On the rim-types of hereditarily locally connected continua

by

E. D. Tymchatyn (Saskatoon, Sask.)

Abstract. To every rational curve it is possible to assign a countable ordinal number called the rim-type of the curve. In this paper it is shown that for each ordinal number α that is at most countable there exists a hereditarily locally connected continuum of rim-type α.

It is known (see Kuratowski [1], p. 290) that the rim-type of a rational curve is an ordinal number that is strictly smaller than the first uncountable ordinal Ω. A continuum is regular if and only if it is of rim-type 1. Hereditarily locally connected continua are rational (see [3], p. 94) and regular continua are hereditarily locally connected. A. Lelek asked in a letter if the rim-type of every hereditarily locally connected continuum is at most 2. It is our purpose to prove that for each ordinal α such that $1 \leq \alpha < \Omega$ there exists a planar hereditarily locally connected continuum of rim-type α.

Our notation follows Whyburn [3]. A continuum is a compact, connected metric space. A continuum is said to be hereditarily locally connected if each of its subcontinua is locally connected.

If A is a subset of a space X we let A' denote the derived set of A. We let $A^{(0)} = A$. If α is the successor of the ordinal ν we let $A^{(\nu)} = (A^{(\nu)})'$. If α is a limit ordinal we let $A^{(\alpha)} = \bigcap \{A^{(\nu)} \mid \nu < \alpha\}$.

Let X be a rational continuum. Let α be the smallest ordinal number such that for each $x \in X$ and for each neighbourhood U of x there is a neighbourhood V of x such that $V \subseteq U$ and $(\partial V)^{\alpha} = \emptyset$ where ∂V denotes the boundary of V. The rim-type of X is defined to be α.

We shall need the following lemma:

* This research was supported in part by a grant from the National Research Council.

1 — Fundamenta Mathematicae, T. LXXXIX
LEMMA. If Y_1, Y_2, \ldots is a sequence of pairwise disjoint hereditarily locally connected continua in E^3 whose diameters converge to 0 and if A is an arc which meets each Y_i then $X = A \cup Y_1 \cup Y_2 \cup \ldots$ is a hereditarily locally connected continuum.

Proof. X is connected since A, Y_1, Y_2, \ldots are connected sets and each Y_i meets A. X is compact since A, Y_1, Y_2, \ldots are compact sets and the sequence Y_i is eventually in every neighborhood of A. To prove that X is hereditarily locally connected it suffices to prove (by [2], p. 89) that X contains no continuum of convergence.

Let $\varepsilon > 0$ be given. Suppose B_1, B_2, \ldots is a sequence of pairwise disjoint continua of X each of which has diameter at least ε. We may suppose that the sequence B_1, B_2, \ldots converges to a continuum K in the space of closed subsets of X. One of the following two situations occurs. Either for each $\delta > 0$ the sequence B_1, B_2, \ldots is eventually in the δ-neighborhood of A or there is a natural number n and $\varepsilon_1 > 0$ such that infinitely many of the sets B_i meet Y_n in a connected set of diameter at least ε_1. In the second case we may suppose without loss of generality that each B_i meets Y_n in a connected set of diameter at least ε_1. In this case it follows from the fact that Y_n is hereditarily locally connected that almost every B_i meets K. If the second case fails to hold then it is easy to see that X is a line segment in A and almost every B_i meets K. This completes the proof that X does not contain a continuum of convergence.

THEOREM. If α is an ordinal number such that $1 \leq \alpha < \Omega$ then there exists a planar hereditarily locally connected continuum of rim-type α.

Proof. The proof is by transfinite induction. Let $X_0 = [0, 1] \times \{0\}$. Then X_0 is of rim-type 1. Let α be an ordinal number such that $1 < \alpha < \Omega$. Suppose that for each ordinal number β such that $1 < \beta < \alpha$ X_0 is a planar hereditarily locally connected continuum of rim-type β. Suppose also that for each β such that $1 < \beta < \alpha$ and β is the successor of an ordinal γ the following hold:

(i) $[0, 1] \times \{0\} \subset X_0 \subset [0, 1] \times [-1, 1],$
(ii) $A_\alpha = X_0 \cap ([0, 1] \times [-1, 1])$ and $B_\alpha = X_\alpha \cap ([0, 1] \times [-1, 1])$ are countable sets,
(iii) for each $A \subset X_\alpha$ such that $A^{(\omega)} = \emptyset$ there exists an arc in $X_\alpha \setminus A$ with one endpoint in A_α and the other in B_α.

We consider three cases.

Case 1. α is a limit ordinal. Let a_1, a_2, \ldots be a strictly increasing sequence of ordinals which converges to α. For each i let Z_i be a hereditarily locally connected plane continuum of rim-type a_i and diameter less than 1/1 such that for each $i \neq j$ $Z_i \cap Z_j = (\{0\}, \{0\})$. Let $Z = Z_1 \cup Z_2 \cup \ldots$. Then Z is easily seen to be hereditarily locally connected continuum of rim-type α.
Let \(X_n = X_{n-1} \cup X_1 \cup \ldots \). By the lemma \(X_n \) is a hereditarily locally connected continuum.

We check that the rim-type of \(X_n \) is no greater than \(n \). If \(x \in X_n \setminus X_n \) then \(x \) has a set homeomorphic to \(X_n \) for a neighbourhood. Since the rim-type of \(X_n \) is \(n \) there exist arbitrarily small neighbourhoods \(V \) of \(x \) in \(X_n \) such that \(\partial V \not\subseteq \emptyset \). If \(x \in X_n \) then it follows from the construction that there exist arbitrarily small neighbourhoods \(V \) of \(x \) such that \(\partial V \cap X_n \) contains at most two points and for each \(j \in \{0, 1, \ldots, n\} \) \(\partial V_j \cap X_n \) is open in \(\partial V \) for each \(j \in \{0, 1, \ldots, n\} \) \(\partial V \cap X_n \) is finite \(\partial V \not\subseteq \emptyset \).

Next we show that the rim-type of \(X_n \) is at least \(n \). Let \(A \) be a set in \(X_n \) which separates \((x, 0) \) and \((y, 0) \) in \(X_n \), where \(x, y \in [0, 1] \). Since \(X_n \) is completely normal we may assume without loss of generality that \(A \) is a closed set. Just suppose that \(A^{(n)} = \emptyset \).

There exist at most finitely many \(j \in \{1, 2, \ldots\} \) and \(i \in \{1, 2, \ldots, m_j\} \) such that \(f_{j, i}(X_n) \subset A^{(n)} \) for each ordinal \(m < n \) since the sets \(f_{j, i}(X_n) \) are pairwise disjoint and their diameters converge to zero. We may suppose without loss of generality, therefore, that for each \(j = 1, 2, \ldots \) and for each \(i = 1, 2, \ldots, m_j \) there is an ordinal \(m < n \) such that \(f_{j, i}(X_n) \cap A^{(n)} = \emptyset \). Thus by condition (iii) on the continuum \(X_n \) for each \(j, i \) there exists an arc \(K_{ji} \) in \(f_{j, i}(X_n) \) with one endpoint \(A \cap K_{ji} \) in \(f_{j, i}(A_n) \) and the other in \(f_{j, i}(B_n) \).

Let \(Y = X_n \cup \{K_{ji} \mid j \in \{1, 2, \ldots\} \text{ and } i \in \{1, 2, \ldots, m_j\}\} \). It is not difficult to see that \(Y \) is a continuum and that the set of local cutpoints of \(Y \) is contained in \(\cup K_{ji} \).

Now, \(Y \cap A \subset Y \setminus \cup K_{ji} \) and \(Y \cap A \) separates \((x, 0) \) and \((y, 0) \) in \(Y \). By a result in [3], p. 62 \(Y \cap A \) contains a perfect set since \(Y \cap A \) does not contain a local cutpoint of \(Y \). This contradicts the assumption that \(A^{(n)} = \emptyset \). Thus, if \(A \) is any set in \(X_n \) that separates \((x, 0) \) and \((y, 0) \), then \(A^{(n)} \not\subseteq \emptyset \). We have proved that the rim-type of \(X_n \) is \(n \).

Clearly, \(X_n \cap \{(1) \times [-1, 1]\} \) is countable for \(i = 0, 1 \).

Finally, let \(A \) be a set in \(X_n \) such that \(A^{(n)} = \emptyset \). We must prove that there is an arc in \(X_n \setminus A \) stretching from \((0) \times [-1, 1] \) to \((1) \times [-1, 1] \). By the above \(X_n \setminus A \) is contained in one arc component of \(X_n \setminus A \). Since the sequence of continua \(f_{j, i}(X_n) \), \(j = 1, 2, \ldots \), converges to a point and \(A^{(n)} = \emptyset \) it follows that there is a natural number \(n \) and an ordinal \(m < n \) such that \(A \cap f_{j, i}(X_n) = \emptyset \). By (iii) there exists an arc from \(f_{j, i}(A_n) \) to \(f_{j, i}(B_n) \) in \(f_{j, i}(X_n) \setminus A \). Similarly there is a natural number \(k \) and an arc from \(f_{j, i}(A_n) \) to \(f_{j, i}(B_n) \) in \(f_{j, i}(X_n) \setminus A \). Thus, there is an arc in \(X_n \setminus A \) stretching from \((0) \times [-1, 1] \) to \((1) \times [-1, 1] \).

Case 3. \(n \) is the successor of the limit ordinal \(\alpha \). Let \(\alpha, \alpha_2, \ldots \) be a strictly increasing sequence of ordinal numbers which converges to \(n \) such that each \(\alpha \) is not a limit ordinal. Take everything to be as in Case 2 except...