and such that

1. U_i is a pseudopolyhedron non-tangent in S and $\text{diam} U_i < \delta$,
2. $\text{cl}U_i \cap \text{cl}U_j \neq \emptyset$ implies that $\text{car}_{\delta}x_i$ is a face of $\text{car}_{\delta}x_j$ or conversely,
3. $\{U_1, \ldots, U_n\}$ is a binary family which induces a binary family on each face of S,
4. $s \in S$ and all the sets $\text{cl}U_i \cap \text{cl}U_j$, $\text{cl}U_i \cap s$ and $\text{cl}U_j \cap s$ are non-empty, then the set $\text{cl}U_i \cap \text{cl}U_j \cap s$ is so.

Proof. Let S be a base constructed in Theorem 1. Let $\{x_1, \ldots, x_n\}$ be the 0-skeleton of S. Since S is a base hence there exist elements U_1, \ldots, U_n, of \mathcal{S} with disjoint closures satisfying the conditions (1)–(5) (the conditions (3)–(5) in vacuum).

Let $S^{(k)}$ be the k-skeleton of S. Let us assume that we have points x_1, \ldots, x_{n_k} in $[S^{(k)}]$ and sets U_1, \ldots, U_{n_k} from S which satisfy conditions (1)–(5) and such that $[S^{(k)}] \subset U_1 \cup \ldots \cup U_{n_k}$.

Now let s^{k+1} be a $(k+1)$-simplex of $S^{(k+1)}$. The compactness of the set $D = s^{k+1} \cup \{U_1 \cup \ldots \cup U_{n_k} \}$ implies that there exist points x_{n_k+1}, \ldots, x_p in D and sets U_{n_k+1}, \ldots, U_p in S which cover D, satisfy (1) and such that

$x_i \in U_i \cap \text{cl}U_i \subset \text{st}_{\delta}x_i$ and $\text{diam} U_i < \delta$ for all i

and for a set V from $\{U_1, \ldots, U_p\}$ such that $\text{cl}V \cap s^{k+1} = \emptyset$, then $\text{cl}V \cap \text{cl}(U_{n_k+1} \cup \ldots \cup U_p) = \emptyset$.

It is easy to see that the points $x_1, \ldots, x_{n_k}, \ldots, x_p$ and the sets $U_1, \ldots, U_{n_k}, \ldots, U_p$ satisfy conditions (1)–(5). Applying this construction successively to remaining $(k+1)$-simplexes we obtain, in finitely many steps, the points $x_1, \ldots, x_{n_{k+1}}$, in $[S^{(k+1)}]$ and the sets $U_1, \ldots, U_{n_{k+1}}$, in S which satisfy conditions (1)–(5) and such that $[S^{(k+1)}] \subset U_1 \cup \ldots \cup U_{n_{k+1}}$.

Now the lemma follows by the induction.

Lemma 8. Let $[S]$ be a simplex and let P' be a polyhedron such that $P' \subset S$. Let \mathcal{G} be a finite binary family of subpolyhedra of $[S]$ such that

1. $[P'] \subset \mathcal{G}$,
2. if $[V] \not\in \mathcal{G}$, then $V \not\subset P'$.

Let Q be a binary family on $[S]$ constructed as in Lemma 7.

Then the intersections of elements of $\mathcal{G} \cup Q$ with $[P']$ form a binary family on $[P']$ non-tangent in P'.

Proof. The fact that the family in question is non-tangent in P' holds, because \mathcal{G} is non-tangent in P' and elements of Q are closed.

In order to prove the binarity let $U_1, \ldots, U_n \in \mathcal{G}$ and $[V_1], \ldots, [V_n] \in \mathcal{Q}$ be such that the closures of each two members of $\{U_1, \ldots, U_n, [V_1], \ldots, [V_n]\}$ have non-empty intersection and each of U_i has non-empty intersection with $[P']$.

Let x_1, \ldots, x_n be points corresponding to sets U_1, \ldots, U_n as in Lemma 7.

It follows from the fact that $\text{cl}U_i \cap [V_s] \neq \emptyset$ and from (3) that $x_s \not\in [V_s]$, for each p and q. Hence

$x_1, \ldots, x_n \not\in [V_1] \cap \cdots \cap [V_n] \cap [P']$.

It is easy to prove using (3), by the induction on j, that all the points $x_i, i = 1, \ldots, n$, lie in one simplex s from $V_1 \cap \ldots \cap V_n \cap P'$, s being the carrier of one of them. This, together with (5), imply that

$\text{cl}U_i \cap \ldots \cap \text{cl}U_j \cap \text{cl}[V_1] \cap \ldots \cap \text{cl}[V_n] \cap [P'] = \emptyset$.

In the case of the lack of $V-s$ the proof holds with obvious simplifications. In the case of the lack of $V-s$ conclusion follows immediately from the hypotheses.

Lemma 9. Let $[P]$ be a polyhedron, let \mathcal{G} be a finite binary family consisting of pseudopolyhedra non-tangent in P and let Q be a positive number.

Then there exists a finite open covering \mathcal{S} of $[P]$ consisting of open pseudopolyhedra such that $\text{mesh}\mathcal{S} < \delta$ and $\mathcal{S} \cup \mathcal{G}$ is a binary family non-tangent in P.

Proof. It follows from Lemma 2 that there exists a subdivision P' of P which induces a triangulation on each nonempty intersection of closure of elements of each subfamily of \mathcal{S}, the elements of \mathcal{S} are pseudopolyhedra. We can assume that $P' \subset S$, where $[S]$ is a simplex. Let $\mathcal{G} = \{\text{cl}A : A \in \mathcal{G}\}$. Define \mathcal{S} to be the family of all intersections of elements of Q with $[P']$, where Q is a δ-covering taken for S according to Lemma 7. Lemma 8 assures that $\mathcal{S} \cup \mathcal{Q}$ is binary. Thus $\mathcal{S} \cup \mathcal{Q}$ is binary. The same Lemma 8 assures that $\mathcal{S} \cup \mathcal{Q}$ is non-tangent in P.

Lemma 10. Let $[P]$ be a polyhedron and let W_1, \ldots, W_n be open in $[P]$ pseudopolyhedra non-tangent in P. Then there exists a simple subdivision $P^{(0)}$ of P of order 2 such that all W_1, \ldots, W_n are non-tangent in $P^{(0)}$.
Proof. For each \(s \in P \) we denote by \(U(s) \) the set of all points of \(s \) having all the barycentric coordinates in \(s \) not smaller than \((\dim P + 1)^{-3}\). Now the thesis of our lemma may be stated as follows.

For each \(s \in P \) there exists \(p_s \in U(s) \) such that for each sequence

\[
(7)\quad s_0 \subseteq s_1 \subseteq \ldots \subseteq s_k \subseteq s
\]

and for each face \(A \) of \(\{p_{n_1}, \ldots, p_{n_k}, p_s\} \), the simplex determined by vertices \(p_{n_1}, \ldots, p_{n_k}, p_s \) there is for each \(i, j \leq m \)

\[
(8)\quad \text{cl}(A \cap W_l) = A \cap \text{cl}W_i.
\]

The proof of our lemma will be done by the induction on \(\dim s \).

If \(\dim s = 0 \), then \(p_s \) equals \(s \) and (8) follows easily from the assumption that \(W_i \) is non-tangent in \(P \).

Let \(p_s \) be already defined for simplexes of the \(n \)-skeleton of \(P \) and let \(s \in P \) be a \((n+1)\)-simplex. Now we are going to define \(p_s \) such that (8) holds for each \(A \) of each simplex \(\{p_{n_1}, \ldots, p_{n_k}, p_s\} \) where \(s_0, \ldots, s_k \) satisfy (7).

Take on each polyhedron \(\text{cl}(s \cap W_l) \) a triangulation \(T_l \) such that \(T_l \) induces on \(s \cap \text{bd}W_l \) (bd stands for the boundary in \([P]\)) a triangulation of \(T_l \) (the existence of such \(T_l \) follows from Lemma 2). Note that \(s \cap \text{bd}W_l \) is equal, in virtue of the non-tangence of \(W_l \) in \(P \), to \(\text{bd}(s \cap W_l) \) (bd stands for the boundary in \(s \)).

Consider all the hyperplanes in \(s \times \text{dimension} \) not greater than \(n \) determined by arbitrary families of simplexes of \(A' \), \(A'' \) and of points \(p_{n_1}, \ldots, p_{n_k} \) already defined which satisfy (7). Let \(A \) be the union of all such hyperplanes. It follows from the fact that \(A \) is nowhere dense in \(s \) that there exists a point \(p_s \) such that \(p_s \in U(s) \) and \(A \).

Let \(A \) be a face of \(\{p_{n_1}, \ldots, p_{n_k}, p_s\} \) where \(s_0, \ldots, s_k \) be such that (7) holds. To prove (8), let \(p \in A \cap \text{cl}W_i \). To prove that \(p \in \text{cl}(A \cap W_l) \) it suffices, in virtue of the inductive hypothesis, to consider only the case when \(p \in \text{int} s \), i.e. when \(s = \text{car}_s \). In consequence \(p_s \in \text{car}_s \). Clearly we can assume that \(p \in \text{bd}W_i \cap \text{bdgeo}A, W_l \) being non-tangent in \(P \).

If \(M \) is a subset of \([P]\), then by \(\text{cl}(M) \) we denote the hyperplane determined by \(M \).

Let \(t = \text{car}_s \) and let \(t' \in T_l \) be such that \(t' \subseteq t \) and \(t' \cap W_l \cap s \neq \emptyset \). Let \(t' = \text{intgeo} t' \). Clearly, \(t \subseteq W_l \cap s \), \(t' \subseteq \text{cl} t' \) and \(\dim H(t) > \dim H(t') \).

Let \(p_{n_1}, \ldots, p_{n_k} \) be all points from \(\{p_{n_1}, \ldots, p_{n_k}\} \) which lie in \(\text{car}_s \). We have \(\text{cl}(s' \cap t') = \text{cl}(s' \cap \{p_{n_1}, \ldots, p_{n_k}\}) \), because \(p_s \) belongs to the set on the right side. Then, by the definition of \(p_s \) we infer that

\[
\dim H((\text{car}_s \cap t') \cap H(t')) = n - 1. \tag{11}
\]

This implies, in virtue of \(p \in H((\text{car}_s \cap t') \cap H(t')) \),

\[
\dim H((\text{car}_s \cap t') \cap H(t')) = \dim H((\text{car}_s \cap t') \cap H(t)) + n - 1,
\]

\[
\dim H((\text{car}_s \cap t') \cap H(t)) + \dim H(t) = \dim H((\text{car}_s \cap t') \cap H(t)) + n - 1.
\]

But \(\dim H(t) > \dim H(t') \). So

\[
\dim H((\text{car}_s \cap t') \cap H(t)) > \dim H((\text{car}_s \cap t') \cap H(t')).
\]

Let

\[
g \in H((\text{car}_s \cap t') \cap H(t')).
\]

Then the open interval \(\langle p, q \rangle \) is contained in \(H((\text{car}_s \cap t') \cap H(t')) \). So there exists an \(r \in (p, q) \) such that \((p, r) \subseteq \text{intgeo} t \subseteq (p, q) \) and hence \(p \in H(t) \cap A \).

Lemma 11. Let \(\mathcal{R} \) be a finite family of open in \([P]\) pseudopolyhedra in a polyhedron \([P]\) non-tangent in \(P \) and let \(\epsilon \) be a positive number. Then there exists a subdivision \(P' \) of \(P \) such that mesh \(P' < \epsilon \) and each element of \(\mathcal{R} \) is non-tangent in \(P' \).

Proof. By Lemma 10, there exists a simple subdivision \(P^0 \) of \(P \) of order 2 such that all elements of \(\mathcal{R} \) are non-tangent in \(P^0 \). By Lemma 1, mesh \(\{--(\dim P + 1)^{-3}\} \) mesh \(P^0 \). This implies that if we shall iterate the procedure described above, then we can find an \(r \) such that \(P^0 \) is a subdivision in question.

§ 4. Construction of a binary base on a compact metric space.

Theorem 2. Every compact metric space \(X \) has a binary base.

Proof. We shall construct an inverse sequence of polyhedra \([P_n]\) (the metric \(d_s \) on \([P]\) let be such that \(d_s([P_n]) < 1 \)) with simplicial onto bonding maps \(s_n \subseteq s_{n+1} \), whose inverse limit \(\chi \) with the standard metric

\[
d((x, y)) = \sum_{n=1}^{\infty} \frac{1}{2^n} d_n([\pi_n(x), \pi_n(y)]),
\]

where \(\pi_n \) denotes the standard projection of \(X \) onto \(P_n \), is homeomorphic to \(X \), and has a binary base \(\mathcal{B} = \{\pi_n: A \subseteq \mathcal{R}, n = 1, 2, \ldots\} \), where \(\mathcal{R} \) is a certain finite open covering of \([P]\). To do this it suffices in the procedure of the proof of Freudenthal's theorem, [1] (on the existence of such an expansion without the existence of a binary base on \(Y \) in the form of Pasykov [5]) (proof of Prop. 2, pp. 97–98; for \(\mu \) being the class of all polyhedra; we assume that the technique of maps of \(X \) into nerves of open finite coverings of \(X \) is known to the reader), which
consists on the inductive construction of \([P_n]\) and \(n_{n-1}\), to take into consideration the following two observations:

(1) if we have been already defined sequences \([P_i] \supseteq [P_{i-1}] \supseteq \cdots \supseteq [P_1] \supseteq [P_0]\)

... \(\vdash [P_n] \supseteq \cdots \supseteq [P_1] \supseteq [P_0]\), \(\rho_i\), \(\delta_i\) and \(\rho_i\), \(\delta_i\), such that, for \(1 < i < n\),

(a) \([P_i]\) is a polyhedron such that \(\text{diam}(P_i) < 1\) and \(\rho_i\) is a simplicial map of \([P_i]\) onto \([P_{i-1}]\), where \([P_{i-1}]\) is a certain subdivision of \([P_{i-1}]\),

(b) \(\rho_i\) is a finite family consisting of pseudopolyhedra open in \([P_i]\), non-tangent in \([P_i]\); for \(i < n\) and in \([P_n]\) for \(i = n\), such that \(\text{mesh}\, \rho_i < \delta_i\), \(\rho_i\) covers \([P_i]\) and \(\rho_i \cup \{x_i\}\) is \((\rho_i)^{-1}(A_2)\); \(A_2 \in \rho_i\), \(k < i\) is a binary family,

(c) \(\delta_i\) is a positive number such that if \(A \subset [P_i]\) and \(\text{diam}(A) < \delta_i\),

then for each \(j < i, \text{diam}(\rho_j(A)) < 1/3^i\), then for every positive number \(\varepsilon\) there exists a subdivision \(P'_i\) of \([P_i]\) such that \(\text{mesh}\, P'_i < \varepsilon\) and each element of \(\rho_i \cup \{x_i\}\) is \((\rho_i)^{-1}(A_2)\); \(A_2 \in \rho_i\), \(k < n\) is non-tangent in \([P_n]\), and

(2) if we have been already defined a simplicial map \(n_{n+1}\) of \([P_{n+1}]\) onto \([P_n]\), where \(P_n\) satisfies conditions from (1), then we can find

(c) a positive number \(n_{n+1}\) such that if \(A \subset [P_{n+1}]\) and \(\text{diam}(A) < n_{n+1}\),

then for each \(j < n+1, \text{diam}(\rho_{n+j}(A)) < 1/2^{n+1}\), and

(f) an open (in \([P_{n+1}]\), covering \(\rho_{n+1}\) of \([P_{n+1}]\), with \(\text{mesh} \rho_{n+1} < n_{n+1}\), consisting of pseudopolyhedra such that family

\[\rho_{n+1} \cup \{x_{n+1}\}\]

is binary and each element of that family is non-tangent in \([P_n]\).

In fact, (1) assures (see the note of Pasykno loco cit.) the existence of polyhedron \([P_{n+1}]\) and a simplicial map \(n_{n+1}: [P_{n+1}] \to [P_n]\), where \(P_n\) is as in (1) (for sufficiently small \(\varepsilon\)), such that they satisfy the conclusions of the Pasynkov's construction (in order to get a homeomorphism of \(X\) with the inverse limit of the inverse sequence \(\{P_n; n_{n-1}\}\)). In virtue of Lemma 4, the family \(\{n_{n+1}\}\) is \((\rho_i)^{-1}(A_2)\); \(A_2 \in \rho_i\), \(k < n+1\) is non-tangent in \([P_n]\). Now take \(\rho_{n+1}\) as in (2).

By the induction we have constructed an inverse sequence \(\{P_n; n_{n-1}\}\) with inverse limit \(Y\), a homeomorphism of \(X\) onto \(Y\) (by the procedure of Pasynkov loco cit.) and a sequence \(\rho_i\) satisfying the conditions of (1) and (2).

Now, easy calculation with projections \(n_i\) and maps \(n_i\) leads, in virtue of (b), to the formula

\[n_i^{-1}(\text{cl}\, A_2) = \text{cl}(\rho_i^{-1}(A_2)) \quad \text{for} \quad A_2 \in \rho_i, \quad k < n. \]

Using this formula and applying (b) once again we infer that \(\rho_i\) is a binary family on \(Y\).

The fact that \(\rho_i\) is a base follows easily from (b) and (c).

To complete the proof observe that the assertions (1) and (2) follows immediately from Lemma 11 and Lemma 8, respectively.