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Theorem. 10 iy proven as an aid in determining a characterization
of when a tree-like space is wide.

TuzoreM 10. If (M, d) is wide tree-like with wide realization {Cp}
with respect to d, then (M, d) = (M, &*) where d* is as defined above.

Proof. Let w e M, ¢ >0, and Si(#) denote a d*-sphere with radius e
about ». Since {0y} is a wide reallzam]on of (M, d) with respect to d, there
-exists N; and 0 < &; < ¢/4 with the property that for n = Ny, if b e B ~ 0,
and d(z, b) > &/4, then d(x, A*) = 6, where B is as in the proof of Theo-
rem & and A is an arm of b in ¢y such that o ¢ A*. Pick IV, such that for
each n = N,, ||Onl| < &, and then let N = N,--N,. Let 1 ¢ Oy such that
@ el and assert that @ «1C 8¥(w). Let y e 1.

Ifn> N and be By Oy such that d(z, b) > ¢/4, then » and y belong
to the same arm of b in 0, sinee {x, y} C 1 and |I| < &,. Therefore, du(z, y)
= d(#,y) < 6, < ¢f4. If b is such that d(x, b) < ¢/4, then pick 2z eb such
that d(z,?) < ¢/4. The definition of dp infers that

(@, y) < d(w, 2)+d(2,9) < d(z, 2)+d(2, 0)+d(2, y)
< gld4-gld 6, < Bl . ‘
For all cases when =
Ao, y) < 3g/4.

If n< N and beB ~ 0y, then the definition of the realization {Cn}
yields a link I, e Cp such that {x,y} C1Cl,. By definition of dp, then
(2, y) = d(w,y). Since y ¢l and || < &/4, then dy(z, y) = d(x, ¥) < &/4.
Thus, this paragraph and the above paragraph convinces:us that for
each b ¢ B, do(z,y) < 3¢/4 which assures that d*(z, y) < & The conclusion
is, # € 1C S¥(2). o ‘

If we M and >0, then we8)(2)C 8,(») since d*(z,y) = d(x, y).
From this fact and the above arguments we can now conclude thab
(M, @)= (M, d¥).

Theorem 8 and Theorem 10 imply a characterization for the wide,
tree-like spaces. This characterization is revealed in Theorem 11.

TeEOREM 11. If (M, d) is a tree-like space and d* is as defined in
this section, then (M, d) = (M, d*) if and only if (M, d) is wide.

>N and beB ~ (0, we can now conclude that
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On the fundamental dimension of approximatively
1-connected compacta

by

Slawomir Nowak (Warszawa)

Abstract. The aim of the present paper is to give a homological characterization
of the fundamental dimension for approximatively 1-connected compacta and to give
some applications of this characterization. ’

The main result is the theorem which states that for every approximatively 1-con-
nectod compactum X # & with Fd(X) < oo the fundamental dimension of X is equal
to the smallest integer number # > 0 such that X is acyelic (in the sense of Jech co-
bomology) in all dimensions =n.

We prove also that for every movable approximatively 1-connected con-
tinwum X with infinite fandamental dimension and for every natural number » there
exists & natural number m > n such that m-dimensional Jech cohomology group of X
with coefficients in the group of integer numbers is not trivial.

TFrom. these theorems we deduce in particular that for every m = 3 there exxsts

a sequence {(2)n, of polyhedra such ‘that Aim@) = FA@Q}) = » and Fd(QF x Q)
= max(m, n) for all relatively prime natural numbers p and gq.

Introduction. By I we denote the Hilbert cube. The fundamental
dimension of a compactum X (denoted by Fd(X)) is the minimfum of the
dimensions of compacta ¥ with Sh(X) < Sh(Y) (see [4] p. 31). We say
that a pointed compactum (X, ) C (K, %) is appromimatively n-con-
nected (see [3], p. 266) if for every mneighborhood V of X there exists
a neighborhood ¥, of X such that every map of the pointed n-sphere
(8™, a) into (V,, ay) is null homotopic in (V, 2). It is known that the
approximative n-connectivity of a pointed compactum (X, #) C (K, m)
depends only on the pointed shape of (X, ) (see [8], p. 267). Thus
a poinfed compacturm (Y, y,) (not necessarily lying in I) is said to be
approwimatively m-connected if there is a pointed compactum (X, @)
C (K, ) which is approximatively n-connected and homeomorphic to
(¥, ). We say algo that a compactum Y is approzimatively n-connected
if (¥, vy, is approximatively n-connected for every ¥,e¢ ¥ (see [3],
P. 266).

Tet Hu(X, A; &) (or AMX, A; @) denote for every pair (X, 4) of
compacta and every Abelian group & the n-dimensional Cech homology
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(or cohomology) group of (X,.4) with coetficients in & By HYX; @)
we denote for every locally compact space X the n-dimensional Alexander
cohomology group with compact supports and with coefficients in @
(see [21], p. 820).

It is known ([21], p. 321) that if A is a compactum and B is a cloged
subset of A then for all ¢ and all & the groups HI(ANB; @) and H¥ A, B; ¢)
are isomorphic.

If X is a non-empty locally compact metric space then we say that
a coefficient of cyclicity of X with respect to the Abelian group ¢ (denoted.
by 64(X)) is equal to # (where n = 0 is a integer number) if H™X; @) = 0
for all m >n and HYX; G) = 0, Moreover, we 8ot ¢g(d) = —1 and if
X # @ and for every n=1,2, ... there exists an integer number m 3=
such that H{(X, @) # 0, then we set ¢gX) = co. ‘

In the sequel the coefficient of cyclicity of X with respect to the
group of integer numbers Z is denoted by ¢(X).

It is clear that if X is a compactum then we can replace in the above
definition HYX, @) by H"X, &) and H™X, @) by H™X, &).

Since the Cech cohomology groups are shape invariants ([16], p. 54),
the coefficient of cyclicity with respect to an arbitrary group @ is- also
a shape invariant.

Let R, denote the group of real numbers modulo 1.

It is well known (see [12], p. 137 and p. 124) that for every com-
pactum X the group Hy(X; R,) is the character group H™X; Z). This
implies that max(m: H™X;Z) +# 0) = max (m: Hp(X, Ry) #.0) = ¢(X).

N. Steenrod has proved ([23], p. 690) that for each Abelian group ¢
and every compactum X the group H,(X; &) is the direct sum of two
groups, one determined uniquely by & and H,(X; R,), the other by ¢
and H,,,(X; R,). These groups are trivial if H, ,(X; &) = Ha(X; Ry) = 0.
Therefore for every compactum X and each abelian group & and every
natural number m > ¢(X) the group Hn(X; @) is trivial.

From the universal-coefficient formula for the Cech cohomology
([21], p. 336) we infer also that for every compactum X and every
m > c¢(X) the group H™X, @) is trivial for all G.

The homological dimension of a locally compact metric space X with
respect to the group ¢ (denoted by dim g X) is the maximum of the coef-
ficients of cyclicity of open subsets of X with respect to the group 6.
This definition differs only formally from the classical definition (see
[14], . 7).

Fundamental dimension and the coefficient of cyclicity play in the
theory of shape analogous roles to those played by the dimension and
the homological dimension in topology. " :

The well-known theorem of P. 8. Alcksandroff states that dimX
= dim, X for every finite-dimensional compactum X ([14], p. 8).
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The aim of this paper iz to give a homological characterization of
fundamental dimension for approximatively 1-connected compacta. As

the main results we obtain the.theorems which state that if X is an ap-

proximatively 1-connected compactum with finite fundament.al di-
mension. (or X is a movable approximatively 1-connected continuum
and the fundamental dimension of X is arbitrary) then Fd(X)= ¢(X).

Trom the lagh statements we deduce that for every matural number
n =8 there exists a sequence of polyhedra @7, @F, ... such that Fd‘l(Qg)
= dim@Qy = n and Fd(Q5 X ) = max(m, n), where p and ¢ are relatively
prime natural numbers. In particular, there exist polyhedra X,Y such
that Fd(X) = Pd(Y) =FA(X X ¥) = dimX = dim¥ = 3.

Our example answers the following questions of K. Borsuk (see {4],p.33):

(1) Is it true that Fd(X x Y) > Fd(X)+1 for all non-empty com-
pacta X and ¥ such that Fd(¥)> 1%

(2) Is it true that there exist polyhedra X and Y such that Fd(X x ¥)
< PA(X)-+FA(Y) and Fd(X) = 0 # Fa(Y)? .
' These questions are connected with the problem of the characteri-
zation of all compacta X for which there exists a compactum.lf # @ such
that Fd(X x ¥) < Fd(X)+F4(Y). Applying the abqve mentioned pomo-
logical characterization of the fundamental dimension we prove in t‘he
section five that for every approximatively 1-connected compactum with
Fd(X) < oo the following conditions are equivalent:

(a) There exists an approxim?tively 1-connected compactum Y such

Fd(X x ¥V)< P4(X)+TFd(X). _
et (b) 5l‘henre (lxists a(.n abelian group G such that c.G(.X) < Fd(X). ’

Theproof of this theorem is obtained by an easy mo ('hflcatlon of the proof
of an analogous theorem for the homological dimensml; (see [14], . 25).

The main theorems is also applied to compute the fundamental
dimension of the suspension X(X) of a compactum X. In the fourt}n
gsection we show that if X is a compactum with Fd(X)< oo (or X is
a movable continuum and Fd(X) is arbitrary), then

o(X)+1 when o(X)>0,
Fd(E(X)) =10 when ¢(X)=0 and X is connected,
1 when ¢(X)=0 and X Is not a continuum.

In [20] the author has shown thab Fa(X v ¥Y)< maX(Fd(X ), Fd(X),
Fd(X ~ Y)+1) for all compacta X, Y. : o

In the last paragraph we study the problem of estimation f‘rom below
of the fundamental dimension of the union of two compacta with a small
fundamental dimension of their common part.

We assume that the reader is familiar with the theory of shape for
compacta (see [1], [2], [3], [4], [5], [16], [17] and [18]).
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The author wishes to thank Professor K. Borsuk, Dr. 8. Spiez and
Mr. A. Trybulec for their many helpful guggestions in the prcp(mratlon
of this material.

§ 1. Auxilliary notions and theorems. Let X, Y be compactsu and let
f: X—Y be a map and let # be a natural number or 0. We say (see [20])
that o(f) < n iff there exists a map g: X—Y homotopic to f and such
that dimg(X) <n.If ¥ iy a polyhedron, then w(f) < % iff f is homotopic
to a map h: X—Y such that h(X) lies in the combinatorial n-skeleton
of a triangulation of Y.
The author has proved (see [20], p. 214) the following

(1.1) TueorEM. Let X = hm{Xk, LY, where X is a polyhedron for

every k=1,2, ... Then the followmg conditions are equivalent:

(i) Fa(x ) n,

(i) o(px) < n for every k= 1,2, ..., where pi: X—>Xy is the natural
projection,

(iii) for every k=1,2, .. there ewists a k' >k such that w(p¥)< n.

‘We need in the sequel the following theorem ([7], p. 376).

(1.2) TEEOREM. If X is a compactum and FA(X) < n then. w(f) <n
for every polyhedron Y and every map f: X— Y.

The proofs of the main results are based on some theorems and
notions of the theory of obstructions obtained and introduced by Sze-
Tsen Hu (see [9] and Chapter VII of [11]). We shall recall these notions
and theorems in the compact and absolute case (Hu congidered the general
case of pairs of metric spaces).

Let X be a compactum and let WU be an open finite covering of X.
By N(W) we denote the merve of U. A map aq,: X—N(W) is called

a canonical map of W iff for each point » ¢ X, aqy(#) i3 contained in the

closed simplex of N (W) whose vertices correspond to the members of
contajning . It is known that for every finite open covering U of
a compactum X there exists a canonical map aq),: XN (UW).

Let Y be an arcwise connected space and let ¥, be an arcwise con-
nected closed subspace of ¥ and let y, e ¥,. For every ¢= 1,2, ... the
space Y ig said to be gq-aspherical relative to Y, if and only if
7 (¥, Yo, 9o) = 0 (see [11], p. 204 and [9], p. 110). The pair (¥, ¥,) is
said to be n-simple (for n = 1) ([10], p. 138 and [21], p. 385) if m(X,, ¥)
acts trivially on mu(Y, Yo, ¥). If Y, is simply connected, (X, ¥,) is
n-simple for every » =1 ([21], p. 385).

Let Y, Y, ANR be connected compacta and yoe Y,CY and as-

sume that X is a compactum. A map f: XY i3 said to be n-deformable

into ¥, ([11], p. 211) iff there exist a finite open covering W of X and
a map £qy,: N (W)—T such that &, (¥ (W)™)C ¥, and £q; aq, is homotopic
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to f for every canonical map aq;, of U, where N (U)™ is the n-skeleton
of N (W).

8. T. Hu has shown ([11], p. 215) the following

(1.3) TuEoREM. Let ¥, ¥ye ANR be continua and y,e Y, C Y. Let
X be a compactum. Then every map f: X—~T is n-deformable into Y, if
the following three condition are satisfied:

(a) XY ds 1-aspherical relative to Y,

(b) (Y, X,) is q-simple for every ¢ satisfying 1< q<

) H? (X 7 (X, Yo, 4o)) = O for every q satisfying 1< q < n,
.Novv let us prove the following lemmas:

(1.4) Lmmma. Suppose that Z is a connected and simply comnected
polyhedron and let Z™ be a combinatorial m-skeleton of a triangulation
of Z, where m = 2. Then Z is q-aspherical relative to Z™ for every q < m
and (Z, Z"™) is n-simple for every n = 1.

Proof. Let 2, ¢ Z®. Then n,(Z, Z™, z,) = 0 for every ¢ < m (see [21],
p- 403) and it is evident ([21], p. 138) that m(Z®, 2) = m(Z™, 2) = 0.

(1.5) LmmmA. Suppose that X s @ is a continuum with ¢(X) = n< oo
and f: X—Z is o map of X into a simply connected and connected poly-
hedron Z. Let 2ye Z and let Z, denote o subpolyhedron of Z which is the
n-sheleton of a triangulation of Z when n =2 and which is equel to {z,}
Jor the case when n << 2. Then f is m-deformable to Z, for every natural
number m and if FA(X)< oo then o(f) < n.

Proof. Let m be a natural number. We can assume that z, is a vertex
of a triangulation of Z. .

Suppose that # = 2. From Lemma (1.4) we infer that the pair
(Z, Z™) gatisfies the conditions (a), (b) of Theorem (1.3) and moreover,
7 (Z ) Z™, 7o) = 0 for every 1< ¢ < n. In Introduction we shown that if
Y is a compaectum then H*(Y; @) = 0 for every natural number & > ¢(Y)
and each abelian group @. Therefore HYX;m,(Z, Z™, %)) = 0-for ¢ > n.
Thus the condition (c) is satistied and fis m-deformable to Z™ = Z,.

Suppose now that ¢(X)=n< 2. Our asswmption implies that
H™X; G) == 0 for every m z>2 and each abelian group @.

Using Theorem (1.3) for the case where ¥ = Z, ¥, = Z, = {z}
and X = X we infer that f is m-deformable to {2} = Z,.

Let FA(X) = ny<< co, We know that f is n,-deformable to Z, and
that dimZ, < ¢(X) == n. This means that there are an open finite cover-
N (W)-Z such that &y, (N (UW)™)C Z, (where
N (W)™ ig the n,-skeleton of N (W) and &qyaq, is homotopic to f for an
arbitrary canonical map aqy: X—>N(W). :

From (1.2) we infer that there exists for every canonical Map aq X
N (W) a map p: X—N(W) homotopic to aq, and such that B(X)
C _N( )(Wo) ‘ ’

5 — Fundamenta Mathematicae LXXXIX
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Therefore £q,p(X)C Z,, &q,p and f are homotopic and w(f)< x.
Thus the proof of Lemma (1.5) comes to. an end.

If (X, &), (Y, ¥,) are pointed topological spaces and f: (X, zo)~ (X, ¥,)
is a map we denote by fu: 7,(X, o)—>m (Y, ,) the induced homomorphism.

(1.6) LevmMA. Suppose that (W,w,), (Z,z,) are pointed connected
polyhedra and let f: (Z, 2)—~(W, wy) be a map such that fu: m(Z, 2)
—>m(W,wy) is a null homomorphism. Then there are a simply connected
and connected polyhedron Z, D Z and a continuous extension f of f mapping
(Zy, 2) into (W, w,).

Proof. We can assume that Z is a subpolyhedron of ™ (for some m)
such that if (%, @,, ..., Zm)« Z then x, = 0. Let b= (0,0, ...,0,1) ¢ ™
and let B be a triangulation of Z.

" Let us consider the polyhedron Z, which i the union of Z and a cone
with a vertex b and a base Z®, where Z® is the 1-skeleton of Z.

Let G, be a triangulation of Z,, which is a collection of all simplexes
belonging to G and all simplexes which are cones with the vertex b and
the base which is a 1-dimensional simplex ¢ ¢ ® and all their faces.

Let Z be a 1-skeleton of B,.

It is evident that there exists a retraction r of Z® v Z to Z such
that 7(b) = 2,.

If ¢ is a boundary of a 2-simplex ¢ e G\ then a map fr|o: (¢, b)
—(W,w,) is null homotopic. Hence there is a continuous extension
fo: oW of fr|c for every 2-simplex ¢ ¢ B\G.

Setting

Fe=|"

for every z¢ 27,
fd{#)  for every zeo, where o¢G\B iy a 2-simplex

we get a continuous extension  : Z,—W of f. Tt is evident that m,(Z; , z) = 0.
Thus (1.6) is proved.

Remark. Lemma (1.6) and its proof was communicated to the
author by A. Trybulec.

Let (Xz,a%) be a pointed compactum and let pf*: (X,..,a%.,)
— (X, %) be a map for every k=1,2,.. Then {#)}2, = @eX
= lim{Xk,p k1) and we write (X, @) = hm{ Xk,ack),p,,“}

" Let (X, Y) be topological spaces and A CX and let f,, fi: XY be
maps which agree on A. Then we say that f, is homotopic to f, relative to A
(denoted by f,~ firelA) if there exists a homotopy ¢ X x [0,1]-Y

such that ¢(z, 0) = fy(z) and ¢(», 1) = fy(@) for z ¢ X and (2, t) = fol®)
for z e A and te[0,1].

Let us observe that following proposition holds true:

(1.7) ProposITION. If (X, =) _hm{Xk,wk,pk“} and (X, vy,

= hm{ X, a5), ¢}, where Xy is a polyhedron and pk+t, gk+1, (X s Thpn)
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—(Xx, a%) are maps such that pktt~ ghtt
= Sh(X, %o).

In fact, the pair (idy, idx): (X, @) = {(Xk, ab), pE+i}—>{(Xs, 23), ¢4+
= (¥, y,) (I is the set of natural numbers) is a shape equivalence of
ANR-sequences (X, @) and (¥, y,) associated with (X, x,) and (¥, Yo),
regpectively, (see [16], p. 45 and [17], p. 62).

rel{z} .} then Sh(X, z,)

§ 2. The main theorems. Let us prove the following

(2.1) TuroreM. If (X, @) 78 an approvimatively 1-connected pointed
continuum with F(X) < co then Fd(X) = ¢(X).

Proof. Let {(Xx, %), p%*} be an inverse sequence such that X is
& connected polyhedron for & = 1, 2, ... and (X, o) = Um {(Xz, 23), pf*}

is homeomorphic to (X, u,).

It is known (see Lemma (6.1) of [19]) that for every & there exists
a y(k) >k such that

(7).

i a null homomorphlsm
Let p;, = Plc p?(k) (X, wp) = 11111{ Xy, af), 17k+1}“*(Xk; #3) be a patu-

ral projection for every % =1,2,... From Lemma (1.6) we infer that
there are & connected and snnply connectcd polyhedron Ay(k) 2 X, and
a continuous extension py®: X 4 — Xy of p¥®. We can assume that
P is a simplicial map (see [21], p. 126 and (1.7 )). From Lemma (1.5)

we infer that w(ip,u,) < ¢(X), where 4: X,,(,c)—>X ) 18 the inclusion.
This means that there exists a homotopy ¢: X’ X [0, 1] X, such that

(K s W)= (X, 45)

(2, 0) = pp(w) for seX
and ’
dime (X’ x {1}) < ¢(X) .
Let p: X' %[0, 1]—X% be a homotopy defined by the formula
p(z, 1) = ot (x,1) for (,8) e X' x[0,1].
Then
p(x,0) = pr(x) for wxeX’
and

dimyp (X' x {1}) < e(X)
and therefore )

w(pr) < ¢(X) .

Fa(X) < ¢(X).

It is clear that ¢(X) = Fd(X).
The proof of Theorem (2.1) is finished.

‘We conclude that
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Remark. One can give an other proof of Theorem (2.1), in which
we do mnot have to use Theorem (1.6) but we must use some results
obtained by E. Spanier and J. H. C. Whitehead (see [22]).

K. Borsuk has proved (see [5]) that a compactum X is approxi-
matively #-connected iff cach of its components is approximatively

n-connected. It is known also (see [20]) that Fd(X) < n iff for every
" component X, of X the inequality Fd(X)< n holds true.
From these facts and (2.1) we get

(2.2) TErOREM. If X 4s an approwimatively 1-conmected compactum
with Fd(X) < oo then Fd(X) = ¢(X).

(2.3) Remark. The assertion of (2.2) is false if one omits the as-
sumption that X is approximatively 1-connected. Liet B be a triangula-
tion of a Poincaré sphere, i.e. of a 3-manifold P with the homology groups
of the 3-gphere but with the first homotopy group non-trivial. Let ¢ de-
note the interior of a 3-simplex of ¢ € B and let X = .P\G. One can verify
that Fd(X) =2 and ¢(X)= 0.

Considering the special case of movable continua, we get the following

(2.4) THuOREM. Let (X, 2,) be an approwimatively 1-connected pointed
continuum and let X be a movable. Then FPd(X) = ¢(X).

Proof. Let ¢(X) = n< oo. We can assume thab
(X, @) = Bm{(Xy, 2%), pE™}, where Xy is a connected polyhedron and

Pt X, ., —~X, is a simplicial map (see (1.7)) for every k=1,2,.
It is known ([15], p. 272) that

(2.8) TFor every polyhedron Y and every map f: X— Y there exist
a natural number %k and a map f': Xz—Y such that f'p;~f,

where pr: X— Xy is the natural projection.

(2.6) TFor every polyhedron ¥ and all maps f, g: Xx—Y such that
fpr ~ ¢gpr there exists a natural number &’ > & such that fpt ~ gp¥.

Since X is movable and approximatively 1-connected, we can assume
(see Lemma (6.1) of [19] and [18], p. 651) that

@7 (PF My m(Xpyqy 05pr) > m(Xr, ) is a null homomorphism for
every 70 =1,2,..
and

(2.8) For all natural numbers n, %’ such that » >n there is a map
r: X, .,—~Xn satisfying the homotopy relation p%r ~ prti,

Let & be a fixed natural number. Lemmas (1.6) and (2.7)  imply that
there exist a connected and smlply connected polyhedron X ot D Ko
and a continuous extension pit': X, .. X, of p"’*‘,
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Let Y., (Yz) be a subpolyhedron of X k+1 (Xz) which is the n-skeleton
of a triangulation of X, ,, when # > 2 and which is equal to {4} ({#}})
for the case when n < 2.

From Lemma (1.5) we conclude that pr,,=ipitl: XX, . is
m-deformable to ¥,,,, where m = dimX,,, and 4: X, ., X, if the
inclusion.,

This means that there exists an open finite covering U of X and
a map fqt N(W)—>2Xp,, such that £ (N (W)™)C Y,,, and &y,aq, i
homotopic 50 Py, for arbitrary canonical map aqp,: X— N (W).

From (2.5) we infer that there exist k¥’ >%+1 and a map p': X

—N (W) such that p'pr = aq,, Where aq: X— N (W) is a canonical map.
X
/TN
/ AN
:9/;,' TR
)/ o ¢ . Al]:+1
T N () Kt X
We can assume that
(2.9) P(XEP) C N (U,

Let us observe that

(2.10) S%P P ——Pk+1

(i Xpy1—>Xy4q is the inclusion).
From (2.6) and (2.10) we infer that there exists k" > %" such that

@Pk Pr

£, 0Pl —@?k+1pk' = ipl, = pk—l—l

Hence
(2.11) ﬁﬁ"‘”‘fw’pﬁ'ﬁp#?ﬁkﬂ 1’;2"
and by (2.9)
(2.12) PP PHUXW) C T

Lot 7 Xp,,—>Xye be a map (see (2.8)) such that
(2.13) v = pir.

Since dim X, == m, we can assume that
(2.14) (X ) C XY

The statements (2.11) and (2.13) imply that

Pt pk'y o Pl e PP T -
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By (2.12) and (2.14) we have
PEFEq ' Pl (X pa) C Yo

Therefore o (pit?) < dim ¥y <
that FAd(X) = n.

(2.15) Remark. The assumption of movability in Theorem (2.1)
is essential. Indeed, let X be an acyeclic approximatively 1-connected
continuum deseribed by Kahn in [13]. Then Fd(X) = co (see [8], p. 172)
and ¢(X) = 0.

¢(X)=mn and Theorem (1.1) implics

§ 3. Fundamental dimension of the Cartesian product of simply connected
polyhedra. For every compactum X we denote by X(X) the suspension
of X. By C or Z, we denote (respectively) the field of complex numbers
and the cyclic group of finite order p.

Consider the set D consisting of all points z e ¢ such that |2 < 1,
its subset § consisting of all z € D such that [2| = 1 and the map ap: §—~8
given by the formula

ay(®) =2 for zef

and for every p =2, 3,

Let @p be the deeompomtlon space of the upper semicontinuous
decomposition of D into the following setis:

(a) The single points of D\S.

(b) The sets op™(x) with 2 < 8.

Then ¢ i8 a polyhedron and it is known that H*(Qp; Z) is isomorphic
to Zp and HYQp; Z) is the trivial group for every p > 2.

Applying the universal-coefficient formula for cohomology (see [21],
p. 336) we infer that if p and g are relatively prime natural numbers then

(3.1) HiQp; Z)=10 - for every i>0.

Let @ = @, for every p=2,3, .. and let Q1" = = Z(Qp—") for every
p=2,3,.. and every m =3, 4,

I‘rom (3.1) we infer that the group H™Qy; Z) iy isomorphic to Z,
and the groups HY(QM; Z) are trivial for every 4 satisfying the inequality
0<i<<m and that H (Qm, Z,) = 0 for.every >0, where p and ¢ are
relatively prime natural numbers.

It is evident that dim@y = m = Fd(Qy).

It is known -(see [14], p. 6) that

(82) HYXXY;6) ~ D H{X;HYY; &) for all compacta X,¥ and

1+k=n

each abelian. yroup G-
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Computing HYQyx Q% Z) by the formula (3.2) we see that
H "(Q;; X Qg3 Z) = 0 for all relatively prime natural numbers p and g and
every ¢ satisfying the inequality m-+mn > i >max(m,n). Moreover, if
n % m then H™MQF X Qy; Z) = Zp and HYQ X Q3 Z) ~ Z, and if n = m
then H™Qp X @y, Z) = Z,@® Zyp.

Hence ¢(@y' X @Qy) = max(m,n) for all relatively prime natural
numbers p and ¢ and all m > 2.

Since @} is the suspension of some connected polyhedron for every
m == 3, 4, ... we infer that the first homotopy group of Q2 is trivial when
Thus we obtain from (2.2) the following
(8.3) TrroreEM. For every m >3 there ewisis a sequence Qs O

polyhedra such that dim@y = m = Fd(Q7) and FA(Qy X @F) = max(m, n)
for all relatively prime natural numbers p and q.

Remark. In the case when p and ¢ are not relatively prime we can
prove in a similar way that Fd(Q7 X @7) = m-n for all m,n > 3.

'§ 4. Fundamental dimension of the suspension of a compactum. If X,Y
are compacta and f: X—7Y is a map then we denote by X(f) the sus-

pension. of f.

Let X be a continuum. Then there is an inverse sequence {X,, p;*'},
where X, is a connected polyhedron for every k=1, 2,.. such that
X is hemeomorphic to llm{X,f p¥+1}, This implies that X(X) is homeo-

morphic to lim{Z(X%), Z‘ B Tt is clear that I(X3) is a simply con-

nected polyhedron for every k=1, 2,... Therefore (see Lemma (6.1)
of [19]) X is an approximatively 1-connected continuum.

Hence we obtain

(4.1) ILmmmA. If X is a continuum then Z(X) is an approzimatively
1-connected continuum.

The author has proved ([20]) that if X is a compactum and A is
a closed subset of X then

(4.2) d(X/4) < max(Fd (X), Fa(4)+1).
From (4.2) we infer (by easy induction) that the following lemma holds

(4.3) LeMmA. Let X @ be a compactum and let Ay, Ag,y ..., Ao be
non-empty disjoint closed subsets of X. If Y denote the hyperspace of the

upper semicontinuous decomposition of X into the sets Ay, Ay, ooy An and
n
the single points of X\ Ai then PA(Y) < max(Fd(X), Fd(4,)+1, ...
=1
.y Fa(An)+1).

Now let us prove the following
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(4.4) TaEOREM. For every compactum X = @ with a finite fundamental
dimension

e(X)+1  when ¢(X) >0,
FA(Z(X)=1{0 when ¢(X) =0 and X is connected ,
1 when ¢(X) =0 and X is not a continuum .

. Proof. It was proved (see [20]) by W. Holsztyiski that for every
compactum X there exists a compactum X’ such that Sh(X) = Sh(X')
and Pd(X) = dimX". K. Borsuk hag shown ([2], p. 250) that the shape
of the suspension of a compactum X depends only on the shape of X.

Therefore we can assume that X C B™ for a certain m.

It is convenient for our purposes to regard B™ as the subset of Fmt?
consisting of all points &= (&, @y, ..., Tm, By,) With Dy = 0.

For every natural number # there are a natural number l,, a function
an: {1,2, .. n+1}~>{1 2, .., 1} and disjoint non-empty subpolyhedra

Xy, X2, ..y X of B™ such that
(4.5) Xi CX2®  for every i=1,2,.., [
(4.6) X=X, vXiu.. uXby,

n=1

Let X, = X7, w X7 w...w X}». The conditions (4.5) and (4.6) imply that

X=NX» and X,DX,., forevery n= 1,2,..

. n=1

Let by = (b}, b3, ..., b™, 0) « XiCE™ and ab = (b7 b, ..., b g)

e E™ for all natural numbers N, % such that 1 <4 < Zn and for & = —-Zlm 1.
) Consider now for every & = 1 2, ... and every ¢ < I, a subpolyhedron

V of B™ which is the union of the cone with the base X! and the vertex

ay,—, and the cone with the base X: and the vertex ak,.

It is clear that V} is homeomorphlc to X(X1) and thsut Vi is a simply
connected polyhedron

Let AL = U a1}, 42= u {0} and ¥, = UV‘

T+,
Comnsider now maps skt 41 +1——>Ak, ALV 1—%4,, and. pkt

>V defined by the formulas " Vi

k+

(ak+1 1) = a?ck(:;)ly
Ic+

(@10 = 0P

PETHR) = (1—1) @+ tagid

- for every z= (1—t)a+taf,,, where e Xi, , and & — —1, 1.
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Setting ¥ = 1<im Vi PET, A) = lim {41, s¥}and 4, = hm{Ak, e
one easily sees that 4, ~ 4,=@, dim4; = dim4d,=0 and 4,,4,CY.

Congider now the hyperspace W of the upper semicontinuous de-
composition of Y into the sets 4, 4, and the single points of Y\(4, v 4,)
and let W, denote the quotient space V, in which A} is identified to one
point and 42 is identified to another point. For every natural number %
the map p"“ Viess~> Vi induces a map uith: Wk+1—+Wk ‘We note that
Wi is homeomorphic to X(Xy) and that llm{Wk, k™) is homeomorphie
to W and Z(X).

From Lemma (4.3) we infer that
(4.7 Fd(Z(X)) = FA(W) < max(Fd(¥), 1).

Let [J(X) and [(Y) denote respectively the sets of all components
of X and Y.

The conditions (4.5) and (4.6) imply that there exists a one-to-one
correspondence A: [(X)—[(Y) such that for every X,e¢ [1(X) con-
tinuum. A (X,) € (YY) is homeomorphic to the suspension of X,. From
Lemma (4.1) we infer that each component of ¥ is an approximatively
1-connected compactum. It follows (see [5]) that ¥ is an approximatively
1-connected compactum.

Since Y is an approximatively 1-connected compactum and Fd(Y)
< o0, we conclude that Fd(Y)= ¢(X).

The continuity property of the Cech eohomology implies that the
groups HYY; @) and HYW; ¢) are isomorphic for every Abelian group G
and every n = 2: Therefore

max(1, ¢(¥)) = max(L, ¢(W)}= ma.x(l, c(Z(X))) .
The inequality (4.7) implies that
4.8) o(Z(X)) < FA(Z(X))=Fd(W) < max(1, Fd(

= max(L, ¢(Z(X))) .
Tt is known that

Y)) = max(L, ¢(¥))

(4.9)  For every compactum X and each Abelian group G the groups
HYX; G) and H*(Z(X); G} are isomorphic for n > 1.

Suppose that ¢(X) > 0.

Then from (4.9) we infer that ¢(X(X)) = ¢(X)+1 > 2 and from (4.8)
we infer that Fd(Z(X))= o(Z(X))= ¢(X)+1.

Suppose that ¢(X) = 0.

One knows that HY(Z(X);Z)=0 when X is a continuum and
H'(Z(X } 0 when Y is not a connected compactum.

If X is connected then W is homeomorphic to ¥ and Z(X).
Therefore Fd (2 (X)) = ¢(¥)= 0.
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It X is not a
that Fa{Z(X)) = 1.

This completes the proof of Theorem (4.4).

K. Borsuk has proved ([2], p. 251) that the suspension X(X) o
a movable compactum X is movable. This fact, Theorem (2.4) and Lemma.
(4.1) imply at once the following

(4.10) TuEOREM. Let X # @ be o movable continuwum. Then
¢(X)>0,

o(X)=0.

Remark. The assumption of the movability in Theorem (4.10) is

essential. Let X be the Kahn’s continuum (see [13]). Then Fd(Z(X))
= oo and ¢(X) =0 (see [8] and (2.15)).

a continuurm, then 0(2’ (X )) = 1 and from (4.8) we infer

¢(X)+1  when

Fd(Z’(X)) - 0 when

§ 5. Fundamental dimension of the Cartesian product of zipproximatively
I-connected compacta. In this section we adopt the notations of [14].
By @ we denote the group of rational numbers and for every prime natural
number p we denote by R, the group of rational numbers which can

. m .
be represented in the form —, where m and » are integer numbers and p
n .

does not divide . Let us also put @ = @/R, for every prime number p.

If G is an Abelian group, then we denote by o(G) the collection of
Abelian. groups defined by the following conditions:

(@) @ € o(@) iff G contains an element of infinite order.

(b) If p is a prime number, then Z, ¢ o(G) iff @ containg an element g
of order p* (where % is & natural number) such that ¢ is not divisible by p.

(€) Q@p e o(@) iff G contains an element of order p.

(@) Rp ¢ o(@) iff there is an element o of G such that for every integer
number % > 0 the number p™™ does not divide p”a.

(e) ¥ H +#Q,Qp,%Zy, Ry then H does not belong to o(F) (p is
a prime number).

In the sequel we need the following three propositions:

(5.1) PrOPOSITION. For every locally compact meiric space X and
every Abelion group G the equality ¢(X)= max {cg(X)} holds true.

Heo(G)

(5.2) ProposITION. If X 4s a locally compact metric space and p is
a prime number, then

ch( ) S eg(X) < GQ,,(XH‘]- y
co(X) < ep(X),

0p(X) < max(co(X), eg,(X)—1),
0py(X) < max(cg(X), o (X)+1).
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(5.3) ProrosirioN. Let X, Y be locally compact metric spaces and
let p be a prime number. Then

o X X X) == 0y (X)4-04,(Y),
(X X ¥) = o X)+¢o(X),
Cp( X X ¥) == max(eg,(X) + o, (¥), ¢z,(X x ¥)—1},
Oy (X) + e (X)  if 0 (X) = ¢p,(X) or co(¥) = ¢g,(¥),

max (¢, (X X ¥)+1, o X x X)) if ¢g(X) < cp,(X) and
oY) < eg (Y).

It is known that if we replace in (5.1), (5.2) and (5.3) ¢g-by dimg, ¢g
by dimy, ¢g by dimg, ¢z, by dimg,, ¢, by dimg, and ¢y, by dimg,
then we get theorems which hold true (see [14], p. 12 and p. 14 and p. 15).
Moreover, studying [14], one ean observe that the proofs of those theorems
contain the proofs of Propositions (5.1); (5.2) and (5.3). Therefore we
omit them.

One knows ([14], p. 24) that for every fixed prime number p there
is & compacﬁum FQyu and a simple cloged curve By C FQy, (denoted in [14:]
by X such that

© HYFQuBy R

HYFQyu)By, &) =

when G = @, Z, Zp, Z,, Byy @p, @, and ¢ 18 a prime number  p.

Let Ay = Z(I’Qp‘,/Bp)

It follows from the analysis of the construction FQ,, that F@,, is
2 continuum. From Lemma (4.1) and (4.9) we infer that A, is an aproxi-
matively 1-connected compactum such that

Cpy(Ap) = Fd(dp) = c(dp) =3

op X X Y) =

p) R Hg(Fsz\B:o? Ryp) #0
and
HYFQ,,\Bp; ¢) = 0

and

toldp) <3 when  Ge=Q,Z, Zy, Z,, By, Qp, @y and p + g.

Let us prove the following

(4.4) Tuworum. For every approwimatively 1-connected compacium X
with TA(X) < oo the following conditions are equivalent:

(i) For every Abelian group G the equality c¢x(X) = Fd(X) holds true.

() If Y #@ is an approwimatively 1-connected compactum then
FL(X X ¥) == Fd(X)-Fd(Y).

(i) PA(X X dp) = FA(X)+3 for every prime number p.

Proof. (i) im’plieﬂ fii). Let ¥ bo an approximatively 1-connected
compactum and Fd(¥) < co. From Theorem (2.2) and Proposition (5.1)
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we infer that ¢(X)= max{cp(X)}, ¢(¥)=max{cg(Y)}, ¢(XXY)
— FA(XX T) = max{op (XX T} T g (X) = o5,(X) = o(X) = Pd(X)

for every prime number p, then ¢z (XX Y)= py(X)+¢g,(Y) and

max {eg, (X X Y)} = max{cg,(X)+ g, (¥ )= max {Bd(X) 4 Fd(T¥)}

= RF4(X)+Fd(Y).

Tt is clear that (ii) implies (iif).

(iii) implies (i). From (5.3) we infer theut o\ X X Ap) = FA(X)43
for every p # q. Therefore ¢g, (X X 4p) = (X)+3 This implies that
g (X) = op (X)= Fd(X) = ¢(X). Propositions {5.2) and (5.1) imply that
¢g(X) = ¢(X) == PA(X) for every Abelian group &.

§ 6. Some problems. Let us prove the following
(6.1) PropostTION. If X, Y are compacta and

¢(X ~ Y) < max(e(X), ¢(X)), then ¢(X v ¥)= max(c(X), c(¥)).

Proof. It is known (see [14], p. B) that for every integer number »
there are homomorphisms

A" Y X ~Y; Z)>HY X v X; Z),
" HYX v Y; Z)~>H™X; Z)D HYY; Z),
y*: HYX; Z) @ HNY; Z) > HNX © Y; Z)
such that the sequence

‘4

> H" (X A Y; Z) ——HYX o Y; 7) _7, "X, Z) @ HNX; Z)

SHYX ~ ¥; Z)—>H" (X o T; Z)—
is exact.

From the definition of ¢(X) we infer that there exwts 2 natural
number 7 such that H"(X; Z)® HNY; Z) 0 and H™X ~ ¥; Z) = 0 for
every m > m. This implies that ¢": HYX v ¥; Z)—~H™X; Z)@II"(Y; Z)
is an epimorphism and H™X v ¥; Z) 0 and for all m > n the groups
HYX v Y;Z), HMX; Z)® H™XY; Z) are isomorphic. We infer that
(XU Y)= m&x(o(X), c(Y)) and the proof of (6.1) is finished.

(6.2) CorOLLARY. Suppose that X and Y are compacia, Fd(X) < co
and FA(X ~ ¥) < Fd(X). If X is approwvimatively 1-connected compactum
then Fd(X v ¥) = Fd(X).

Proof. Corollary (6.2) is an immediate consequence of (6.1) and (2.2).

* Corollary (6.2) gives a partial answer to the following

(6.3) ProBLEM. Is it true that for all compacta X ,Y such that Fd(X)
>Fd(X ~ Y) the. inequality FA(X v Y) = Fd(X) holds?

icm
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The author has proved (see [20]) that for all compacta X,Y we have

(6.4) Fd(X v Y) < max(Fd(X), FA(Y), FA(X ~ X)+1).

Problem (6.3) is connected with the problem of the homological
characterization of the fundamental dimension for the class all finite-
dimensional compacta. ¢

Let us prove the following

(6.5) TanOREM. For every fized natural number ny =2 the following
three propositions are equivalent:

(a) For every compactum X with a finite fundamental dzmmswn
Fd(X) < max (g, ¢(X)).

(b) For all compacta X,Y such that ny+1<FA(X)< oo and
Fd(X ~ Y) < Td(X) the inequality FA(X v ¥) = Fd(X) holds true.

C(e) If X is a compactum and Y is a conlinuwm such that ny-+1
<Fd(X) < o0, AIM(X nY)=1, dimY¥Y =2 and FA(Y)=0, then
Fd(X v Y) = Fd(X).

Proof. From (6.1) we infer that (a)=-
that (b) = (¢). .

In order to prove that (¢)=- (a), consider a compactum X such that
Fd(X) < oo. There exists an inverse sequence of polyhedra (with fixed
triangulations) {X, p£*t'} such that pf*': Xy,,—~2X; is a simplicial map
for every k=1,2,.. and ‘

(6.6) Sh(X) =

(b) and from (6.4) we infer

Sh(X"),

where X' = h.m{Xk, ph“} Let X{ denote the 1-skeleton of Xj.

We can assume that X is a subpolyhedron of E™ such that
(@1 Byy wvoy Bpy,) € Xp implies @, = 0. Let by = (0,0,..,0,1) e B™ and
let Z% be a polyhedron which is the wnion of X and of a cone Ap with
the vertex bx and a bfme X,

Congider maps gf*l: Ap,— Ay, 75
formulas

: Zypy > Z), defined by the

qet(2) == (LB PEYHY) 4 by, Tor every & = (L)Y -+ by, WheTe § € Xprys
PE(e)
q"“(z)

Py — for every ze Xy,
’ for every ze Ay, .

Setting A = llm{jl,c,qﬁ“} and W_hm{Zk, b+ one easily sees
that dim 4 = 2, ].‘d(A)—— 0, dim4d n X' = 1 W= X'"u A and that W is
an zupproxunatwely 1- connected compactum (see [19], Lemma (6.1)).

From (6.6) we infer that Fd(X") = Fd(X) and ¢(X') = ¢(X).
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Proposition (6.1) implies that ¢(W) = max(¢c(X"), ¢(4)) = ¢(X').
Hence '

Fd(X) = Fd(X') = Fa(W),
max(ny, o(W)) = max(ny, ¢(X')) = max(n,, ¢(X)) .

Therefore (c) = (a) and the proof is finighed.

(6.7) PrOBLEM. Is 4t true that there ewists o natuval number ny = 9
such that propositions (a), (b) and (¢) from (6.B) hold?
) The author knows only the example of a compactum X such that
¢(X)=0 and Fd(X)=2 (sec Remark (2.8)).

One also knows the example of an acyeclic non-movable curve (
(see [6] and [18], p. 652).

(6.8) ProBLEM. Is 4t true that Fd(C™) = n?

A positive answer to the question (6.8) would give negative answers
to the problems (6.7) and (6.3) (see (6.5)).
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