

Table des matières du tome LXXXIX, fascicule 1 Pages R. S. Millman, Groups in the category of f-manifolds..... 1-4 H. G. Carstens, Reducing hyperarithmetic sequences. 5-11 Y. Kodama, On A-spaces and fundamental dimension in the sense of Borsuk 13 - 22K. J. Devlin, Kurepa's hypothesis and the continuum 23 - 31S. B. Nadler, Jr., J. Quinn and H. Reiter, Results and problems concerning compactifications, compact subtopologies, and mappings . . . 33-44 K. D. Joshi, Infinite dimensional non-symmetric Borsuk-Ulam theorem 45 - 5051 - 60S. Nowak, On the fundamental dimension of approximatively 1-connected 61 - 79M. Strok and A. Szymański, Compact metric spaces have binary bases 81 - 91

Les FUNDAMENTA MATHEMATICAE publient, en langues des congrès internationaux, des travaux consacrés à la Théorie des Ensembles, Topologie, Fondements de Mathématiques, Fonctions Réelles, Algèbre Abstraite Chaque volume paraît en 3 fascicules

Adresse de la Rédaction et de l'Échange: FUNDAMENTA MATHEMATICAE, Śniadeckich 8, 00-950 Warszawa (Pologne)

Tous les volumes sont à obtenir par l'intermédiaire de ARS POLONA-RUCH, Krakowskie Przedmieście 7, 00-068 Warszawa (Pologne)

Correspondence concerning editorial work and manuscripts should be addressed to: FUNDAMENTA MATHEMATICAE, Śniadeckich 8, 00-950 Warszawa (Poland)

Correspondence concerning exchange should be addressed to:
INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES, Exchange
Sniadeckich 8, 00-950 Warszawa (Poland)

The Fundamenta Mathematicae are available at your bookseller or at ARS POLONA-RUCH, Krakowskie Przedmieście 7, 00-068 Warszawa (Poland)

DRUKARNIA UNIWERSYTETU JAGIELLONSKIEGO W KRAKOWIE

Groups in the category of f-manifolds

by

Richard S. Millman (Carbondale, Ill.)

Abstract. A structure on a n-dimensional differentiable manifold given by a tensor field of type (1,1) and constant rank r which satisfies $f^3+f=0$ is called an f-structure. An f-map is a map between f-manifolds whose differential commutes with the f-structure. An f-Lie group is a group in the category of f-manifolds and f-maps.

THEOREM A. Every f-Lie group is the quotient of the product of a complex Lie group and a Lie group with trivial f-structure. An f-Lie group is an f-contact Lie group if the kernel f (as a sub-bundle of the tangent bundle) is parallelizable by commuting vector fields.

THEOREM B. A compact f-contact Lie group is isomorphic (as a Lie group) to a torus.

1. A structure on an n-dimensional differentiable manifold given by a tensor field f of type (1,1) and constant rank r which satisfies $f^3+f=0$ is called an f-structure. This notion has been studied by Yano and Ishihara (among others) [4]. An f-structure is integrable if about each point there is a coordinate system in which f has the constant components

(1)
$$f = \begin{bmatrix} 0 & -I_p & 0 \\ I_p & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

where I_p is the $(p \times p)$ identity matrix $(p = \frac{1}{2}r)$. In [1] it is shown that the integrability of f is equivalent to the vanishing of the Nijenhuis tensor of f,

$$N(X,Y) = [fX, fY] - f[fX, Y] - f[X, fY] + f^{2}[X, Y]$$

where X and Y are vector fields on M. We shall write $\chi(M)$ for the set of all vector fields on M, $T_m(M)$ for the tangent space of M at $m \in M$ and T(M) for the tangent bundle of M. For $m \in M$, let

$$(\ker f)_m = \{X \in T_m M | f_m(X) = 0\}$$

and

$$(\operatorname{im} f)_m = \{X \in T_m M | X = f_m Y \text{ for some } Y \in T_m M\}.$$

1 — Fundamenta Mathematicae LXXXIX

If $(\ker f)_m = 0$ for all $m \in M$ then f is an almost complex structure. If $(\operatorname{im} f)_m = 0$ for all $m \in M$ then f is the trivial f-structure, f = 0.

Suppose that M_i is an f-manifold with f-structure f_i (i = 1, 2) and $\varphi \colon M_1 \to M_2$, then φ is an f-map if $f_2 \varphi_*(X) = \varphi_* f_1(X)$ for all $X \in T_m M_1$, $m \in M_1$. Let G be a Lie group with f-structure. If both $L_g \colon G \to G$ (left multiplication by $g \in G$) and $R_g \colon G \to G$ (right multiplication) are f-maps and f is integrable then G is an f-Lie group. This is clearly the appropriate notion of group in the category of f-manifolds. f-Lie groups have been used in, for example, generalizing Weil's approach to the classical Cousin problem of several complex variables [2]. We will prove:

THEOREM A. Every f-Lie group is the quotient of the product of a complex Lie group and a Lie group with trivial f-structure by a discrete subgroup.

We will also give an example of an f-Lie group which is not the product of a complex Lie group and a Lie group with trivial f-structure. We say that the f-Lie group, G, is a f-contact Lie group if there are $\xi_1, \ldots, \xi_{n-r} \in (\ker f)_e$ which are linearly independent and $[\xi_i, \xi_j] = 0$ for all $1 \le i, j \le n-r$. We also prove:

THEOREM B. A compact f-contact Lie group is isomorphic (as a Lie group) to a torus.

2. Let \hat{G} be the Lie algebra of G and $g \in G$, $X \in \hat{G}$. As usual we define $\operatorname{ad} g \colon G \to G$ by $\operatorname{ad} g(x) = g \times g^{-1}$ and $\operatorname{Ad} X \colon \hat{G} \to \hat{G}$ by $\operatorname{Ad} X(Y) = [X, Y]$. An f-structure is bi-invariant if both left and right multiplication are f-maps.

PROPOSITION 1. If f is a bi-invariant f-structure on a Lie group, then f[X,Y] = [f(X),Y] for all $X,Y \in \hat{G}$.

Proof. Since $f(L_g)_* = (L_g)_* f$ and $f(R_g)_* = (R_g)_* f$ we have $f(\operatorname{ad} g)_* = (\operatorname{ad} g)_* f$ for all $g \in G$. If $g = \exp tX$ where $t \in R$ then $f(\operatorname{ad} \exp tX(Y)) = \operatorname{ad} \exp tXf(Y)$ hence by a standard result in Lie groups:

$$f(e^{AdtX}(Y)) = e^{AdtX}f(Y)$$

or

$$\begin{split} f\Big(Y + t[X,Y] + \frac{t^2}{2!} \big[X,[X,Y]\big] + \dots \Big) \\ = f(Y) + t[X,f(Y)] + \frac{t^2}{2!} \big[X,[X,f(Y)]\big] + \dots \end{split}$$

hence

(1)
$$f[X,Y] + \frac{t}{2!}f([X,[X,Y]) + \dots = [X,f(Y)] + \frac{t}{2!}[X,[X,f(Y)]] + \dots$$

Letting $t\rightarrow 0$ in (1) gives us the desired result.

The proof of the following corollary is immediate since from Proposition 1 the Nijenhuis torsion of a bi-invariant f-structure must vanish at e.

COROLLARY. A bi-invariant f-structure on a Lie group is integrable.

We now prove Theorem A. Let $L_k = (\ker f)_e$ and $L_i = (\operatorname{im} f)_e$. It is clear from Proposition 1 that both L_k and L_i are Lie subalgebras of \widehat{G} . Now if $X = f(Z) \in L_i \cap L_k$ then $f^2(Z) = 0$ hence since $f(Z) + f^3(Z) = 0$, X = f(Z) = 0 and so $L_i \cap L_k = (0)$. By dimensions \widehat{G} is therefore the direct sum (as a vector space) of L_i and L_k . Furthermore if $X = f(Z) \in L_i$ and $X \in L_k$ then again applying Proposition 1,

$$[X,Y] = f[Z,Y] = [Z,f(Y)] = 0$$
.

Thus $\hat{G} = L_l \oplus L_k$ as Lie algebras and by standard results of Lie theory we have Theorem A.

3. Before proving Theorem B we need to recall some results of [3]. The kernel of f, ker f, is $\bigcup_{m} (\ker f)_m$ and the image of f, im f, is $\bigcup_{m} (\operatorname{im} f)_m$. An f-manifold is k-framed if there are $\xi_1, \ldots, \xi_{n-r} \in \chi(M)$ such that $\{\xi_1(m), \ldots, \xi_{n-r}(m)\}$ forms a basis for $(\ker f)_m$ for all $m \in M$. We write $n_0 = n-r$. If M_1 and M_2 are k-framed f-manifolds then we define an almost complex structure J on $M_1 \times M_2$. We shall denote the k-framing on M_i by $\{\xi_1^i, \ldots, \xi_{n_0}^i\}$ and the f-structure on M_i by f_i . If in addition $[\xi_k^i, \xi_i^i] = 0$ for all $1 \leq k$, $l \leq n_0$ then M_i is called an f-contact manifold. The concept of f-contact manifold generalizes the basic features of almost contact structure to f-manifold of higher nullity (i.e. lower rank). In [3, Lemma 2] we have associated to the framing $\{\xi_1^i, \ldots, \xi_{n_0}^i\}$ differential forms η_i^i for $i = 1, 2, j = 1, \ldots, n_0$. We define the almost complex structure J on $M_1 \times M_2$ as follows: if $X_1 \in T_p M_1$, $X_2 \in T_q M_2$ where $p \in M_1$, $q \in M_2$ then

$$J_{p,q}(X_1,X_2) = \left(f_1(X_1) - \sum \eta_i^2(X_2) \, \xi_i^1(p) \,, f_2(X_2) + \sum \eta_i^1(X_1) \, \xi_i^2(q) \right) \,.$$

We also proved the following theorem in [3].

THEOREM. Let M_1 and M_2 be two k-framed f-manifolds of the same rank. If f_1 and f_2 are integrable then the almost complex structure J is integrable then the almost complex structure J is integrable if and only if both M_1 and M_2 are f-contact manifolds.

To prove Theorem B we note that if G is an f-contact Lie group then $G \times G$ is a complex Lie group. (This is essentially showing that the η_f are bi-invariant which follows immediately from the bi-invariance of f). Hence if G is compact then $G \times G$ is a compact complex Lie group, hence abelian and the result follows.

Theorem B is proven in the special case that f defines a structure of an almost contact manifold in [2].

R. S. Millman

If we let $G = C \times R$ where C is the complex line (considered as a complex manifold) and R is a Lie group with trivial f-structure and $D = \{(n+in,n) | n \text{ is an integer}\}$ then G/D is an f-Lie group which is not the product of a complex Lie group and an f-Lie group with trivial f-structure. (G/D) is of course diffeomorphic to $C \times S^1$ but the f-structure on G/D is not the product f-structure of $C \times S^1$). This is the example mentioned in the introduction.

References

- [1] S. Ishihara and K. Yano, On integrability conditions of a structure f satisfying $f^3+f=0$, Quarterly J. Math. Oxford 15 (1964), pp. 217-222.
- [2] R. Millman, Certain types of manifolds with f-structure, J. Math. Soc. Japan 26 (1974), pp. 83-91.
- [3] f-structures with parallelizable kernel, J. Diff. Geom. 9 (1974), pp. 531-535.
- [4] K. Yano and S. Ishihara, Structure defined by f satisfying f³+f=0, Proc. U.S. Japan Seminar in Differential Geometry, Kyoto, Japan, 1965, pp. 153-166.

SOUTHERN ILLINOIS UNIVERSITY Carbondale, Illinois

Accepté par la Rédaction le 3. 9. 1973

Reducing hyperarithmetic sequences

by

Hans Georg Carstens (Hannover)

Abstract. Every a'-sequence is isomorphic to an a^* -sequence. This implies: Every a'-theory T with an a-language has an a^* -model. If T has an infinite normal-model then T has an normal a^* -model.

§ 1. Introduction. If you analyse a mathematical construction to evaluate its complexity e.g. in terms of the hyperarithmetic hierarchy, it is not difficult to get a'-bounds ($a \in O$, O Kleene's system of ordinal notations, $a' = 2^a$), for you can employ recursive processes to describe the construction. If you try to get a^* -bounds (a predicate is a^* -bounded if it is a Boolean combination of $\Sigma_1^0(a)$ -predicates) you must analyse some tricky constructions often related to wait and see methods.

In this paper we prove a theorem on hyperarithmetic sequences by which in some cases we can avoid this analysis and get an a^* -bound by means of a'-bound. In § 5 examples regarding models and structures will be discussed.

A model is called *normal* if its universe is the set of natural numbers and the first predicate is the identity. In [3] Hensel and Putnam have shown that every axiomatized consistent theory based on a finite number of predicates which has an infinite model with "=" interpreted as identity, has a normal model in $B^*(1)$, i.e. all predicates are 1^* -bounded. Among its consequences the theorem has an analogue to the Hensel-Putnam result for arbitrary hyperarithmetic theories with a recursive language. We can drop the assumption that the theory must be based on a finite number of predicates, and different to Putnam [5] and Hensel-Putnam [3] the result yields a method which solves Mostowski's problem [4, p. 39] simultaneously for theories with and without identity.

§ 2. The hyperarithmetic hierarchy. Let O be Kleene's system of ordinal notations with the ordering $<_0$, $a'=2^a$ the successor of a in O, A' the recursive jump of A; we write $A \le B$ if A is recursive in B. $H_1 := \emptyset$, $H_{a'} := H'_a$ for a in O, $H_{3.5a} := \{\langle x,y \rangle : y <_0 \cdot 3 \cdot 5^a \cdot 8 \cdot x \in H_y \}$, where $3 \cdot 5^a$ is a notation of a limit ordinal.