Core structures for theories *
by
David W. Kueker (College Park, Maryland)

Abstract. A core structure for a theory 7' is a structure which is isomorphic to
exactly one substructure of each model of 7. Our basic result is a definability charac-
terization of such structures, which implies A. Robinson’s result on defining the elements
of & core model of a strongly convex theory. A further application is a characterization
of the sentences axiomatizing convex theories. Intersections of models and their connec-
tions with cove structures are also investigated.

This paper is mainly concerned with structures that are isomorphic
to exactly one substructure of every model of a theory 7. Such structures,
which we call core structures for T, are generalizations of core models
of strongly convex theories. The basic result of this paper is Theorem 2.1,
which gives a definability characterization of such structures. As an easy
corollary we obtain A. Robinson’s result on defining the elements of a core
model of a strongly convex theory. We also derive other properties of
core structures. In Section three we apply Theorem 2.1 to obtain a sort
of preservation theorem characterizing the sentences and sets of sentences
which define convex theories. Section four concerns intersections of the
models of a theory and, in particular, their connection with core structures.

 Further generalizations are given in section five. )

1. Preliminaries. In this paper we consider a first-order finitary
predieate logic I with identity, which we allow to have any number of
non-logical symbols. Structures for L are denoted by 9, B, and ¢, and
their universes will be 4, B, and ¢ respectively. If ag, ..., an are elements
of A then (%, aqy ., @s) I8 a structure for the language formed by adding
n-+1 new individual constants to L.
* Research partially supported by the National Science Foundation under grant
NSI' GP 20208.
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The cardinality of a set & will be denoted by |X|. By convention,
|Z] is the cardinality of the set of formulas of L. Therefore every structure

" has some elementary submodel % with |A| - [T,

We write the formula ¢ as ¢(#,, ..., @) in order to indicato that P

has at most the variables @,, ..., #, free. Such a sequence of variables is
sometimes abbreviated as # to save space, and we will uge OXPressions
like 3¢(%,y). \/ @i and A @i ave abbreviations for gV..Ve, and

1<i<n 1=<isn
@A Agn Tespectively. In addition, for a set @ of formulas, A® and \/ @
are the possibly infinite conjunction and disjunction of all the formulag
in @. If @ = {p;: i ¢ I} these will also be written as /\t o andl 1\4 I
¥ €
and 3>"zp are abbreviations for formulas saying “at most n @’y sadisly ¢
and “at least n o’s satisfy ¢”. 3="pp iy I>wp A I, and <o iy

new
some n. We similarly use 3=y, ..., ym)> @ to mean “exactly » sequencos
Yiy oney Ymy sabisfy @,

A formula is existential if it is IZa for some quantifier-frec a, universal
it it i3 V@ for some quantifier-free o, and V3 if it is V&a for some ex-
istential «. Notice that if ¢ i3 existential then “rp is universal and

Iz is existential. We therefore have the following

Levwa 1.1, Assume that W C B and that both X and B are models of

3~"0p where ¢(x) is ewistential. Then ‘
_ {ocd: Ukolall = {beB: Bk olb]}.

We will at times require structures with special properties and deal
with theories satisfying certain model-theoretic conditions. In the remain-
der of this section we define the properties we will use and state some
elementary facts concerning them. For more information see [2] and [9].

We write A3V to mean that BV satisties every existential sentence

- true on A. Th(E), the complete theory of €, is the set of all sentences
true on . ‘

DErINITION. U is sufficiently saturated it wh‘en.uvcsr |B| = L] and
iB, byy wey bu) AU, agy woy @) then B can bo isomorphically embeddoed
(n U by & map % such that B(bg) = ay for all § == 0, ey it

Levma 1.2, Bvery structure has a sufficiently saturated clementary
BLLENSTON.,

DeriNmrion. % is a wniversal model of I'it A s a model of T and
every model of T' whose universe has cardinality at most |I) can be em-
bedded in 7.

DeriNrTioN. T satisfies joint embedding if for any two models of T

there is some third model of 7 in which the first two can both be iso-
morphically embedded.

\/ 3="zp. Notice that by compactness, if 7 F 3<% rp then Tk 3<% for .

icm°®
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Lemva 1.3, 1" satisfies joint embedding if and only if it has a universal
model.. ’

is complete for emistential sentences if for any existential
TEoor TE e, )

" DERINTIION, T
gentence ¢ either

A theory that iy complete for existential sentences satisfies joint
embedding, but not conversely, :

Finally, there is the following important concept due to A. Robinson
(see 19, p. 80).

Duprvanaon. ' is conve if for any model 9 of T and any collection
1B i e T} of substructures of 9 which are models of T, the intersection

M By v w model of 7, provided it i non-empty. If in addition such an
tel

interseetion is never empty, then 7' is called strongly conves.

Convex theories ave those with the following important algebraic
property: every non-empty subset of a model of T generates a unique
substrueture which is a model of T (namely the intersection of all models
of T' contained in the given model which contain, the set). If T is strongly
convex then fhe intersection of all models of 7' contained in a given model
of T is also w model of 7. This intersection is called a core model of T
(since every model of 7' containg a core model, and a core model does
not properly contain any models of 7). :

T8 77 satisfies joint embedding in addition to being strongly convex,
then the core model of T is unique up to isomorphism. It then has the
property (see the proof of Corollary 2.2) that it is isomorphic to exactly
one substructure of every model of 7, and it is uniquely determined as
the largest structure with this property. It is this aspect of the core model
which we generalizo in the next section.

2. Core structyres. The following notion of core structure is intended
o generalize onoe agpeet of the core model of a strongly convex theory.

DrNrrion, € is o core structure for T it € is isomorphie to exactly
one substrueture of every model of 7.

Notice ospocially that w core structure for 7' need not be a model
of 1, and that the wame theory (even if complete) may have many dif-
ferent non-womorphic: core structures. A corve structure for T is one that
can he picked ont uniquely inside every model of 7, and thus at least
informally s definable within every model of 7. The following result
precisely  eharacherizes the core strucbures as those whose clements are
definable in o particular fashion.

Trworus 2.1, For any T the following conditions are equivalent:
(1) € is a core structwre for T,
b - Fundamenta Mathematicae, T, LXXXIX
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(2) ® is a model of every umiversal sentemce consistent with T, and
there are existential formulas gi(z) and ki e w, for i eI, such that

G, TEI " pp for all iel,
and

CEVa\ o

iel
Proof. We first show that (2) implies (1). Let 8 be a model of 7
and let 9 be a sufficiently saturated elementary extension of 8. Thoen. (2)
implies that |C]< |L| and (SHQ[, hence € o € for somo ' CUA. Now,

={ceC: Q& F\ pfe]}
tel

where the g; are existential formulas sueh that €, 2%, and B are models

of 3=k pp,. By Lemma 1.1, therefore,

={aed: Uk \/ plal} = {beB: BF \/ pb]}.
el tel

Hence €' C B and is in fact uniquely determined. Therefore © is a core -

structure for 7.

To show that (1) implies (2), let € be a core structure for 7. Thaen § is
a model of every universal sentence consistent with 7' since it can be
embedded in every model of T. Also, |C| = |L] since T hag models of
cardinality at most |L|. We will be finished if we can find, for every ¢, e O,
an existential formula @y (x) and an integer &, such thatb

CEple] and €, T kI, .

8o, let ¢y 0 and let @ be the set of all existential formulas ¢ ()
satisfied by ¢, in €. We first show the following:

(i) If A is a model of T containing € and @ e 4 satisfics ever y [m-
mula of @, then a e ¢ and € F ¢la] for all g e®.

We may assume U iy sufficiently saturated. Xf « sabistios overy
¢(@) e ®, then (T, )3 (A,a) and so there is an isomorphism h of G
into U such that A () = a. Since € is a core structure for T, b is actually
an automorphism of © and thus a e C.

Using (i) we next show

(i) TEI<°z A\ ©.

If this were false then by compactness we could find a wodel of 7'
containing € which also contained more than |[Z] eloments satistying
every formula of @. This contradicts the assertion in (1) that overy such
element belongs to (. .

Tt follows that € F3<“w A @ too. Let k, be the integer such that
CEA~bg A @,
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Then by (i) every model of I' containing € also has exactly k, elements
satisfying every formula of @, so we have

(iii) 7'k 3=t A ©.

Finally, by compactness we can find a finite @, C P such that
TE3%Me A @y, Let g, be N Dy. Then

F Vm(/\ D —q) ,

80 by (i) we in fact have 7'k 3=%pp, and © F 3=k ggp,. Hence this ¢, is
an desived. (Notice that for this argument to work we cannot apply com-
pactness after (i) but need to waib until we know (iii)).

The following corollary shows the precise relation between this
notion. of core structure and core models of strongly convex theories.

COROLLARY 2.2. © is a core structure for some theory T if and only if
it 48 a core model of some strongly convex theory T,.

Proof. Tirst, assume 7y is strongly convex and that € is a core model
of Ty, Liet I be Ty together with all the existential sentences true on €.
Let % be any model of T and %, a sufficiently saturated clementary
extension of . Then €3I, hence € =~ €, for some €, CY,. Since no
proper substructure of € is a model of T, we must have

G = {B: BCY, and B T}.

In particular € CA. It € is isomorphic to some other G, CA then the
game argument shows that € = €,. Therefore € is a core structure for 7.

Yor the other direction, let € be a core structure for T, and let T,
be the theory of all the existential and universal sentences true on @.
Oondition (2) of Theorem. 2.1 still holds for € and T, so €is a core structure
for T,. Liet 9 be any model of T,. € is isomorphic to exactly one €' C A
and can also be embedded in every other model of T,, hence

C=MN{B: BCA and B F Ty} .

Tt follows that T, is strongly convex and that € is a core model of T,
ay claimed,

Notice that we have shown that if T' is strongly convex and has
exuetly one core model (in particular if 7' satisties joint embedding),
then this core model i8 also a core structure for T.

‘Wao ean. therefore apply Theorem 2.1 to core models of strongly
convex theories and obtain the following result of Robinson.

COROLLARY 2.3 ([9] Theorem 6.4.1). Let € be a core model of a strongly
conver theory T. Then there are existential formulas gi(m), for i e I, such that

TE3<%p; for all iel,
and

CF Vo \/tpi .
el .
B
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Proof. Let T' be T together with all existential sentences frue on €.
The proof of Corollary 2.2 shows that € is a core structure for 1. Let
¢, € C. Then there is, by Theorem 2.1, an existential formula py(2) and an
integer %, such that € F ylc] and 1"k =" pp,. By compactnoess there
is an existential sentence ¢ true on € such that

Tk o—T Fopy, .

Therefore oAy, i equivalent to some existential gi(a) such that €k gfe,]
and

Tk Ay —»3"my, ,

in particular Tk 3<“zgp,.

Other examples of core structures are given by models rigidly embedd-
able in all models of 7. Recall that € is rigidly embeddable in A if there
is’exactly one isomorphism of € into U. It is then clear that € is vigidly
embeddable in every model of T if and only if € is a core structure for T
and has no proper automorphisms. We therefore immediately obtain the
following result of Kreisel.

COROLLARY 2.4. ([4]). © is rigidly embeddable in every model of T if
and only if condition (2) of Theorem 2.1 holds with ky==1 for all 1 ¢I.

It should be remarked that, if there is any core structure for 7, then
there is a unique mawimal core structure for T (that is, a core structure
in which every other core structure for 7' can be embedded), namely the
union of all the core structures contained in some model of 7. If 1" is
strongly convex and satisfies joint embedding then the core model of 7' is
the maximal core structure.

Structures which are core structures for some 7' have a number of
interesting properties which follow from Theorem 2.1. We colleet them
together in the next theorem. Notice that by Theorem 2.1 if € is a core
structure for some 7' then it is & core structure for Th(E).

THEOREM 2.5. Let € be a core structurve for some theory. Then the follow-
ing hold. :

(a) © can be embedded in any model of all the emistential and wniversal
sentences true on G. .

(b) © completes Th(C) (that is, if CCA and € A then €-N).

(c) € s a prime model of Th(GE).

() If €CA and AIC then for every cwistential formada gy, .., )
and every Gy, ...,y € 0,

Ckpleyy ooy €l

if and only if Wk pleg, .., ] .

(e) € is prehomogeneous (as defined in [3]).

icm°®
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(fy € is Ty-generic (in the sense of finite forcing) and T} = Th(G)
for any consistent theory Ty contaiming oll the universal and emistential
sentences true on €.

Proof. (a) This was shown in the course of proving Corollary 2.2.

() Lot €CA and € == A There is an elementary extension B of A
such that € = € for some € < . Since € is a core structure for Th(C)
we must hawve €e= €, and hence € <. :

() This is immediate from (a) and (b).

() Hor every ¢ e ¢ the existontial formula v (), given by Theorem 2.1,
which defines ¢ 18 sueh that €k ple] and whenever 6(x) is existential
and €k Je@pal) then € FVa(p—0). It follows that for ¢y, ...,¢.eC
there is an existential formula (@, ..., 4,) such that € k p[¢] and whenever
litgy cory ) 8 oxisbential and € F 33 (Ag), then Tk VE (p—gp). So as-
sumo that Uk gley, ..., ¢a) and ¢ is existential. Then U k 3% (p @), and
80 © 34 (p Ap) by hypothesis. Therefore € k V& (w —¢), so in particular
CFoley oy tnl

(e) Tt iy sufficient to show that given e, ..., cn e ¢ there is an ex-
istentind formula (@, .., #,) such that €Fwle, ..., ] and whenever
G Fplel, o,y ] there is an automorphism h of € such that h(e:) = ¢,
for 4= 1, vyt The formula 9 used in (d) is easily seen to have this
property.

) By (b), € completes Th(E). Hence by Corollary 4.10 of [1],
(Th(C)) - Th(E), and by Theorem 3.4 of [1] € is Th(C)-generic. By
Corollary .3(1) of [1], T} = (Th(C)) and so € is also T, generic.

Tt G i the maximal core structure for T, there in general need not
he any model A of I' such that

C=N{V: BCA and Bk T}.

Tquivalently, for many theories 7' there is no model % of T such that
N A{B: VA and Bk T} is cither empty or a core structure for 7. An
example i.”;k‘gi\l(‘,l‘l, in section four. Conditions under which a core structure
iy given, by such an intersection are given in Theorem 4.3 and Corollary 4.4.

We close this seetion with several examples coneérning core structures.

‘(,l) Tob 4 be the theory of algebraieally eclosed fields of character-
istie 0 (in the language -, +, 0,1,). Then T is complete and strongly
convex. Let € e the field of (real) rationals and @, the field of (comp}eg)
algebraie numbers, Then € and € are hoth core struetures f?r‘ T. '&ﬂ ts
the largest struebure rigidly embeddable in every model of 1 (Kre‘mel 8
“hard core”), and € is the maximal core structure for T, the core model
of 1. . ' . ]

(2) Theorem 2.5 (1) cannob he improved, since there is a core
streture € whieh cannot be embedded in every ‘)I such that €3 A. Let
€ e gy N, 0 whero & is the relation of immediate successor, that is,
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8(m, n) holds if and only if m--1 = n. € is casily scen to be u core strueture
for Th(C). Let A be <4, 8, (0,0)> where

A= {(i,]): 1,j e and 4 < §}
and 8'((¢,4), (i',§") holds if and only if i--1=14' and cither gt or
j= 0. Then in ¥ there are chaing under 8" of every finite length starting
at (0, 0), but none of infinite length. It follows that € cannot he embedded
in 9, but every finite substructure of € can be embedded in 9, henco G,
(Notice that U is not a core structure for Th(9f).)

(3) We have shown that if € is a core structure for some theory,
then € can be embedded in every model of all the universal and existontial
sentences true on €, and whenever ¢, C € and €3G, then € == §,. These
conditions, however, are not sufficient to imply that € is a core structure.
For example, let € be <Z, §, P> where Z is the set of all (negative and
non-negative) integers, §(¢)=i+41, and P(i)=i—1 for all i¢Z. & is
casily seen to satisfy the stated conditions, but it is not & core structure
for any theory.

3. Axiomatizing convex theories. A. Robinson showod (see [97], Theo-
rem 3.5.1) that if T is a convex theory then T ecan be axiomatized by
a set 2 of Y3 sentences. The converse to thig certainly fails ginee there
are V3 sentences which do not define a convex theory. The question
remained, therefore, of precisely which V3 sentences and sots of Vi
sentences define convex theories. Rabin [8] gave an involved charactoer-
ization of such sentences and sets of sentencos. In thiy seetion we use
Theorem 2.1 to give a very different characterization, which is more like
one announced by Rabin [7] but never published. We will utilise Robin-
son’s results in restricting our attention to V3 sentences.

_ DEFINITION. Let o be an V3 sentence, say V#3Iy, ... yna where
a(®, Y1, v, Ym) I8 quantifier-free. Then a convexization of o ix any son-
tence o° of the form '

Y& \/ 0,0 N\ Yi[0;-3"
1

<iein 1< ism

Yy ey Y (i he) ]

where 6;(z) is universal, (%, ) is existential, and &y is a positive integoer,
for i=1,..,x.

Thus, o° says the following: for any # one of n cases holds
determu‘xed by a universal formula); if the ith case holds, then theve are
exgct]y Ty m-tuples Y1y o5 Ymy satisfying o and an additional condition
(given by an existential formula). The following' lemma gives some easy
properties of convexizations.

LEMMA 3.1. Let o be an V3 sentence and o°
Then the following hold.

(each case

some conveaization of o.
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(a) koo,
(b) If Wy Buk o® and BiCA for all i eI, then (| Bik o, unless the

iel
antersection s emply.

(¢) If Fo—r0° then o defines o convew theory.
Proof. We show (b), from which (a) and (e) follow. Assume that

M Beis non-eropty and lob ¥ be in the intersection. Tn 90, b satisfies some 6;,
il i . -, . . i
henee the same 0y is satistied by b in every By since 0y is universal. There-

fore, in A and svery By theve are exactly &y tuples <ay, ..., an> satisty-
ing yyAa with §. It follows that exactly the same such tuples belong to
every By, sinee gy i existential, and therefore they belong to the inter-
gection. Ilence there is some <ay, ..., ap)> in the intersection satisfying o
with 5. Therefore () By k o, ag desired.

Our theorem ,‘_’,:ﬂl'fvl(\ﬂ ossentially the converse to part (¢) of Lemma 3.1.

TurorEMm 3.2, (o) If T 4s finitely awviomatizable then T is convex if
and only 4f T con be amiomatized by some VI sentence o such that k o+ o°
for some converization o° of o. ' ‘

() 1" is conver if and only if T can be awiomatized by a set X of V4
sentences such that X iy equivalent to some set X° of convewizations of all
the sentences in X

Proof. The casy directions, showing the conditions are spﬁic?ent
for ' to be convex, follow from Lemuma 3.1. For the other directions
we assume T s convex and show that if o is an V3 consequence of T then
there is some convexization of of o such that T k o°. Since T is equivalent
to the set of its V3 consequences this yields the desired reslults. -

Lot Tk o where o is Y 3y, ... yma where a{@, ¥y, -, 'y'm) is quantifier-
free (we assume some variable is universally qw_uzmtified in o). Lfat A b(i
o model of 7' and let & bo in A. We will find a universal 0 (2), an existentia
% (@, 41y ey Ym)y a0l & positive k such that

Wk o[atr and Tk VE0-T7Yy o ymd> (1 A)]
Teb ¢ Do n sequencoe of new constants and consider the theory
1% {0(F): 0() is universal and 9k 0[a]} .

T

11 DN b T wf URY X 3 aJS
Thon 7™ satistion joint embedding and is strongly convex f]é[;élee 1(15;[ -
N ' i A i 0 [ ho o <11bat ot 0 — a).
a core modol € which we may take to be a substrueturctoh y
Thus € - (€, @) for some model € of T, and we must have

C* EJyy e a?/‘ma(ay Yug wes Ym) -

) .
] ) is a core

Ttk by, ooy by € € be such that C*F u[a,bl,};.., bm)- Sl?st?en(zial Sformula,s

; \ heorem. 2.1 implies there are exigte

strueture for 7%, Theorem 2.1 implies that there )
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2l@y Y1)y wery g, 4m) of T and positive integers ji, ..., jm such that
CF A xld,b] and T*F A 3y (é, i) .

1<is<m 1<ism
Liet (&, 9y, -y ym) De /. g and let & be the number of m-tuples satisfy-
’ =<i<m .
ing a(é,4)Ax(é,y) in €* Precisely the same m-tuples satisty oAy in *
and in €, because precisely the same elements satisfy yi in AN* and in €
for each ¢ (by Lemma 1.1). Therefore there are exactly k such m-tuples
in every model of T* (since every universal sentence true of 9 is o con-
sequence of 7™), that is

Tk Hak'\/(’/l; vy ?/m}[%(v.é: ‘.77)/\“(67 "7)1 .

Applying ' compactness to this we get some universal 0(F) such that
0(€) e T, that is '

Wk o[@] and TEVE[0(F) 35y, ooy Yl (2Aa)]

Thus, these 6, y, and k are precisely as desired.

Now we repeat this argument for all @ in every model 91 of 7, and
obtain fy z, xo, z and kyz with the above properties. It follows that in.
every model of 7' every tuple satisfies some Oy 5, 80 by compactness theve
‘are a finite number of them — say 0y, ..., 0, — such that

TEVEOV..Vl).

If 1y ooy and Ky, ..., &y are the corresponding »’s and &, then we have

TEVE N\ Gn N\ YE[0i—TMy, oy ymd (xAa)] .
1<i€n 1<i<n
That is, T F ¢°, as desired. ‘

The main point in the above argument is that Theorem 2.1 tells us
exactly how the elements of the core model of & strongly convex theory
satisfying joint embedding are defined. This information in fact yields
the following characterization of convex theovies, *

CororrLAry 3.3. T ds connew if and only if for every model N of 1 and
every non-empty X C A4,

9% P DLAL XV E T,

where Dy (U, X) ds the set of all we A such thal Jor some ewistentinl
P(@1y vy Bny y)y sOME K€ w0, and some by, ., by e Xy Wk o[B, o] and when-
ever B C 9{ 18 a model of T containing X, then in R cwactly T elemenls b’
satisfy @[b,b']; and W [ Y is the substructure of W whose wniverse 4y Y.

Notice that in Theorem 3.2 (b) we only assert that X and X are eyui-
yalent as sets of sentences; we do not assert that for every o e & thore
is some o° e X7 such that ko« o This iy in general false, ay iy shown

©
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by Rabin’s examyple in [8] of & convex theory which cannot be axiomatized

by any set X of sentences such that each o ¢ X also defines a convex
theory. .

4. Intersections of models. As was remarked in section two, there
need be no model A of a theory T such that

N {B: BCA and Bk T}

8 o core structure for 7', In this section we consider such intersections,

motivated by the hope that, at least for universal models 2, such inter-
sections behave analogous to core gtructures. The notion we investigate,
Ip(), defined below, agrees with the above intersection on universal
models, Theorem 4.2 is a definability result for I(¥) analogous to Theo-
rem 2.1 and also has Robinson’s result, Corollary 2.3, as an immediate
congequence. 'We use Theorem 4.2 in proving Theorem 4.3, which gives
conditions under which the above intersection is a core structure for 7.
Theorem 4.2, in slightly different notation, was announced in [6].
DrriNvertonN, (a) To() is the set of all elements ¢ of 4 such that

aeM{B: BCUA and B E T}

for every model %' of 7' containing .

M) Cp() == U {C: €CY, € is a core structure fex I

Notice that Cp(2) is the universe of the maximal core structure
contained in 9. T& 27 iy strongly convex then Ix(2) is the universe of the
core model of T contained in ; if T also satisfies joint embedding then
Ip(N) == Op(N). The following lemma gives some basic properties of Ir.

TomuA 4.1, (a) Ip(@) C Iz (B) whenever AC B.

() T = T (B) whenever A < B.

() Ip@) = N {B: BCU and BF T} whenever A is a universal
maodel of 1. :

Proof, (a) Thix is clear from the definition.

() Tt will suffico to show that In(DB) C Ip(A) assuming that A { B.
Tieh ag € A Tp@0). Then a, ¢4, for some model A, of T such that A
and A, are Hoth contained in some model A of 7. We will show that Lhme’
are models B, and B’ of 7' such that B and By arve both contained in B
andl Ay v A =0 By B TE then follows that a, ¢ B,, hence ay ¢ In(T) as
dosired, Woe show the existence of such B, and B’ by a diagram argument,
ag follows. We add distinet now constants {¢}} for the elements of 4,
{3} for the elements of Ao—A4, and {¢3} for the elements of B— 4 (thus
overy clement of (B—A) n 4, corresponds to two new constants). Let
A4 be the set of all quantifier-free sentences in {eit and {j} true on UA’,
and let 4j be the set of all quantifier-free sentences in {¢j} and {e3} frue
on V. Then T'w A4 Ay s consistent since any finite subset of it is

®
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satisfiable on 2, suitably interpreting the constants {e}}; and any model .

of this set provides the desired B’ and B,. ,

(e) Let Jr(W) = M {B: BCA and B F I}. Then J(2U,) CJ(Y,) when-
ever A, and A, are models of T and A, C A, We can therefore find a model
A° of T such that |A% << |L| and Jo(U°) = J»() for every model A of T
containing %%, We claim that Jp(U°) = Ix(A°). If not, then there iy some
ay € Jp(A)— In(A), hence there are models Y and A’ of T such that A
and A° are contained in A’ and «y ¢ 4. Then a, ¢ J2(A), hence Jp(H)
G Jr(A°), contradicting the choice of A. Now, if A is & universal model
of T' it can. be assumed to contain °, and so

Ip(U0) = J (W) = Tp(¥A) CIp(A),

therefore Jo(A) = Ip(2A).

Our first theorem concerns the definability of the elements of (1)
within 9, for which we introduce the following notations.

DrrinNITIoN. (a) DZ(W) is the set of all @ e 4 such that U E pla] for
some existential formula ¢ (z) such that 7 k I<ngp.

(b) DZ(N) is the set of all @ € A such that A k pla] for some existential
formula ¢ (2) such that T F3=Fzp for some integer k.

THEOREM 4.2. For any model W of T we have

Cx(¥) C DZ(A) C Io(%A) C D) -

Proof. The first inclusion follows from Theorem 2.1, and the second
inclusion is easy, using Lemma 1.1. To show the last inelusion, let A be
a model of T and let a e Ip(2). We will show that if (%, ) 3 (B, b) then
b € In(B). By Lemma 4.1(b) we may assume that |A| < |L| and that B is
sufficiently saturated. Hence there ig an isomorphism % of U onto some
A, C B such that h(a)=b. Then b € In(Wy) C Ix(B), by Lemma 4.1(a).

Since |Iz(B)| < |L| for every model B of T, a gtandard compactness
argument yields an existential formula ¢(z) such that 9% E plal and
T k 3=z, which completes the proof of the theorer.

Corollary. 2.3 is an immediate consequence of this theorem. To seo
this, notice that if € is a core model of g strongly convex theory 7, then
€ =Ip(C) = DZ(C), by this theorem.

We can also apply Theorem 4.2 to obtain condifions under which
the maximal core structure of 7 is an intersection of models of 1.

THEOREM 4.3. Assume that T satisfies joini embedding, and let N be
a universal model of T and

C=N{V: BCA and Bk T}.

If Tis consistent with the set of all universal sentences true on G, then € s
a core structure for T.
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Proof. We first assmme that 7 is complete for existential sentences.
Then, by Lemma 4.1, 0 = Ix(%) and To(3) = DE(A) by Theorem 4.2,
since D7) = DEA) for any T complete for existential sentences. Hence,
if ¢ € ¢ then A k p[c] for some existential formula @(2) such that 7'k 3~*pg
for some ke w. By the hypothesis on €, CEI*zp and so CFole]
Therefore condition (2) of Theorem 2.1 is satisfied and ¢ is a core
structure for 7.

For the general cage, let T, be T together with all the universal
sentences true on €. Then T, is complete for existential sentences. We
may assume that % contains some universal model Wy of Ty. Let

@O=m{§B:%EQ’IO %FT(J}.

Then € C G, and €, is a core structure for T, by what has already been
proved. By the assumption on € and the definition of Ty, € iz a model
of all the existential and universal sentences true on G,. Hence by Theo-
rem 2.5 (a), € can be embedded in €, and 5o € = G,. Therefore § is a core
structure for T.

€ can be embedded in every model of T, so to show it is a core
strueture for 7' it will suffice to show that if € ~ ¢ and G’ C 9, then
€ == €. We will show that, given such a G, there is some model A’ of T
containing 9 and some model g of T, such that € C 917 C ', Since € will
still he contained in every model of 7 contained in A’, we will also have
€ C Ay, and therefore € = ¢ since € is a core structure for T,.

Let L' be L together with a new individual constant e, for every
¢ e (!, and let k be the isomorphism of € onto G’. Let 4, be the set of all
existential sentences true on 2, when e, is interpreted as ¢ for every c,
and let 4, be the set of all existential sentences true on 9 when e, is inter-
preted as h(e) for every e. Models % and 9’ as desired are easily shown
to exist, by a diagram argument, provided A, u 4, w T is consistent.
And this set iy consistent sinee any o e 4, is in fact true on € with e, inter-
preted by e by Theorem 2.5(d), hence is true on €' with e, interpreted
Iyy h(e), therefore also tre on 9 since ¢ is existential, and thus o e 4,.
Therefore Ay o Ay o T = A, 0 T s satistied on 9.

COROTLLARY 4.4, Assume that T satisfies joint embedding and let G be
w core siructure for T If 1 is consistent with the set of all universal sentences
e on ©, then

and

C= N {B: BCUA and Bk T}

whenever W 48 a undversal model of T containing G.

Proof. Let € = N {B: BCA and B £ T}. Then €C E,, hence 7' is
consistent with the st of all universal sentences true on’ €;, and there-
fore €, is @ core structure for 7 by Theorem 4.3. Also, €, 3C so €, can
be embedded in € by Theorem 2.5(a), and so ¢ = ¢, as desired.
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In the reinainder of this section we continue our investigation of
Ip(2). ’

Even asswming that T satisfies joint embedding, Theorem 4.2 cannot
be improved to more precisely determine Ir(2). Part of the problem,
as the following example shows, is that Ip(2) is not independent of the
choice of 9. .

Exampre. There is a theory T, satisfying joint embedding, with
models % and B such that YC B and ¢

In(¥) = D) = DI(B) G In(V) .

‘We consider the langnage with a binary predicate
the theory given by the following:

and let 7' be

VaVyVe(z < yry < z-a < z),
Vm( T < @),
aVyVeln #yre #2->Tle <y Ty <zA(y < avy=eave< y)],
k ‘ Cdz3yw £y

Then every model of 7' consists of a chain linearly ordered by < and one
additional element which is not <C-related to anything, Let % be any
model of T with more than two elements. Then In(B) consists solely of
the unique element which is not <-related to anything, Let 2% be a two
element model of 7' contained in . Then in 9 neither of the clament
is' <<-velated to anything, and therefore % can be extended to models
of T' in which cither element belongs to the chain, and thus Ip(U) = 0:
Notice that this example also shows that in general there is no model 9’
of T' containing 9 sueh that

Ip(@) = M {B: BCA and B & T} .

If 7" is the theory T together with the sentence I (e == ), then
Ip(¥U) = DPW) # 0 and Cp(A) = 0 for every model % of 7", and there-
fore Ip(%) is never the universe of a core structure for 7.

One might expect that if Tp(91) is independent, of the choice of %,
that is if 7' satisties joint embedding and Tp(A) == Ip(B) whenever A
and B are models of 7' with % C W, then Ip(2) == DFA) for every model
A of T. This is false, however, as more complicatoed examples could he
devised to show.

It is true, as vemarked in the proof of Theoren. 4.3, that Ip(A)
= D) for every model % of & theory 7' which is complete for existential
sentences. The following theorem gives another condition®under which
Ip() is definable in this fashion. Reeall that 7' has the amalgamation
property it whenever B, B,, and € are models of 7 such that CC
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and €C 9B,, then there is some model % of T with LB, CA and an
isomorphism h of B, into U such that h(c) = ¢ for all ¢ e C.

THEOREM 4.8. In(%) = DEA) for every model A of T if T satisfies
joint embedding and amalgamation.

Proof. Let B be a universal sufficiently saturated model of T. We
will show that Ip(8)= D7(B), which will imply the result because of
Theorem 4.1. We first show

(1) Let A be a model of T, a ¢ 4, and let @ (x) be an existential for-

“mula such that 9 k @le] and whenever BF ¢[b] then (U, a)3(B,d). Let

p(w) be existential and assume that Jz(pay) and A7z (pAyp) are true
on . Then Bk Va(p —»yp).

Assume, on the contrary, that thereisa b « B such that B F (pA ) [B].
Then (A, ) 3(B, b) and so (since we may assume [4| < [L]) there is an
isomorphism kb of 9 into B such that b (@) = b. By amalgamation one can
find some model B’ of 7' containing B such that B’k w[b]. Therefore B’
containg more elements satisfying Ay than B does, contradicting the
universality of 8.

Now, choose models %; of 7' contained in. B, for i I, such that any
universal sentence consistent with T i3 true on some ;. Let ¢ e I(DB).
An casy amalgamation argument shows

(2) There are exigtential formulas gi(x), for 4 < I, such that A, E gdcl,
B E T g, and if B Fefb] then (s, ¢)I(B, b).

By (1), therefore, B k Ya(pi+s ;) for all 4,5 e I. So let % ¢ » be such
that B F 3""zp;. Now it may be true that U; F I<"wp;, but in this case
any ¢, satistying ¢; in 8 but not in %, must satisty some @] in A; with the
properties in (2) for ¢p. Then Bk Va(pier ;v e]). Repeating this as long
a8 NCCESSATy we see,

(3) There are existential formulas 64(x), ¢ € I, such that B F Va (g« 0;)
and W F A="x0; for all ie I

By compactness we find a finite number of 0;, say 8,, ..., 0, such that

T E3="0, v ... v3A=" 20y .
\/ (0:737™205), and see that Bk y[c] and T E 3=y,

RE Lt

which complotes the proof.

Finally we letip be

5. Strong substructures. In this section we indicate how the preceding
resulls can be goeneralized to apply to stronger concepts of substructure.
Throughout the section, I' is some set of formulas containing all atomic
formulasy.

DureNeeton. % s a I-substructure of B, written A C, B, if and
only if A CB and for every p(xy, ..., @) in I' and every a, ..., ap in A,

WEglay, v, ae] if and only it B Eele, ., an].
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DerpiNITION. 3(I') consists of all formulas of the form
2y .. A2k (2, Try vy Tn)

where ¢ is a Dboolean combination of formulas in I

Let Iy be the set of all atomic formulas and I'y be the set of all for-
mulas. Then A Cp B if and only if AC Y, and AC, B if and only if
A < V. A(I}) is the set of all existential formulas and I (1Y) = I',. More
generally, 3(IIh) = 25, ,.

THEOREM b.1. For any T the following are equivalent:

(1) © s isomorphic to ewactly one I'-substructure of every model of 1.

(2) Every sentence in A(I') true on © is a consequence of 1, and there
are formulas gi(x) in I(I) and ke o, for i eI, such that

€, TEIAMzp; for all iel,
amd ‘
el

Theorem 5.1 is a generalization of Theorem. 2.1 and could be proved
in the same manner. More efficiently, it ean be derived from Theorem 2.1,
by treating each formula in I" ag a new atomic formula in an expanded
language. The details are left to the reader.

For I'= I, we obtain the following

CoROLLARY 5.2. Let T be a complete theory and let © be a model of T.
Then the following are equivalent:

(1) €isisomorphicto exactly one elementary submodel of every model of T.

(2) There are formulas oix), for i eI, such that

TEIzp;  for all iel,
and
CkEVae\ .
o del

(8) &= N{B: BIJU} for every elementary emtension A of @,

This corollary could also be proved from results in [6] (ef. Loemma 5.1
and Theorem 5.2 there). One should notice that condition (1) i8 wtrongor
than just requiring that € is a prime model of 7' and has no proper ale-
‘mentary submodels. .

Versions of most of the other results in this paper can. also bo given,
for I'-substructures. For example, Theorem 8.2 for I's== I Y} becomes
& theorem of Park characterizing theories such that the intersection. of
any family of elementary submodels of a model of the theory is again
an elementary submodel ([5], Theorem 5.8). Again, we leave to the reader
the details of statement and derivation of the I - versions from the results
of this paper. !

(1

{2}
(3l

[4]
(5]
16l
L7]
(8]
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