Connectivity points and Darboux points
of real functions

by

Harvey Rosen (University, Ala.)

Abstract. For a bounded real-valued function f with domain an open interval, it is shown that the set of points at which f is connected and the set of points at which f is Darboux are G_{δ}-sets.

1. Introduction. In [1], Bruckner and Ceder describe what it means for a real function to be Darboux at a point, and later in [2], Garrett, Nebus, and Kellum introduce the idea of a function connected at a point. It is known that the set of points of continuity for a real-valued function with domain an open interval is a G_{δ}-set. This paper gives a partial answer to a conjecture of Hugh Miller that the set of points at which such a function is connected is also a G_{δ}-set. A similar result is obtained for the set of points at which a function is Darboux.

2. Preliminaries. For any subset M of the plane $\mathbb{R} \times \mathbb{R}$, $(M)_x$ denotes the X-projection of M and $(M)_y$ denotes the Y-projection. For any subset K of the X-axis, M_K denotes the set of points of M which have X-projection in K. The vertical line through a point $(x, 0)$ is denoted by $l(x)$. All functions in this paper are real-valued with domain an open interval. No distinction is made between a function and its graph.

A function f is said to be connected from the left (right) at a point z of its domain if whenever (z, a) and (z, b) are two limit points of f from the left (right), then the continuum M contains a point of f whenever $(M)_x$ is a non-degenerate set with right (left) end point z and M_x is a subset of the vertical open interval with end points (z, a) and (z, b). The function f is connected at a point z if $(z, f(z))$ is a limit point of f from the left and right and f is connected from both the left and the right at z. If each such M is a horizontal interval instead, then one obtains the definitions of Darboux from the left (right) at a point and Darboux at a point.

We first need a result which we apply later to vertical closed intervals which meet the closure, f, of a function f. These vertical intervals may be bounded or unbounded subsets of the plane.
LEMMA 1. Let \(A \) be an uncountable subset of real numbers, and let \(C = \{ L(a) : a \in A \} \) be a collection of homeomorphic vertical closed intervals such that each \(L(a) \cap x = x \). Then there is a member \(L(a_0) \) of \(C \) that is the limit from one side of a sequence of members of \(C - \{ L(a_0) \} \) and that is contained in the limit from the other side of a sequence of members of \(C - \{ L(a_0) \} \).

Proof. If each member of \(C \) is a vertical line, the result immediately follows from the fact that there is a point \(a_0 \) of \(A \) that is a limit point of \(A \) from both the left and the right. We give the proof for the case when each member of \(C \) is a closed and bounded interval. If each member of \(C \) were a closed ray, the proof would be similar.

It is known that there is an uncountable subcollection \(C' \) of \(C \) with the property that each member \(L(a) \) of \(C' \) is the limit of a sequence of members of \(C - \{ L(a) \} \) from one side, say from the right. This follows from the fact that the plane is separable. For each positive integer \(n \) and for each \(L(a) \) in \(C \), let \(R(a, n) \) denote the rectangle \([a - 1/n, a] \times [L(a)] \). For each \(n \), define \(C_n \) to be the collection of those members \(L(a) \) of \(C' \) with the property that if \(L(a') \) is in \(C - \{ L(a) \} \) and \(L(a') \) meets \(R(a, n) \), then diameter \(L(a') - \text{diameter} \ L(a) < 1/n \).

Case 1. \(\bigcup_{n=1}^{\infty} C_n \) is countable.

The collection \(B \) of those \(L(a) \) which fail to be in \(\bigcup_{n=1}^{\infty} C_n \) for the reason that no \(L(a') \) in \(C - \{ L(a) \} \) meets some \(R(a, m) \) is countable. Then there is a member \(L(a_0) \) of \(C - \{ \bigcup_{n=1}^{\infty} C_n \} - B \). Therefore for each \(n \), there is some \(L(a_n) \) in \(C - \{ L(a_0) \} \) such that \(L(a_n) \) meets \(R(a_n, n) \) but diameter \(L(a_n) - \text{diameter} \ L(a_n) \cap R(a_n, n) < 1/n \). It now follows that \(L(a_n) \) is contained in the limit from the left of some subsequence of the sequence \(\{ L(a_n) \} \).

Case 2. \(\bigcup_{n=1}^{\infty} C_n \) is uncountable.

Then there is some positive integer \(m \), \(C_m \) is uncountable. Therefore some member \(L(a_m) \) of \(C_m \) is the limit of a sequence \(\{ L(a_{n_k}) \} \) of members of \(C_m - \{ L(a_0) \} \) from either the left or the right. If convergence is from the right, then we can choose an integer \(k \) so large that \(a_k - a_{n_k} < 1/m \), \(L(a_k) \) meets \(R(a_k, m) \), and diameter \(L(a_k) - \text{diameter} \ L(a_k) \cap R(a_k, m) < 1/m \). But this says that \(L(a_k) \) is not in \(C_m \), a contradiction. Therefore convergence must be from the left after all.

But then we can choose an integer \(k \) so large that \(a_k - a_{n_k} < 1/m \), \(L(a_k) \) meets \(R(a_k, m) \), and diameter \(L(a_k) - \text{diameter} \ L(a_k) \cap R(a_k, m) < 1/m \). This says that \(L(a_k) \) is not in \(C_m \), a contradiction. Therefore case 3 cannot occur. This finishes the proof of the lemma.

3. The main results.

THEOREM 1. If \(f \) is a bounded real-valued function with domain an open interval \((u, v) \), then the set of points at which \(f \) is connected is a \(G_2 \)-set.

Proof. Let \(O_{LR} \) denote the set of points at which \(f \) is connected, \(O_L \) the set of points at which \(f \) is connected just from the left, and \(O_R \) the set of points at which \(f \) is connected just from the right. Let \(x \) be a point in \(O_{LR} \). Then \(f \cap I(x) \) is connected because \((x, f(x)) \) is a limit point of \(f \) from both the left and the right. For each positive integer \(n \), there is an open interval \(O_n \), \(x \in O_n \) containing \(x \) and having diameter less than \(1/n \) such that for each \(x \in O_n \), \(f \cap I(x) \) is a subset of the \(1/n \)-neighborhood of \(f \cap I(x) \). Define \(O_n = \bigcup \{ O(x, u) : x \in O_{LR} \} \). Clearly \(O_{LR} = \bigcap_{n=1}^{\infty} O_n \).

To prove the theorem we need only show \(\bigcap_{n=1}^{\infty} O_n \subset O_{LR} \subset O_L \cup O_R \) and \(O_L \) and \(O_R \) are each countable. For, then it would follow that \(O_{LR} \) is a \(G_2 \)-set because \(O_{LR} = \bigcap_{n=1}^{\infty} O_n \subset O_L \cup O_R \) where \(O_L \subset O_{LR} \) and \(O_R \subset O_{LR} \).

Proof of (1). Let \(x \) be a point in \(\bigcap_{n=1}^{\infty} O_n \), and we may as well suppose \(x \) is not in \(O_{LR} \). Therefore \(f \cap I(x) \) is non-degenerate. For each \(n \), there is an \(x_n \) in \(O_{LR} \) such that \(x \in O(x_n, n) \). Since the diameter of \(O(x_n, n) \) is less than \(1/n \), the sequence \((x_n) \) converges to \(x \). We may assume without loss of generality that \((x_n) \) converges to \(x \) from the left. Since \(x \) is in \(O(x_n, n) \), \(f \cap I(x_n) \) is a subset of the \(1/n \)-neighborhood of \(f \cap I(x_n) \) for each \(n \). All but finitely many sets \(f \cap I(x_n) \) are non-degenerate. Otherwise, if infinitely many were degenerate, then there would be an integer \(m \) such that \(f \cap I(x_m) \) is degenerate and the diameter of \(f \cap I(x_m) \) is greater than the diameter, \(2/m \), of the \(1/m \)-neighborhood of \(f \cap I(x_m) \). This would imply \(x \) is not in \(O(x_m, m) \), a contradiction. We may as well suppose each \(f \cap I(x_n) \) is non-degenerate.

We show now that the sequence \((f \cap I(x_n)) \) of intervals converges to \(f \cap I(x) \). Let \(P \) and \(Q \) be two points in \(f \cap I(x) \), let \((x, y) \) be a point between \(P \) and \(Q \), and let \(C_1 \), \(C_2 \), and \(C_3 \) be disjoint open spheres centered at \(P \), \(Q \), and \((x, y) \), respectively. \(C_1 \) and \(C_2 \) must eventually meet each \(f \cap I(x_n) \); otherwise, an argument similar to the one in the preceding paragraph would result in a similar contradiction. Therefore \(C_3 \) eventually meets each \(f \cap I(x_n) \). Consequently, \(f \cap I(x_n) \) converges to \(f \cap I(x) \), and \(f \cap I(x) \) is connected.

We now show that \(x \) is in \(O_L \). Let \(x \) and \(y \) be two limit points of \(f \) from the left, and let \(M \) be a continuum such that \((M) \) is a non-
degenerate set with right end point z and M is a subset of the vertical open interval with end points (z, a) and (z, b). Assume f misses M. Let C_1 and C_2 be disjoint open spheres missing M and centered at (z, b) and (z, b) respectively. There is an integer m such that $l(z_m)$ separates two points of M and such that $f \cap l(z_m)$ meets both C_1 and C_2. Since M separates a point (z_m, e) of $f \cap l(z_m)$ from a point (z_m, f) of $f \cap l(z_m)$ in $(M)_x \times R$, then M separates (z_m, e) from either (z_m, e) or (z_m, f) in $(M)_x \times R$. We may assume that M separates (z_m, f) from (z_m, e) in $(M)_x \times R$ and that (z_m, e) is a limit point of f from the right. Let C_2 and C_3 be disjoint open spheres in $(M)_x \times R$ with radius r, centered at $(z_m, f(z_m))$ and (z_m, e) respectively, and missing M. Denote by S the subset of the plane such that (x, y) is in S if and only if $z_m < x < z_m + r$ and (x, y) lies between two points (z, r_1) and (z, r_2) belonging to C_1 and C_2 respectively. Since $M \cap S$ separates $(z_m, f(z_m))$ from (z_m, e) in S, it follows from a lemma of Roberts [3], p. 176, that there is a subcontinuum N of M in S such that N separates $(z_m, f(z_m))$ from (z_m, e) in S. $(N)_x \times R$ is a non-degenerate set with left end point z_m and N is a subset of the vertical open interval with end points $(z_m, f(z_m))$ and (z_m, e). Since z_m is in $C_1 \cap C_3$, N meets f, a contradiction. Therefore M must miss f, and so z is in C_1.

Proof of (2). Assume, on the contrary, that C_2 is uncountable. First we show that the set A of those points a in C_2 for which $f \cap l(a)$ is disconnected is countable. Assume A is uncountable. For each a in A, let $L(a)$ be a vertical closed interval with end points $P(a)$ and $Q(a)$ belonging to different components of $f \cap l(a)$ with $P(a)$ lying above $Q(a)$ (written $P(a) > Q(a)$). The collection C of all these $L(a)$ is uncountable. By Lemma 1, there is an a_0 in A such that $L(a_0)$ is contained in the limit from left of a sequence $(L(a_n))$ of members of $C \cap -L(a_0)$. There are subsequences $(P(a_n))$ and $(Q(a_n))$ of the sequences $(P(a_n))$ and $(Q(a_n))$ such that $(P(a_n))$ converges to a point $P > P(a_0)$ and $(Q(a_n))$ converges to a point $Q < Q(a_0)$. P and Q are limit points of f from the left and therefore have to lie in the same connected subset $l(a_0) \cap l(a_0) \cap l(a_0)$ of $f \cap l(a_0)$. But since $P > P(a_0) > Q(a_0)$, $P(a_0)$ and $Q(a_0)$ lie in the same component of $f \cap l(a_0)$, a contradiction. Therefore A is countable.

$C_2 \setminus A$ is then uncountable. For each a in $C_2 \setminus A$, let $L(a) = f \cap l(a)$. Let L be an uncountable collection of these $L(a)$ such that each two members of L are homeomorphic. By Lemma 1, there is a member $L(a_0)$ of C that is the limit from one side of a sequence of members of $C \cap \{L(a_n)\}$ and that is contained in the limit from the other side of a sequence of members of $C \setminus \{L(a_n)\}$. In fact, this latter one-sided limit actually equals $L(a_0)$ because $L(a_0) = f \cap l(a_0)$. This shows $l(a_0) \cap l(a_0) = l(a_0) \cap l(a_0) = f \cap l(a_0)$. The set B of all such a_0 is uncountable. Therefore there is an a' in B such that some sequence $(L(a_n))$ converges to $(L(a'))$ from the right, where each a_n is in $B \setminus \{a\}$. It follows from the proof of (1) that

a' is in $C_2 \setminus A$, a contradiction to a' belonging to C_2. Therefore C_2 must be countable. Similarly, C_3 is countable.

The proof of the following theorem is similar to the proof of Theorem 1 and is therefore omitted.

Theorem 2. If f is a bounded real-valued function with domain an open interval, then the set of points at which f is Darboux is a G_3-set.

Since the set of rational numbers is not a G_3-set, we obtain the following result.

Corollary 1. There is no bounded function $f: \mathbb{R} \to \mathbb{R}$ that is connected at just the rationals, and there is no bounded function $g: \mathbb{R} \to \mathbb{R}$ that is Darboux at just the rationals.

References

UNIVERSITY OF ALABAMA
University, Alabama

Accepté par la Réduction le 14. 3. 1974