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Infinite dimensional non-symmetric
Borsuk-Ulam theorem

by
Kapil D. Joshi (Providence, Rhode Island)

Abstract, Let E® be an infinite dimensional Banach space and R®-2 a closed
subspace of codimension one. If X C B, a mapping f: X —E™ is said to be a compact
wector field or a compact field if the associated displacement mapping F: X — R* defined
by F(x) = «— f(x) maps X into a compact subset of R, It is proved that if X is closed
and bounded and if the origin lies in a bounded component of the complement B°— X
then for any eompaet field f: X —R** there exist two points # and y in X, lying on
opposite rays from the origin (i.e. y = — v for some 4> 0), such that f(x) = f(y). This
i8 a generalization of a theorem of Granas which results by taking X to be the unit
gphere in R, The proof uses techniques analogous to those of Granas to reduce the
problem to the finite dimensional case which was proved earlier by the author.

1. Introduction. The classic Borsuk-Ulam theorem states that if
f: 8*=R" is a map of the n-sphere into the Ruclidean space R" then
there exists a pair of antipodal points {w, —x} on 8" such that f(z) = f(— ).
Beveral generalizations of this theorem, preceeding in various directions,
are known (see, for example, the references in [2]). In some of these
generalizations the sphere is replaced by a more general space on which
some suitable notaion of antipodality can be defined. In particular, the
author [2] has proved the following theorem conjectured by Borsuk,

TunoreM A. Let X be a compact subset of the Buclidean space B!
which disconmects it in such a way that the origin lies in a bounded com-
ponent of R X. Then for any map f: X—R" there ewist two points
and y in X, lying on opposite rays from the origin (that is, y = — Al for
some A > 0), such that f(x) = f(y).

On the other hand Granas [1] has extended the Borsuk-Ulam
theorem from Huelidean spaces to infinite dimensional Banach spaces.
Let B® denote a fixed iffinite dimensional Banach space and S the
unit sphere in B®. By BR®™ we mean a linear, closed subspace of B of
co-dimension one. Because the unit sphere § is not compact, the Borsuk -
Ulam theorem does not hold for an arbitrary map f: §°—R*~*. However
if the mapping f does not displace points of S too much (i.e. if the mapp-
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ing F: 8°—F> defined by F (o) = o—f(») is in some sense “small”) then
the Borsuk-Ulam theorem holds for f. Granas [1] uses the term “compact
fields” for such mappings and the precise definition will be given later.
Granay’ theorem can now be stated as follows.

TEEOREM B. Let f: 8°—R™* be a mapping of the unit sphere 8% into
a 1-codimensional subspace R~ of R, If f is a compact field then [ maps
at least one pair of antipodal points into the same poind, i.e. f(&) == f(—w)
for some e 8%.

(See [1], p. 45.)

The purpose of this paper is to combine Theoremns A and B.
Specifically our theorem is,

TaroreM C. Let X be a closed, bounded subset of B> for which the origin
is in a bounded component of R°— X and let f: X—~R®™ be a compact
field. Then there ewist two points ® and y in X and a positive real nuwmber A,
such that y = — Az and f(z)= f(y).

On one hand Theorem O can be regarded as a generalization of
Theorem B the way Theorem A is a generalization of the Borsuk-Ulam
theorem. On the other hand it can also be considered as an infinite di-
mensional extension of Theorem A the way Theorem B is an oxtension of
the Borsuk-Ulam theorem. These two points of view suggest two corre-
sponding lines of approach to Theorem C. Thus one may try to prove
it using the same technigues as those used in the proof of Theorem A as

given in [2]. Unfortunately this approach does not seem to work. For, .

the proof in [2] is based on the theory of the Smith index of an involution
and the technique of approximating the set X by a suitable type of com-
pact polyhedra. Both of these rely crucially on compactness of the set X
in Theorem A and it is doubtful if either of these can be readily extended
to the non-compact case as would be required by Theorem C.

We therefore try the other approach which is similar to the one
used by Granas [1] in proving Theorem B. Here the idea is to approximate
the map f: X—R*" by finite dimensional maps to which Theorem A
majy be applied. Even this approach presents some difficulties; but these
are technical and can be overcome by using sharper versions of the theo-
rems used by Granas.

In the second section we review and extend some of the resulty uged
by Granas. In the-last section we apply these together with Theorem A
to prove Theorem C.

@

2. Compact vector fields and their approximation. In this section we
recall the definition and some of the properties of compact vector fields.
‘We shall also prove an approximation theorem analogous to the one in
((1], p- 24). For details the reader is referred to [1]. The properties of
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Banach spaces which we shall use are all very standard and can be found
for example in [3]. .

Let B denote a fixed real Banach space (that is, a complete, normed,
linear space which is not necessarily separable). By a subspace we always
mean a closed linear subspace.

(2.1) DupistrioN. Let X be a metric gpace. A mapping F: X—F
ig said to be compact if its range F(X) is contained in a compact subset
of B; that is if F(X) is compact.

(2.2) DEFINITION. A mapping F': X— 1 is said to be finite dimensional
it 7 is compact and F(X) is contained in some finite dimensional sub-
space L™ of H.

The proof of the following proposition is trivial.

(2.3) ProrosirioN. Let B, B' be Banach spaces and let w: B—H' be
linear and continuous. Then if F: X—T is compact (or finite dimensional),
80 48 the composite w o F: X—H'.

The following theorem asserts that a compact mapping can be uni-
formly approximated by finite dimensional mappings. A proof is given
by Granas ([1], p. 24). ;

(2.4) TupornM. If F: X—F is a compact mapping then for every
e>0 there exists a finite dimensional mapping F: X—F" such that
I (2)—T (2| < & for every m ¢ X. (Here || || denotes the norm on B and the
integer n may of course depend on ). ‘ '

We shall need a sharper version of the preceding theorem in that
the approximating map I, will have to satisfy some . additional property
besides being finite dimensional. Before stating it we introduce some
notation. Suppose the space ¥ is the direet sum of two subspaces, A and B;
ie. l= A@®B. Then every element of F can be written uniquely as
a+b where ae.d and b ¢ B. Note that since 4 and B are closed they
are Banach spaces themselves. Combining this fact with the well-known
“Closed Graph Theorem” (sec [3], p. 196) it follows that the projection
maps wq: H-»d4 and wp: BB defined by ma(a--b) = o and na(a-- b)=1>
are continuous. Obviously they arve also linear. The dimension of B ig
called the codimension of A in H. This is well-defined since it coincides
with the dimension of the quotient space 1/A.

We are interested in the case in which 4 is of co-dimension one.
In this case 4 can be regarded as the kernel of a continuous linear
functional I on . Indeed, since I/ = 4 @ B where B is one-dimensional,
we merely take any continuous, linear isomorphism 6: B—R and set
L= 0 o mp. Conversely it is clear that the kernel of a non-zero continuous
linear functional on 7 is a subspace of codimension 1.

Returning to the approximation theorem suppose a compact map
F: X1 and a continuous linear functional L: H—R are given. If we
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think of L as a “level function” on ¥ then we claim that the approxi-
mating map I, in (2.4) can be chosen to be “on the same level” ag the
map F. The precise statement is:

(2.8) Let I': XTI be o compact map and let Lt B-+T be a continuous,
linear functional. Then for every e >0 there ewists a finite dimensional
mapping ¥y X->B* such that |[F(0)—F )| < e and LI (x)) = L{F,(x)
for every » ¢ X.

Proof. If I is identically zero then the result follows from. (2.4)
immediately, It L i3 non-zero let 4 be its kernel. As remarked above,
there is a 1-dimensional subspace B of H guch that W == AP B. Tt we
identify B and B then I: is just the projection wp: H-»B, We let G: X+ 4
be the composite w4 o I'. Sinee mq is continuous, by (2.3) ¢ is a compact
mapping of X into the Banach space 4. Hence by (2.4) there existy
a finite dimensional sub&pa.ce E™ of 4 and a finite dimensional mapping
@G X—I" such that ||G(x)— G ()] < & for every o'e X. We let & = n--1
and % be the subspace oi I spanned by E" and B. Define 7,; X~ K%
by i) = G4(n)+ap(F () for @ ¢ X. Obviously for every w:X T () —
— T (@) = G(w)— Gx) since F(w) = ma(F(x))+ns(F(v)). Hence,

|7 (@)— T (@) < .

Tt is also clear that L(¥F(w)) = L(F,(#)) since L coincides with mz. To
complete the proof it only remains to show that F, is compact. For this
we note that if § and T are two compact sets of a Banach space then the
set §--T defined as the set {(s--t)| s« §,¢¢ I} is also compact by con-
tinuity of the addition operation in H. In the present case we take §

= G(X) and T = ap(F(X)). Then § and T are compact because the
mappings &, and F are compact. Clearly ¥, maps X into the set 84T
which is compact, This completes the proof,

Bo far the space X was assumed to be any metric space. Suppose
now that X itsclf is a subset of B. Then for each » ¢ X we can consider
the “d1sp]a.cemont” o—I'(2) where I': X—F is a given mapping.

(2.6) DerFinmrioN. Let X C E. A mapping f: X—H is called a com-
pact vector field on X if there exists a compact mapping F: X—H such
that f(#) == a— I (x) for each » ¢ X. (Clearly Fis uniquely determined by f.)

We conclucle this section with a theorem which is an easy conse-
quente of (2.5) and which will be used in the next section in the proof
of Theorem O in order to reduce the problem to finite dimensional spaces.

(2.7) TarorREM. Suppose o compact vector field f: X—T maps X into
a 1- codimensional subspace A of B. Then for every e > 0 there ewists o finite
dimensional subspace E* of B and a compact vector ficld f; X—I such
that for each » e X, |f(2)—f, (@) < & and f, maps X ~E* into a 1-codi-
mensional subspace T*™ of Bk,
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Proof. We regard A ag the kernel of a continuous linear functional
L on Il. The rest of the notation is as in the proof of (2.5). Let f(z) = #—
—F(«) where F: X—F is a compact mapping. The hypothesis implies
that L(x) = z)) for every # ¢ X. Let E* and the compact mapping
F: X—F* be as given by (2.5). We define the compact vector field
fo X—E by f(z) = a— F(x) for v ¢« X. Clearly for every z ¢ X, f(z)—f,(z)
= F(z)—F(x) and hence |f(z)—f(a)|<e Also L(F,(z))= L(F(z) and
hence L(fs(w)} = 0 for each xe¢X. This meang that f, maps X into A.
Now if #eX ~E* then f(2)e¢ B Thus f, maps X ~ B* into E* ~ A.
The latter is clearly a (k—1)-dimensional subspace of B and so the proof
is complete.

3. The main result. In this section we combine Theorem A in the
introduction with Theorem (2.7) in the last section to prove the desired
infinite dimensional, non-symmetric Borsuk-Ulam theorem.

We shall consider a fixed infinite dimensional Banach space which
we shall denote by R® rather than by T as was done in the last section.
Its finite dimensional subspaces will be denoted by R" ete. and by R®*
we mean a fixed 1-codimensional subspace of R®. Let X be a closed and
bounded subset of R which disconnects it in such a way that the origin
lies in a bounded component of the complement R*—X. If B™ is a sub-
gpace of B* of finite dimengion then X ~ R™ i3 a compact subset of R"
and the origin (in R") clearly lies in a bounded component of the com-
plement of X ~ R™ in R™ This fact will be cruclal in the proof. First we
establish a lemma.

(3.1) LEMMA. Let X be as above and let f: X—R™ be a compact vector
field. If for every 8 > 0 there exist points &, — Ax in X with A > 0 for which
If(@)—f(— Az)l| < & then there exist such points for which f(x) = f(— Zw)

Proof. The fact that X is closed, bounded and does not contain the
origin implies the existence of two positive real numbers » and R such
that for every z e X, r < || < R. It follows that if for some 4 >0,  and
— Az are both in X then r/R < A < Rfr. Taking 6 = 1, %, %, %, ... succesively
wo get a gequence {#¢} of points in X and a sequence {4} of positive real
numberg such that for each 4, —Aiws e X and ||f(@)—f(— durs)l| < 1.
If the set X were compact then we could have taken convergent sub-
sequences to reach the conelusion of the lemma. Unfortunately X cannot
be compact. However we can write f(z) = o— F(x) for cach L @ € X where
the mapping F: X-»E* is compact. This means that the set F(X) is com-
pact, Also each A is in the closed interval [#/E, Efr] which is compact.
Thug taking suitable subsequences if necessary we may assume that the
gequences {F(z:)}, {4} and {F(— A:)} are all convergent. Leb y; = f(z:)—
—f(— A4;) for each 4. Then the sequence {y:} also converges; in fact it
converges to 0 by its construction. An easy computation shows that for
4 — Fundamenta Mathematicae LXXXIX
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each ¢,
F(@0) —F (— hido)— s
14+4 ’

(%) %y =

.

From (x) it follows that the sequence w; is also econvergent. Once this is

established the lemma follows by a routine argument using continuity
of f and the fact that the set X is closed.

‘We are now in a pogition to prove the main result.

(3.2) THEOREM. Let X be o closed, bounded subset of R™ for which the
origin 18 in a bounded component of R°— X and let fi X—>R** be a com-
pact vector field. Then there exist two points & and y in X and o positive
real nwmber i, such thot y = — Az and f(z) = f(y).

Proof. In view of the preceding lemma it suffices to find such a,
Y, A so that [|f(#)—f(y)|| < 6 where ¢ is a pre-assigned positive number.
Given such § we set ¢ = }6 and apply (2.7). This gives a finite dimensional
subspace E* of B® and a compact vector field f,: X—>R*® such that f,
maps X ~ RB* into a (k—1)-dimensional subspace R*~* and ||f()— f,(@)|
< 36 for every z ¢ X. As observed earlier, the set X ~ R* is a compact
subset of R* for which the origin lies in a bounded component of R*—
— (X ~ R¥). Applying Theorem A in the introduction to the restriction
map f,: X ~ R*—~R*¥* we get points © and y in X ~ R* and 4 > 0 such
that f(z) = f(y) and y = —2s. Since we have, ||f(%)—F(¥) < |If(®)—

— L@+ @)= LN+ 17y)—F @), it follows that ||f(x)—f(y)| < 6 and
the theorem is proved. )
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Wide tree-like spaces have a fixed point
by
John Jobe (Stillwater, Okla.)

Abstract, A well-known unsolved problem is to determine whether or not a com-
pact plane continuum which. does not separate the plane has the fixed point property
for continuous functions. In this paper a wide tree-like space is defined, and it is shown
that the class of all wide tree-like spaces has the fixed point property for continuous
functions. A characterization of a wide tree-like space is revealed. This class of tree-like
spaces containg many compact plane continua, all of which do not separate the plane.
The same can be said about the class of tree-like spaces, but it is not known whether
or not this class has the fixed point property for continuous functions.

1. Introduction. A bounded plane continuum which does not separate
the plane can be represented as the intersection of the elements of
a monotonic decreasing sequence of open 2-cells. A well-known problem
is to determine whether or not each such continuum has the fixed point
property for continuous functions. This question has been answered in
the affirmative for many special plane continua, e.g. [3]. The question
of whether a tree-like space has the fixed point property for continuous
functions was raised in a conversation with O. H. Hamilton. It is the
purpose of this paper to answer this question for wide tree-like spaces.
The clags of wide tree-like spaces containg many plane continua, all of
which do not separate the plane. Likewise, the class of tree-like spaces
contains many plane eontinua, all of which do not separate the plane.

‘We shall use Burgess’s definition |2] of a linear chain and a definition
similar to his of a tree-like chain, namely: a #ree-like chain C is a finite
coherent collection of open sets such that (1) each two nonintersecting
elements of ¢ arve a positive distance apart; (2) no subeollection of ¢
congisting of more than two elements is a circular chain; and. (3) no three
clements have a point in common. If C is a tree-like chain and be C,
then b is a branch link of € if and only if there exists more than two other
links of ¢ that intersect b. Also, if 7 i3 a member of a tree-like chain C,
then 7 is called an end link of ¢ if and only if there exists only one other
link of ¢ that intersects I. All spaces considered in this paper are metric

. spaces and (M, d) denotes the metric space with set M and metric d.
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