Table des matidres du tome LXXXIX, fascicule 1

Pagoes
R. 8. Millman, Groups in the eategory of f-manifolds. . . . . . . . . 1-4
H. & Carstens, Reducing hyperarithmetic sequences. . . . . . . . . . 5-11
Y. Kodama, On 4 -spaces and fundamental dimension. in the senge of Borsuk  13-22
K. J. Devlin, Kurepa’s hypothesis and the continwam . . . . . . 23-31
4. B. Nadler, Jr., J. Quinn and IH. Reiter, Results and, plobloms con-
cerning compactifications, eompact subtopologios, and mappings . . . 33-44
K. D. Joshi, Infinite dimensional non-symmetric Borsuk-Ulam theorem  45-50
J. Jobe, Wide tree-like spaces have a fixed point . . « . « . . . . . . 5160
8. Nowak, On the fundamental dimengion of apprommﬂtwcly 1-connected
COMPACED .+ . o . e e e e e e e e e e s e e e e e e 61-79
M. Strok and A. Szymarski, Compact metric spaces have binary bases  81-01

Tes FUNDAMENTA MATHEMATICARE publient, en langues des congros

internationaux, des travaux consacrés & la Théorie des Emsembles, Topo-

logie, Fondements de Mathématiques, Fonctions Réelles, Algebre Abstraite
Chaque volume parait en 3 fascicules

Adresse de la Rédaction et de IKichange:
FUNDAMENTA MATHEMATICAE, Sniadeckich 8, 00-950 Warszawa (Pologne)

Tous les volumes sont 3 obtenir par l'intermédiaire de
ARS POLONA-RUCH, Krakowskie Przedmiedcie 7, 00-068 Warszawa (Pologne)

Correspondence concerning editorial work and manuseripts should be addressed to:
FUNDAMENTA MATHEMATICAE, Sniadeckich 8, 00-950 Warszawa (Poland)

Correspondence concerning exchange should be addressed to:
INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES, Exchange
Sniadeckich 8, 00-950 Warszawa (Poland)

The Fundamenta Mathematicae are available at your bookseller or at
ARS POLONA-RUCH, Krakowskic Przedmiefcie 7, 00-008 Warssawa (Poland)

DRUKARNIA UNIWERSYTETU JAGIELLONSKIEGO W KRAKOWIR

‘icm

Groups in the category of f-manifolds
by
Richard S. Millman (Carbondale, TlL.)

Abstract. A structure on a n-dimensional differentiable manifold given by a tensor
field of type (1,1) and constant rank » which satisfies f*-+f== 0 is called an f-structure.
An f-map i8 a map between f-manifolds whose differential commutes with the f-strue-
ture. An f-Lie group is a group in the category of f-manifolds and f-maps.

TurorEM A. Iwery f-Lie group is the quotient of the product of a complex Lis group
and a Lie group with trivial f-structure. An f-Lie group is an f-contact Lie group if the
Lernel f (as a sub-bundle of the tangent bundle) is parallelizable by c ting vector fields.

TanoreM B. A compact f-contact Lie group is isomorphic (as a Lie group) to a torus.

1. A structure on an n-dimensional differentiable rmanifold given
by a tensor field f of type (1, 1) and constant rank » which satisfies f*--
+f= 0 ig called an f-structure. This notion has been studied by Yano
and Ishihara (among others) [4]. An f-structure is dntegrable if about
each point there is a coordinate system in which f has the consta,nt
components

0 —I, 0
1) f=1I, 0 0
0 0 0

where I, is the (p X p) identity matrix (p = %r). In [1] it is shown that
the integrability of f is equivalent to the vanishing of the Nijenhuis
tensor of f,

N(X,Y) = [fX, {Y1—f[JX, V]~ [[X, fY]-+ X, ¥]

where X and ¥ are vector fields on M. We shall write y (M) for the seb
of all vector fields on M, Twn(M) for the tangent space of M at m e M
and 7(M) for the tangent bundle of M. For m e M, let

(k.@l'f)m = {X € Tm]l{| fm(X) == 0}
and
(imf)m = {X e TnM| X = fuY for some ¥ eTynM}.
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2. R. 8. Millman

If (kerf)m == 0 for all m « M then f is an almost complex structure. If
(imf)m = 0 for all m e M then f is the trivial f-structure, f == 0.

Suppose that M; is an f-manifold with f-structure f; (4==1,2)
and g: My—M,, then ¢ is an f-map if fop (X) = ¢, fi(X) for all X e Ty My,
me M;. Let G be a Lie group with f-structure. If both Ly: G-+@G (left
multiplication by g e &) and Ry G— G (right multiplication) ave f-inaps
and f is integrable then & is an f-Lie group. This is clearly the appropriate
notion of group in the category of f-manifolds. f-Lie groups have been
used in, for example, generalizing Weil’s approach to the classical Cousin
problem of several complex variables [2]. We will prove:

TurorEM A. Bvery f-Lie group 4s the quotient of the product of a com-
plex Lie group and o Lie group with trivial f-structure by a discrete subgroup.

We will also give an example of an f-Lie group which is not the
product of a complex Lie group and a Lie group with trivial f-structure.
We say that the f-Lie group, G, is a f-contact Lie group if there are
&1y ooy Eyeyp € (kexf), which are linearly independent and [&;, &]= 0 for
all 1<, j <n—r. We also prove:

THEOREM B. A4 compact f-contact Lic group is zsomorphu, (as o Lie
group) to a torus.

2. Let & be the Lie algebra of G and g ¢ @, X ¢ & As usual we define
adg: G—@& by adg(z) = gx ¢~ and AdX: G—& by AAX(Y) = [X,Y].
An f-structure is bi-invariant it both left and right multiplication are
f-maps.

ProrosIrioN 1. If f is a bi-invariant f-structure on a Lie group,
then f[X,Y]=[f(X),Y] for all X,Y ¢ @.

Proof. Since f(L,), = ('Lg) [ and f(Ry), = (Ry),f we have f(adg),

= (adg),f for all geG. If g— expiX where ¢ e R then fladexptX (Y)
= adexptX f(Y) hence by a standard result in Lie groups:

f(eAle( Y)) —_— 6Adin( 17)

or
f(Y+t[X T [X X, 7]+ . )
=f(¥)+1[X, f(¥ ]+ [X,[X £+ ..
hence
1) fIX, Y+ f[X (X, Y +... = [X, (¥ [X IX, (7)) +

Letting {0 in (1) gives us. the desired result. m
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The proot of the following corollary is immediate sinee from Propo-
gition 1 the Nijénhuis torsion of a bi-invariant f- structure must vanish ab e.

COROLLARY. A bi-invariant f-structure on a Lie group. is integrable.

We now prove Theorem A. Let L= (kerf), and L;= (imf)e.
It is clear from Proposition 1 that both Lz and L; are Lie subalgebras
of & Now if X = f(Z)eL;~ Ly then f%Z) = 0 hence since f(Z)-+ %)
= 0, X == f(%) =0 and so Ly ~ Ly = (0). By dimensions & is therefore
the direct sum (as a vector space) of Ly and Ly. Furthermore if X = f(Z)
ely and ¥ ¢L; then again applying Proposition 1,

[X,Y]=flZ,Y]=[Z,f(Y)]=0.

Clhus G == Li@ Ly as Lie algebras and by standard results of Lie theory
we have Theorem A. @

3. Before proving Theorem B we need to recall some results of [3].
The kernel of f, kerf, is | (kerf)m and the image of f, imf, is U (imf)m

m / ki

An f-manifold is k-framed if there are &, ..., &, . ¢ y(M) such that
{&(mY, ..., Eup(m)} forms a basis for (kerf), for all m e M. We write
fg == n—7. If M, and M, are k-framed f-manifolds then we define an
almost complex structure J on M, X M,. We shall denote the %-framing
on M, by {&,..., &} and the f-struncture on B by f;. If in addition
[£5, &]1=0 for all 1 < %, 1< n, then M; is called an f-contact manifold.
The concept of f-contact manifold generalizes the basic features of
almost contact structure to f-manifold of higher nullity (i.e. lower rank).
In [3, Lemma 2] we have associated to the framing {&, ..., & } differential
forms nf for i=1,2, j=1,...,n. We define the almost complex struc-
ture J on M, XM, as follows: if X, eT,M,, X,e T, M, where pe M,
q € M, then

p,q(le X;) = (f1 1) 277 Xz)’l“z"ﬁ(Xﬂf?L(Q)) .
We also proved the following theorem in [3].

TuroreM. Let M, and M, be two k-framed f-manifolds of the same
ramk. If fi and f, are integrable then the almost complex structure J is inte-
grable then the almost complex structure J is integrable if and only if both M,
and M, arve f-contact manifolds.

To prove Thoorem B we note that if ¢ is an f-contact Lie group
then G'x G is a complex Iie group. (This is essentially showing that
the #; are bi-invariant which follows immediately from the bi-invariance
of f). Hence if @ is compact-then ¢ x @ is a compact complex Lie group,
hence abelian and the result follows. &

Theorem B is proven in the special case that f defines a structure
of an almost contact manifold in [2].
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4 R. 8. Millman

It we let @ = CxR where C is the complex line (considered as
a complex manifold) and R ig a Lie group with trivial J-structure and
D= {(n+in,n)| n is en integer} then @D is an f-Lie group which is
not the product of a complex Lie group and an f-Lie group with trivial
f-structure. (/D is of course diffeomorphic to Cx §* but the f-structure
on G/D is not the product f-structure of Cx 8'). This is the example
mentioned in the introduction.
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Reducing hyperarithmetic sequences
by
Hans Georg Carstens (Hannover)

Abstract. Every a’-sequence is iaommj;hia to an a*-sequence. This impliecs: Kvery
o'-theory T with an o-language has an a*-model. If 7' has an infinite normal-model
then 7 has an normal a*-model.

§ 1. Introduction. If you analyse a mathematical construction to
evaluate its complexity e.g. in terms of the hyperarithmetic hierarchy,
it i not difficult to get &'-bounds (a e O, O Kleene’s system of ordinal
notations, o’ = 2%, for you can employ recursive. processes to describe
the congtruction. I you try to get a*-bounds (o predicate is a*-bounded
if it is a Boolean combination of X%a)-predicates) you must analyse
some tricky constructions often related to wait and see methods.

Tn this paper we prove a theorem on hyperarithmetic sequences
by which in some cases we can avoid this analysis and get an ¢*-bound
by means of ¢’-bound. In §'5 examples regarding models and structures
will be discussed.

A model is called normal it its universe is the set of natural numbers
and the first predicate is the identity. In [3] Hensel and Putnam have
shown that every axiomatized consistent theory based on a finite number
of predicates which has an infinite model with “=" interpreted as identity,
has a normal model in B*(1), i.e. all predicates are 1*-bounded. Among
its consequences the theorem has an analogue to the Hensel-Putnam
result for arbitrary byperarithmetic theories with a recursive language.
Wo can drop the assumption that the theory must be based on a finite
number of predicates, and different to Putnam [5] and Hengel-Putna. [3]
the result yields a method which solves Mostowski’s problem [4, p. 39]
simultaneously for theories with and without identity.

§ 2. The hyperarithmetic hierarchy. Let O be Kleene’s system of ordinal
potations with the ordering <, @’ = 2% the sueccessor of ¢ in O, A’ the
recursive jump of A; we write A < B if 4 iy recursive in B. Hy := @,
Hy 5= I, for a in O, Hyge 1= {2,401 y< 3 D" &ae H,}, where 3-5% iy
a notation of a limit ordinal.
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