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On some functional equations with
a restricted domain
by

Roman Ger (Katowice)

Abstract. Tho functional equations considered are of the form (1) and (2) )
where f, g, b map ap. sbolian group & into the other abelian group H. We assun‘xe thfaxi
validity for almost all (x,y) « X @ and investigate the que‘st.lon whether yhew exis
fanctions I, , H almost equal to f, g, b respectively and ‘Eul‘fxlhng our equat}ons overy-
where. The notion. “almost all” (“almost everywhere”) has been introduced in an axio-
matic way.

§ 1. Recently there has been an incrgased i;n‘nerest“ in functional
equations and inequalities whose validity is po-stulateq almost every-
where” (abbreviated to a.e. in the sequel). This a.e. is unde.rstoodlm
various wans (see for instance [8], [7], [9], [8] and [6]). We shall be in-
terested here in two functional equations,

(1) Ty (f (@)~ Fl)—f(y) =0  (of Mikusitski)
and ,
) S(@-ly) == g(@)+-h(y)  (of Pexider),

related to the well-known Cauchy equation (ef. [4] and [1]), assumnllzg
their w.e. validity in the sense deseribed explicf:tly below. Biou‘gl}lz spfe;;e:
ing, we are going to answer the following qstpmn: (100513]10-1'(1 cmz gesu(l)
tion B (or: do theve exist functions Iy, By, Fy) suchl tha't. i ;a ig e

{or: they satisfy (2)) overywhere and f=F a.e. (or: f=F, g= I,

with Cauchy’s funetional equation. l’osi.tivgly golved by N. G. de Bl;;il]];t[gé
and independently by W. B. Jurkat [8], this problexp was then uge rge e
by M. Kuczma [9] in connection with eonivex fUI?.C.thnS and Py ep:
author for polynomial functions (also with positive answers).
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On account of these results we may also expect a positive answer
to our question. The aim of the present paper is to show that this is really
the- case.

§ 2. We shall restrict our attention to the notion of a set-ideal in
a group and some related questions in order to achieve greater clarity

of statements in further sections. Indeed, suppose that we are given

& nonempty family J of subsets of a group @ () such that
(i) A, BeJ implies 4 v BeJ;

(i) A.ed, BC A implies B ¢ J;

(iii) & ¢ J; ‘

(iv) A+ao:= {a+ay: aecd} ag well a8 —4 1= {—a: a4} belong
t0 J whenever 4 ¢J and ay e G. ‘

Then J is called a proper linearly invariant (shortly: p.Li.) ideal in @,
The word “proper” refers here to (iii) and “linearly invariant” to (iv)
(compare [10] and [6]).

A property T(x), # e @, is said to hold (a.e.)y iff there exists a set
U €3 such that §(») is satisfied for all w e G\T.

Let two p.Li. ideals J, and J, in @ and G® ;= GX @, respectively, be
given. We say that 3, and J, are conjugate iff for every M e J, there exists
a set U eJ; such that the set

3) Vo(M) 1= {y € G: (z,y) e M}
belongs to 3, whenever ¢ U.

As an instance, the family of all sets with Lebesgue measure zero
(or with a finite outer Lebesgue measure) and also the collection of all
first category Baire sets on the real line are p.Li. ideals which are conjugate
with their analogues on the real plane. Likewise, if ¢ is an arbitrary group
of infinite order, then the family of all its finite subscts yields a p.li.
ideal which iy conjugate with the one in G

Let two subsets P and @ of a group ¢ and a p.Li. ideal J in & be

given. We say that P and @ are congruent (modd) iff both QNP and PNQ
belong to J (cf, also [10]). Then we write

(4) P =Q (modd)
and

P =£Q (modd)

whenever (4) does not hold. In the sequel we ghall leave out the gymbol

(mod3d) provided that J will be regarded as fixed. Obviously the con-

gruence (modd) yields an equivalence relation in 2¢. ’
We omit the simple proof of the following

(*) ALl the groups occurring in this paper will he written additively.

icm°®

On some functional equations with o restricted domain 133

LrMmMmA 1. Let 3 denote a p.li. ideal in Q. Then the families
@) :={MCG: \/ UC(UxH) v (Gx U)}
Ued :

and

Q@) :i={MCG: \/ A VofM)e3},
Ued se\U

where V(M) is defined by (3), yield p.li. ideals in G2, both conjugate with J.

Coronuary 1. The p.li. ideal Q(3) is the greatest one (in the sense of
inclusion) in the family of all p.li. ideals in G2 which are conjugate with 3.

CorROLLARY 2. Bvery p.l.. ideal in G* which is conjugate with 3 may
be supplied to L(7).

Lmmma 2. Let 3 denote ¢ p.la. ideal in o group G. Then, for every U 3,
the set

L:={(w,y) e G oty e U}

belongs to £(3).

Proof. Otherwise, for every § in J one can find an a; ¢ G\S such that

ViolL) = {y € G: (25, y) e L} ¢3 .

On the other hand,

»

{YeG: (@,y) el ={yeG: mtyel}=TU—-ued,
which ig a contradiction.

LimmmA 3. Let two subsets P and @ of a group G and a p.li. ideal 3 in G
be given such that

(6) P =@ (modd)
whereas ¢ ¢ 3. Then
P4+Q:={p+q peP, qe@}=G.

Proof. Put W == \P. Then WeJ on account of (3). Take.an
arbitrary member & of G. Since, evidently, @\z—W) # @ we may find
a ¢ e such that p == (@—q) ¢ W. Hence p ¢ P and

@ (W= g)+ = p+g e P+Q,

which was to be proved. . Nk
In the sequel we shall make use of de Bruijn’s theorem [3] which

" (with the aid of our definitions) states that:

(%) For every pair of conjugate ideals J; and_ 3, in @G and G?, respectiv-
ely, and for every function @: ¢ —H the relation
B (ut-0) = B(u)+B(v) (ae.)y, () -

() Then ¢ is called Jy-almost additive.
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implies the existence of an additive function ¥: ¢—H for which the
equality :
D (x) = ¥(z) '

iy satistied (a.e.)y. This function ¥ is unique.

§ 3. Suppose that we are given two commutative groups G and H,
@ p.Li. ideal 3 in ¢ and a function f: G—H such that the relation

(6) fle+y) £ 0  implies f(w+'y)—“~*f('m)-~|~f(:1/) (2.8 o

is satisfied. (The conditional form (6) of equation (1) enables one to avoid
an additional multiplication structure in H, see [4]). Pub

(7) Z; = {we@: f(w) = 0}.

With the use of (7) equation (6) now reads as follows:

(6a) w+y ¢z, F@+y) = f(@)+1y) (ve)qy -

The latter equation suggests an investigation of a slightly more general
functional equation in a natural way. Namely, replacing the set Z ;i (6a)
by a fixed subset @ of the group G, get

(6b) o+y4Q implies  f(z+y) = fl@)+FH) (a.c.)g

(cf. also [2]). Tt turns out that, in general, the behaviour of solutions
of (6b) depends essentially on whether the condition

{C[Q]) for all ¢« the. have @ v (@+a) # G (modd)

is satistied or not. For this reason we shall distinguish two’ cases regarding
equation (6): )

()
(®)

implies

(O[Z;f]) 3
non(A).

Our first result refers to eciua,tion (6b). Namely, we have the following

THEOREM 1. Let Q C @ satisfy (C[Q)) and lot f: G-I be a solution

of (6b). Then there emists a unique additive function ¥': G—H such that
f(%) = F(z) (a.e.)y.

Proof. There exists a set M € Q2(J) such that (6b) iy satistied for
every pair (z,y) ¢ G™\JM. By the definition of 2(3) we get the exigstence
of a set U(M) e such that V(M) defined by (3) belongs to J whenever
@ ¢ U(M). The proof is divided into two cases. ~

Case 1. 0¢ U(M). Tix an z < @ and choose w(x) from the seb
ANT (M) v (U(M)—a)). Now, evidently,

4(@)i=(Q—( (@) © (Vo ) =) OV (M) # G
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peeause of (C[Q)). Consequently, G\A(z) + 0. Pix a z¢ 4 (#). Then

(8) wtw(w)+2d¢Q .
Moreover, since ¢ Vo ye(M) and @4-2¢ 7V, (M), we have
(9) (w--w(x),2) ¢ M and (w(@), a+2) ¢ M .

Now, (8), (9) and (6b) lead to the equalities
e+t (@)-- #) = (o w(@)+5(2),
flo-w (@) +-2) = flw(@)+F(z+2),
whence we obtain
J(@+2)—[(2) = fle++w(@)—flw (@),

which says that f(z--2)—f(s) depends on # only provided e GNA ().
This enables us to define a function ¥,: @ —H by the formula

(10) Fy@) := f(z-+2)—F(2)

where 2z iy arbitrarily taken from the complement of A (z).
Note that on account of (O[Q]) the relation

(11) (@—a) v 4 (@) w Vo) & 6

is satigfied whonever » ¢ U(M). Thus, for fixed x ¢ G\U (M), we are able
to take 2 ¢ & such that

‘-2 dQ, od¢An
whenee by (6b)

and & ¢V(M),
flo-2) = f(@)+f(2) -

This compared with (10) gives
flo)=Tya) for ¢ T(M),

ie.,

(12) fl@) = i) (a..);.

Now we ave going to prove that Iy is £(J)-almost additive. Indeed,

fix o w4 and o o arbitearily from G so that w—+v ¢ — U(M) e J. Lemma 2

ensures that

(13) {(thy v) ¢ G2 u-bve—U(M)} ().

Take an ¢ from @ such that

(14) 8¢ .A(u)w (U(M)+0) v U(M)w (U (M)—u).

Then. it is possible to pub . i

w(v) t== g0 and  w{u-4v) = —(u-+0).
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Indeed,
s—0¢ U(M) v (T(M)—0)
by (14), while

—(u-+v) ¢ U(M) v (U(M)““(“-I-W))
as u+v¢—U(M) and 0¢ U(M). Now
(A (utv)—s) U A () ‘ .
=([Q Vo M) — (u+0)) © Ty M)]“é‘) V(Q@—8) (Vo M) —v) w V(M)
=(@—s)VvEH, HeJ,

which together with (G[Q]) and (14) easily implies that one is able to find
a te @ such that '

P (Q—s)u (Q——(’LL—[—’U—]—S)) U (A (u+v)—s) U 4 (v) U V(M) © (Vu+a(1l/[)—ﬂ}
:(Q“S)U(Q—(“‘f‘”"f‘s))uElr Bed,
whenee we infer that

(15) (5,00 ¢ M, s+t4Q, (uts,0+0) ¢ M, wu-ts4v4t¢Q
as well as ‘
(16)  Fy(uto) = flutvts+8)—f(s+1), Fy0) = f(v+1)—F (1)

(14) gives also

(A7) Fyu) = f(u+5)—f(s) .

Relations (15), (16) and (17 ) together with (6b) allow us to perfomﬁ the
following - calculation: '

F1(u+’v)—F1(“)—F1(”)
=f(u+0+8—l—t)—f(8+t)—f(u+8)+f(8)—f(@+i)+f(t)
= flu+ 8)Hf A1) —f(8)—F ()= F (u+8) + f (5)— f (0 O+f()=0.
Thus we have just proved that (see (13))

Fy(ut-0) = Fy(u)+Fy(v) (ane.)gey)

Sinee J and Q(J) are conjugate (Lemma 1), we may apply de Broijn's
result (x): there exists a unique additive funetion . G —H such that

T (u) = F(u) (a.e.)y.
The latter relation compared with (12) immediately leads to
fl@) = F(2) (ae.)y.

Case 2. 0 ¢ U(M). Take an arbitrary z, ¢ G\U (M) and put @ == s-|-a,
in (6b). Then we get

(19) Shy+m¢Q ‘implies
for all (s, ) ¢ M— (%0, 0) € 2(3).

(18)

JE+y+m) = f(s+a0)+F(y)

icm
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Write

(20) 9(8) i=fs+m), se@.

With the aid of (20) relation (19) assumes the form

(21) St+y+a¢Q  implies

9+y) = g(s)+g(y—=) ,
‘ (8, y) ¢ M—(z,, 0).
Now put y = t+m, in (21). Then
S+l+aeta ¢@ implies  g(s+t4az,) = g(s)+g(h),

(8,%) ¢ M—(w,, m) € 2(3),
which with the use of the definitions
(22) Qo 1= Q— (wo+1,)
may be written in the form
(23) $+i¢@Q, Implies g(s-Fi-+a)=g(s)+g(t),

' ‘ (3,1) ¢ My eQ(3).

My := M—(,, @)

Observe that
(24) Vo) = {te G (0,0) e M} e3.
In fact, Vo(Mo) = {t € G: (5, 1-+-m,) ¢ M} = {t € G- (%, t) € M}—2,, which
belongs to J because of #, ¢ U(M).

Putting s = 0 in (23), we find that
(25) 1¢Q, 9 {1+ a0) = ¢o+9(t)
for all t ¢ Vo(M,). Here we have put ¢, := g(0).

Congider the set

L= G™NUy v {(s,1) € % 51 eVo(M)}).

The congruence ,
(26) L = G (mod 2(3))
i§ then fulfilled (this can ecasily be obtained by making_use of the fact
that M, ¢ 2(3), (24) and Lemma 2). Take an arbitrary pair (%, v) from L.
Then we may apply (25) with t = w+-v as well as (23) with (s, ) = (u, v)
whence

implies

LU0 £ Q g(utv+m) = ¢+ g(u-t0),

%+ ¢ Q@ g(u+v+a0) = g(u)+g(2) .
As a consequence of (27) we find that A

w0 ¢ Q g(u+0)+ 6 = g(u)+g(v) .

implies
(27) implies

implies
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Putting

(28) h(s) :=g(8)—¢y, seb,
we infer that

W0 ¢ Qo h(u-+v) = h(u)-+h(v) .
Moreover, (22) and (C[Q]) imply (C[Q,]). TFinally, let us mnote that
L' := G"\L € 2(J) (see (26)). Thus there exists a set U(L') e J such that
for all @ e \U (L) the set {y € G: (x,y) ¢ L'} belongs to 3. Without loss
of generality we may assume that 0 ¢ U(L'). Indeed, one can eayily check
that we simply have {y e G: (0, %) e L'} = Vo(M,) e J.
Swnming up, we have shown. that
U+ ¢Qy To(40) = h(u)-h(v) (u, ) ¢ L' eR2(3),

(C[Qo]) is satisfied and 0 ¢ U(L’). Consequently, we have Case 1 for the
function h. Hence we derive the existence of a unique additive function
F: @-H such that

(29) May=F(x) (a.e.);.

By (28), (20) and (29) we get

(30) f(@) = F(x)—T (2)+ ¢, (‘d-e-y)m

Moreover, (28) and (29) imply the existence of ' set & ¢ 7 such that
(31) g () = F(x)+ ¢ ze G\,

Now take a & ¢ @y w Vy(M,) v (B—a) v I. Then (25) applied for ¢ == to
gives in view of (31)

Fty+ o)+ 6o = co+F(ty)+¢

implies

implies for

for

ie.,
F(x) = ¢,
whence the relation
» fl@) = F(a) (ae.)

follows immediately on account of (30). This completes the proof of our
agsertion.

Remark 1. Putting @ = %, in Theorem 1, we obtain the description
of the behaviour of a solution of (6) in Case (A).

Remark 2. The phrase (a.6.)q in (6b) may be replaced by (a.e.)3,
where J, denotes an arbitrarily fixed p.li. ideal in G* which is conjugatie
with J, since M €3, involves M e 2(J) (cf. Corollary 2).

THEOREM 2. Suppose that we are given two abelian groups G and H,
a p.li.ideal 3 in G, a set W eJ and a function f: G—H such that

(82)  fla+y) £0 implies  foku)=F(@0)41(y), @,y GO
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Then there exists ewactly one additive function F: G—H such that the set
8= {0 e @ f(n) # F(w)}

belongs to 3 provided Case (A) ocewrs. Moreover, in that case fls=0,04¢8
and 8 C W,
Proof. By the definition of I7(J3) (see Lemma 1), (32) simply means that
flo-ty) 50 T@+y) =F@)+fy) (a-e)ny- .

In order to get the first part of our assertion it suffices to make use of
Theorem 1 with ¢ == Z; (sco also Remark 2). To check the equality flg = 0-
take an arbitrary « and an arbitrary o from @. Obviously, the set
Wy te (— (W N)) w (W 8)—u) belongs to 3. For s ¢ W we get

(33)

implies

U—s¢Wouls and otséWougl.
In particular, we can make use of (32) with # = u—s, y = »-+s, whence
(34) flu-2) 50 flutv) = fu—s)+f(v+s).

By (33) and (34) we find thatb

implies

- flutv) 550 implies  f(u-v) = F(u—s)+F(o-s),

which in view of the additivity of #' shows that

(35) J(U-=v) 0 flu+v) = F(u)+F(v).

Since ¢ and o were arbitrarily taken, (35) is satisfied for all pairs (%, v) e G2

implies

(36) flu) 0 flu) = F(u)

whence flg == 0 follows by contraposition. Setting » = 0 in (36) we infer

implies

Tinally, suppose that the inclugion § C W is not true. Hence, one
can find an @y ¢ W such thab f(z) # F(2,), whence, on account of f|s = 0,
wo gotb

(87) flmg) =0 # F(my) .
Take y € N((Z )y~ itg) v (§-=ap) v 8w W ) (which is possible because of (A))-
Then (32) implics ‘
f@woty) = fl@o)+1y) = F),
which, by (37) and the way we have chosen y, leads to
Play+y)=T(y).
Now, F(wy) =0, which contradicts (37).
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Conversely, every function f: ¢ —H given by the formula

F(z) for w¢l,

(38) Jw) = 0 for zeT,

where 7T stands for an arbitrarily fixed subset of W and I denotes an
arbitrary additive function. from @ into H, satisfies the conditional equa-
tion (32). In fact, it suffices to consider only such pairs (@, y) e G2 that
xdT, y¢T and o+y ¢ T and to apply the additivity of I

Thus, we have just proved the following

THEOREM 3. The general solution of the fumctional equation (32) in
Case (A) is prescribed by the formula (38).

§ 4. We proceed with an investigation of the behaviour of functions
satisfying Mikusinski’s functional equation almost everywhere in Case (B).
At first, we exclude the trivial case Z; = @ (mod J), i.c., the hypothems

{39) . Z # @ (modJ)

will be permanently wvalid.
Let a, ¢ & be such that

(40) 2,0 (Z+ag) = G (mod:!).

TeEOREM 4. Let f: ¢ ~H samst ). Then there exists a constant

¢ € H\{0} such that :
f(@) {0, c} (ae);

provided Case (B) occurs. '

Proof. The hypothesis (40) states that there exists a set I ¢ J such
that for all @ ¢ H the alternative
{41) f@)=0 or fle—a)=0 ‘
holds. Assuming, as before, that (6) is satistied except for (w,y)e M
«Q(3), choose arbitrarily a b e G\[T (M) (U (M)~ ay) v (H— a,)). Then,
in particular, V(M) and V,.,( M) are mombers of J, whence the con-
gruence
12) X = ((ZAVYM)4B) < ((ZA g M)+ (a0 )) = &
can eagily be deduced. Thus 7' := G\X belongs to J. Take an axlntr'wy
element z; ¢ G\(Z, v T). For such 2z, we must have
(43) B=&+b or g =2t (a-+b),
where 2, € Z\Vy(M) and 2, € Z\V, (M), i.e., (b, Yé M and (@b, %)
¢ M. By (43), (6) and (7) ” o e

Fla) =F(0)  or  flze) = f(ap+b).

icm
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Hence

(44) Jw) e (0,10, flao+ b} (aue.); .

Now, our asserbion follows immediately from (39) and (44) by putting
2= -0 in (41).

LommA 4. Suppose that f: G—>H satisfies (6) for (,y) ¢ u e 2(J).
For o given set I 3 there ewists a set Z(T)C Z, such that Z(T) = Z’;’
Z(I) ~(U(M) w T) =@ and Z(T)= —Z(T).

Proof. Z (1) = ZNU(M) v (~ U (M) v T u (—T)). Only the latter
equalify in the Lemma requires a motivation. Indeed, take an @ e Z(T)
and y ¢ (Zy—w)w V(M) © (V_o( M)— ). Then

atydZr, (@9 ¢M and (—o,04y)¢ M,
whence by (6) wo obtain

T@--y) = f(@)--f(y) = (y) = f(—ot+zty) = f(—2)+fl@+v),

ie., —&eZy. On the other hand, —a ¢ U(M) v (—T(HM) v T v (—T).
Thus — @ € Z (1), which proves that Z(T)C —Z(T). The inverse inclusion
iy now obvious.

Limmma B. Suppose that f: G—H salisfies (6) for (v,y) ¢ M ¢ 2(3) and
Case (B) oceurs. Then G possesses a subgroup K of index 2 with respect
to G such that K = Z; (modd).

Proof. Fix a set 7 ¢J and take Z(T) constructed in the preceding
Lemma. Pub

(45) K=\ (Z(1)+ ... +2(T)).
BEvidently, & yields a subgroup of @. At first we shall prove that
(46) K +6.

Indeed, suppose that (46) is not true. Sinee Z(T) = Zy and (B) is assumed,
wo easily obbain

(47) Z(1) w (2(T)+a) = @
By (48) and the equality J == G-, a, may be represented in the form

Wy 7= Byl e Ao, meZ(T) for i=1,..y70
Gonsequently : -
(48) Z(T) v (Z(T)+et o +2) = G

4 — Tundamenta Mathematicae, T. LXXXIX
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Let »n be the smallest positive integer for which the congruence (48) holds,
(48) implies immediately

(49) (2 (T)—2a) w (Z(T) 21+ ... F2,) =@

(in the case where #n =1 we pub 2 :=0).

We shall show that for an arbitrary ze Z(Z') the congruence
(50) Z(T)+2 = 4(T)
ig fulfilled. To this aim, observe that in view of the relation Z(T) = Z; it
suffices to prove that
(50a) Z(T)+z = Zy
for ze Z(T). Suppose that (Z(T)+2]\Zs¢3. Henco

A = ((Z (TN (D) 2]NZr ¢ 3
in view of the fact that z¢ U(M). Take an % ¢ 4. Then @ == 3--z where
2e Z(TYNV, (M) and f(z) # 0. In particular, (2,2)¢ M. IMence, (6) and
the inclusion Z(T)C Zy imply
0 # f(#) = f(e+2) = fl&)+f(&) == 0,
which is a contradiction. Likewise, if we had Z/NZ(T)--2) ¢ 3, then we
would get Z\(Zs+#2) ¢3 (on acecount of Z(T) = Z;) and consequently
(Zs—#)\Zy {3, whence
B r=((Z\V _(M))—2]\Zy ¢ 3
since —z ¢ U (M). Taking an # ¢ B, we geb & = 3— g, where 2 e Z,\V_ (M)
and f(z) # 0. In particular, (—e, 2) ¢ M, which on account of (6), the
equality Z(T)=—Z(T) and the inclusion Z(T)C Z; involves
0 #f(@) = f(—#+78) = f(—2)+f() = 0.
This contradiction ends the proof of (50a). Consequently (50) holds for
all 2z € Z(T). If we apply it for 2 = —2,, then on account of (49) we obtain
Z(T) v (Z(T)+ 2+ o +8pey) = G
which is incompatible with the minimality of » assumed in (47). Thus
(46) is satisfied.

On the other hand, (45) and (47) imply K w (I04-ay) = @, wheneo,
by Lemma 3, 6 = K+ (K v (K+a,)) = K v (I --ap). (46) oxcludes here
the possibility of gy ¢ K. Finally, X yields a subgroup of index 2 with
respect to G.

It remains to prove that K = Z;. Observe that K = Z (7). Actually,

if we had KNZ(T) ¢ 3, then, because of K ~ (K ay) == @ and zZ(ncK,

Je G\(Z(T) ©(Z(T)+ap)) = (K v (K+ ao))\(Z(T) w (Z (1) a.,,))
= (ENZ(T)) © ((ENZ (1)) +a5) ¢,
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which is a contradietion. The congruence X = Z; now follows immediately
from the fact that Z(T) = Z;, which finishes the proof of our Lemma.

TepormM 5. Let f: G~ H satisfy (32) and let hypotheses (39) and (40)
be fulfilled. Then there emists o constant ¢ e HN{0} such that flw) e {0, c}
Jor all @e@. Morcover, @ possesses a subgroup K of index 2 such that
KCZy, K=1Z; and f(w)=¢ for xe K v W.

Proof. On account of Theorem 4 there exist a constant ¢ e H\{0}
and a set I ¢J such that f(z)e {0, ¢} for # e G\I. Take an arbitrary
from ¢ and s € (w— Zy)\(@—W) o W U I). Then, by (32)

?
0 % f(a) == fla—s-+9)  implies  f(@) = fla—s)+f(s) = f(s) e {0, ¢c},
which ends the proof of the first part of our assertion.

In virtue of Lemma 8, @ possesses a subgroup K of index 2 such-
that K = Z;. This group is of the form

K = U (Z(W)+ .. +Z(W),
=l n su;lﬁunds —
where Z(W)i== 2 = 2y, ZCZiy ZnW=0,Z=—%and Z+z= Z for
all # e Z. This vesults from (48) and (50) by putting T = W. In particular,
we have ‘
(Z42) N (Z+2,) ¢3  Tor all 2;,2,¢Z.
Now, suppose that K ¢ Zy, i.e. that there exist points z; ¢ Z, i =1, ..., n
guch - that
Koz ... +2,¢ 2.

Clearly, » 2> 2. Take an

n—~1

se ((Z— zn) a (Z"I' zn—-l)\ U ((z'n—i'l" o Jf_zn—l)_TV) -

f=1 N
Tor such an & we get 2y--8e¢Z, 2, 1—8¢€Z, 8 o +2_4—5¢ W,
de= 1y, n—1, and

0 s f(oyrt e A-2n) = fllort oo 2y — )+ (zn'|“'5'))

w5 (R b e b = 8) - (n - 8) = fat o 2y — )

= [ 1T (b e g 8) = Forrt e 8y 8) = o= Floay—8) =0.
Thiy contradiction proves that K C Zy.

It remaing to show that
f@)y=¢ for siEKoW.

At first, observe that the quotient group G/K i equal to {K, K'}, where
we have put [’ 1= G\K. Since every two groups of order 2 are isomorphic,
we infer that
(KYy K++K=K, K}K=FK, K+K=K ad K=-—K.
o
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Now assume that there exists an «; ¢ K v W such that f(z) == 0. Take
an @ e G\(Zyw W o (W-a,)). Since #,2, ¢ I, we infer from (K) that
#—, ¢ K and, in particular, f(z—w,) = 0. In view of the relations w—m,
¢ W oand =, ¢ W, (32) gives '

0 % f(w) = flo—a)+f(#) =0,

which is a contradietion. This completes the proof.
Conversely, every function f: ¢—H given by the formula

0 for weKwl,

(51) fle)= eiK T,

¢ for

where K denotes a subgroup of index 2 with respeet to @, I’ is o subset
of W and ¢ is a constant from H\{0}, yields & solution of (32). In fact,
take x, 4 ¢ ANW such that ¢ty ¢ K v I. Then, in particular, » and y
do not belong to T and, by (X), either (x, y) e K X L' or (i, y) e K’ X K.
In both cases, (51) involves f(x)+f(y) = ¢ = f(@-+y), L.e., (32) is satisfied.

Therefore, we have just proved

TueoREM 6. In Case (B) the general nontrivial solution of the funetional
equation (32) is prescribed by the formula (51).

Remark 3. (32) and the condition Zy = & (modJ) imply f==0.
Actually, suppose that Je§ := {x ¢ G: f(2) # 0} = @. Then taking x ¢ ¢
and s e G’\((m—— (Wo8))wWou S}, we infer from. (32) that

f(@) #0 J(@) = flo—s)+f(s) = 0,
which is a contradiction.
Remark 4. The special case W = @, reduces (32) to Mikusitski’s
equation
(M)  fle+y) =0 - fle+y)=f@+f), (o, 9)

which has been investigated in [4]. The main result of [4] reads as follows,
If & has no subgroups of index 2, then the family F of all solutions of (M)
coincides with the family of all additive functions of the typo: (11
If @ possesses subgroups of index 2, then, Desides additive solutions.
F containg also the family of all functions which are of the form

implies

implies

‘ 0 for wek
(51a) f(z)= voowe c ’
¢ for w¢ll,

where K stands for an arbitrary subgroup of index 2 while ¢ denotos an
arbitrary constant from H\{0}.

This result follows simply from our Theorems 3 and 6. Indeed, if ¢ has
no subgroups of index 2 and f: G —H satisties (M), then Lemma 5 ex-
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cludes Case (B), whence, on account of Theorem 3, f must be additive
(a set T'in (38), as a subset of W = @, must be empty). Clearly, every
additive function from & into H yields a solution of (M). If G possesses
subgroups of index 2 and f: & - H satisfies (M), then again Case (A) admits
additive solutions only, while in Case (B) with the aid of Theorem 6 we
obtain the form (51a) for f (4 set 7 in (1) must be empty). The fact
that f given by (5b) fulfils (M) also follows from Theorem 6.

However, we must underline that the groups ¢ and H were not
assumned to be commutative in [4].

THROREM 7. Let two commutative groups G and H , two conjugate p.li.
ddeals 3 and 3y in G and G* vesp. and a function f: G—H be given such that

Tl@+y) #0 fe+y) = f@)+1(y) (a.e)y,.

Then there ewists a function I': 6 —H fulfilling Mikusinski’s equation (M)
and such that

implies

(@)= F() (a.c.);.

This function I is unique.

- Proof. Supplying 3, to Q(J) (cf. Corollary 2), we infer that f satis-
fies (6). Remark 4 says that the family of all solutions of (M) coincides
with the family of all additive functions of the type G —H whenever
Case (A) occurs. On the other hand, in that case Theorem 1 ensures that
a golution of (6) is (a.e.)y equal to an additive function F: G—H (see
also Remark 1). Thus our Theorem is true in Case (A).

Assume now that Case (B) occurs. Then Lemma 5 ensures the ex-
istence of a subgroup K of index 2 with respect to & with the property
that K = Zy (modJ). On the other hand, f(z)e{0,c} (a.e.);, where
¢ e H\N{0}, on account of Theorem 4. Pub

for 2K,
¢ K.

I yields n solution of (M) (see Remark 4). Evidently, f(z) = F(x) (a.e.)y.
The unigueness in Case (A) is implied by Theorem 1, while in Case (B}
it iy seen from tho construction. Thus the theorem has been completed.

v =
(@) ¢ for

§ 5, The aim of the present section is to give a description of the
behaviour of solutions of equation (2) whose validity is postulated almost
everywhere. More exactly, we agsume that two additive abelian groups G
and I are given, functions f, ¢ and b map & into H, J yields a.p.li. ideal

Cin G, M e Q(), and equation

(52) (w,y) ¢ M implies flz+y) = g(x)+h(y)

. ig satigfied. Then
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TuEOREM 8. In the case where
(53) S(M) = {(y, 2): (x,9)e M} eQ(3)

there ewist: exactly one additive function g: G—H, contants p,q e H and
a set 8 e3 such that '

Fyw) = g(x)+p+q¢=flz),
(84) Fya) == p(@)+p = g(®) ,
Ty() :== @ (2)--q = h(»)

for all o e GNS (3).

Proof. Put M, := M v S(M) e 2(3). Then
flat+y) =g(®)+hy),
fo+y)=gy)+h@).

Take @, ¢ U(M,) (U(M;) has here the same meaning as in the previous
" sections). For such an x, we infer from (55) that ’

f(@y+y) = g(2o) -+ R (y)
YV M) ed,
Flanty) = g(g) 4+ (ay) Y4V Bh) €

ie., B
g (z) = f(z+@)+p: (a.0.)g,
R(y) = fly+m0)+ ¢ (a.0.)y,

where we have pub p,:= —n(z,) and ¢, 1= —¢(%,).
Consequently, we easily obtain

f@+y) = fl@+a)+ 0+ (1 +20)+ @ (ae)gy-
Setting @2, and y-+a, instead of x and y, respectively, we got
(86) fa+y+atzo) = f(o+ 2o+ 20) +F (Y + B+ 20) + P14+ @1 (8.0.)g-
Define a function ¥: ¢ —H by the formula ‘
W(a) = f (w4 By+00) -+ Pr-+ g, -
Bquation” (56) now assumes the following form:
(67) Flot+y) = ¥(@)-+P1) (2.0.)q0.

De Bru.ijn’s result (x) may now be applied to the latter equation, (B7):
there exists exactly one additive function ¢: ¢ —H such that ¥(w) = ¢(x)
{a.e.)y. This and the definition of ¥ imply

(58)

(55) (#,9) ¢ M,  implies

for

f(@) = @ (@)~ ¢ (@) — 9 (@) — py— gy (0.0.)5.

(*) Evidently, the triplet (F,, F,, Iy) yields a solution of the Pexider equation (2),
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Recalling the relations between f and g as well as between f and 5, we
get in view of (58) ,
(59) g(@) = 9’("'”)*‘)9(5”0)“911(‘5”-9-)3a
h(y) = @(y)—o(2))—p, (a.e.)y.

Now, it suffices to pub p == —p(n)—q, ¢:= —(z,)—p, and to de-
fine § as the union of the exceptional sets for functions f, ¢ and h (these
soty are implicitly introduced in the phrase (a.e.); oceurring in each of
the relations (58) and B59)). .

Remark 5. Assumption (53) iy essential. To show this let us first
note that, in the cage where (52) is satisfied, there exists a set M, ¢ 2(3)
such that

(B2a) Jl-+y) = g()-+h(y)

‘Weo have simply

My = {(#,9) € & f(z+y) = g(@)+h(y)} "
Evidently, M,C M and hence M, ¢ 2(3).

Now, assume that for every M e 2(3) for which (52) is satisfied we
have S(M) ¢ 2(5). In particular, (52a) holds and S(M,) ¢ 2(3). Suppose
that there exigt: an additive function ¢: ¢ —H, constants p, g« H and
a st S e J such that for all 2 ¢ G)S relations

f@)=op@+p+q, 9@ =0@+p,
oceur. Note that
(61)  {(@,9): flw+y) = g@)+h(@)} = {y, 2): flwt+y) #g(x)+my)}
= {(y, ): (z,y) e My}
= S(M,) ¢ 2(3) .
61), Tiemma 2, Lomma 1 and Corollary 1 ensure that
P S(MN({(@y ) € G2 2y e S} (GX8) w(SX &) # 0.
Tor (@, y) e P (60) implies f(z-¥) == ¢(y)+h(x), which contradicts (61).
Remark 6. Obviously, the assertion of Theorem 8 remains true
in the case where the validity of the equation f(z-+y)= g(x)+h(y) ig
postulated for all pairs (@, y) e BNM where M yields a me?(nber of an
arbitrary p.Li. ideal 3, in @, conjugate with J. Clearly, also in that case
the assamption S(M) e 2(3) must be retained.
Ag in the provious sections, the case 3, =I1(3) (M = (WX.G) )
(G X W), Wed) enables one to strengthen the result just obtained.
Namely, we have the following

it and only it (2, y) ¢ M,.

(60) h{(z) = ¢ (®)+¢q


Artur


148 - R, Ger

THEOREM 9. Suppose that functions [, g and h are of the type ¢ ~H and
satisfy the condition ‘
(62) Flaty)=g@)+hly) for @,ye@EW, Wed.
Then there ewist: exactly one additive function g: ¢ = I and constants Py qeH
such that ‘
@)= p@)+p+q  Jor wel,
g(x) = p(a)+p for v« (NW,
hz) = @(2)--g¢ for re GNW,

Proof. Putting M := (WX @) v (GxW) in (52) and noting that
we have here M = S(M), on account of Theorem 8 we geti the exigtence
of a unique additive funcfion ¢p: G —»H and constants p, ¢ ¢ H such that
(64) is satisfied for o e G\, S eJ. Take a 4 ¢ @ and an

5 € N\[[u— (WU 8)) v W §).
Then
f(u) = fu—s-+5) = gu—s5)--h(s) = p(u—s)-}-p--9(s)4¢
=o(u)+p+q. ‘
Now, take o ¢ W and y ¢ Wuw 8. By (62) we got
fla+y) = g(@)+n(y),

whence in view of (54) and the equality f(u)== @(u)-»-}-q, u¢@, we
obtain

g(@) = o(@)+p .

Analogously, the equality h(z) = ¢(2)+ ¢ can be derived for 2 ¢ W, which
ends the proof.
As a direct consequence of this result wo obtain the following

TeeorREM 10. The goneral solution of the functional equation (62) is
given by the formulas

f@) =op@+p-+-qg jor wed,
@ for  weW,

)
)

p@)+q  for adW,
) for - weW,

u{hem @: G~ H is an arbitrary additive fungtion, a, B are arbitrary func-
tions of the type: W—H and p, q are arbitrary constamts from I,
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Remark 7. In the particular case W = @ we get the general solution
of the Pexidoer equation (2) (ef. [1]).

Remark 8. In the case where ¢g=h=f in (62) we immediately
obtain p == ¢ == 0, Le., f must be additive (Hartman’s result [7]).
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