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A theory of absolute proper retracts
by

R. B. Sher* (Greensboro, N. C.)

Abstract. We construet a theory of absolute properretracts (APR’s) for locally compact
metric spaces analogous to the usual theory, only requiring that all maps f)e proper.
The APR’s are shown to be the non-compact ANR’s having property SUV®, We obtain
the standard extension theorems and a result characterizing the APR’s by a property of
their Freudenthal compactification.

1. Introduction. In this paper it is our aim to lay the foundation for
a study of absolute proper retracts and absolute neighborhood proper
retracts. The basic idea is t0 modify the definition of absolute retract and
absolute neighborhood retract by requiring that all maps be proper.

Rather than concentrating at this time on the general properties of
absolute proper retracts and absolute neighborhood proper retracts, we
ghall limit ourselves to the basic definitions and faets, and to the problem of
identifying the absolute proper retracts and absolute neighborhood
proper retracts among the ANR’s. For absolute neighborhood proper
retracts, the result is essentially trivial (and well-known). However, we
include it here for completeness. It is that, for the class of spaces under
consideration, X is an absolute neighborhood proper retract if and only
if X ¢« ANR. However, for absolute proper retracts, the situation is more
complicated, and we show that X is an absolute proper retract if and only
if X is non-compact, X « ANR, and X has a certain geometric property
called property SUV™. As a tool, we obtain a result about the Freudenthal
compactification of ANR’s having property SUV™ which is of interest
in its own right.

2. Absolute proper retracts and absolute neighborhood proper retracts.
A map f: X - Y is said to be proper it f~1(C) is compact for each compact
set ¢ C Y. Proper maps geem o make good geometric sense as a vehicle
for the study of locally compact metric spaces (e.g., see the results of [2]),
and throughout this paper we shall restrict our abtention to this class of
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spaces. e therefore make the following standing hypothesis: A1 spaces
considered in this paper shall be locally compact metric spaces. By ANR (AR)
we mean absolute neighborhood retract (absolute retract) for metrie Spaces,
and if X is such we write X ¢ ANR (X ¢ AR).

Suppose X C Y. Then X is a neighborhood proper veiract in ¥ provided
there exist a neighborhood U of X in ¥ and a proper retraction of U
onto X. The space X is an absolute neighborhood proper retract if for every
space Y and every embedding h: X — ¥, h(X) is a neighborhood proper
refract in Y. (Remark. All embeddings shall be closed.) Obviously, if X ig
an absolute neighborhood proper retract, then X ¢ ANR. Conversely,
if X ¢ ANR and h is an embedding of X into the space ¥, then there exish
an open neighborhood V of h(X) in ¥ and a retraction r: V -} (X). By
[2; Lemma 3.2], there exists a closed neighborhood U of X lying in ¥ so
that 7|U is proper. Thus we have the following resuls.

THEOREM 2.1. Suppose X is a locally compact metric space. Then X is
an absolute neighborhood proper reiract if and only if X ¢ ANR.

Suppose now that the space X is separable and that QX, the quasi-
component space of X, is compact. Then the Freudenthal compactifica-
tion of X, denoted by FX, is a metric space ([4]). We shall denote (FX—X)

by BX. BEX is the spaceof ends of X, and has played an important role

in the study of geometric properties of non-compact spaces and proper
maps (e.g., see [2], [8]). An important fact for us here is that if fi X->7Yis
a proper map between separable spaces X and ¥, where QX and QY are
compact, then f has a unique extension to a map of pairs Ff: (FX, BX)—
-+ (FY,EBY) ([2; Lemma 4.2] or [7; Theorem 3]).

Consider, for example, the following problem: Does there exist a proper
retraction from the plane B? onto the z-axis? The answer is no, for if there
were a proper map f from #? onto the real numbers R, then f would induce
the map Ff from FE? into FR. Since E? hag one end, while B has two,
this would yield a map from the 2-sphere F'E? onio a half-open interval,
an impossibility. In fact, whab this argument shows is that if f is a proper
map from X onto ¥, then If maps BX onto HY, so that card BX > card BY.

Suppose X C Y. Then X js a proper retract of ¥ if there exists a proper
refraction from ¥ onto X. The above example suggests that any theory
of absolute proper retracts should take into account the geometry inherent
in the space of ends. (For absolute neighborhood proper retracts this was
not necessary. Essentially this is because if X C Y, then X hag a closed
neighborhood V' in ¥ so that the inclusion of X into V is end-preserving
%n the sense described in the next Daragraph.) We shall be interested only
In the case in which the Freudenthal compactification iy ‘a metric space,
80 we shall restrict ourselves to the clags X of locally compact separable
metric spaces X for which QX is compact.

icm°®

Theory of absolute proper retracis 243

Suppose f: X - Y is a proper map. Then f is end-preserving it Ff|EX
is injective. Now, X ¢ X' is said to be an absolute proper retract if for each
space. ¥ ¢ X' and end-preserving embedding h: X - ¥, A(X) is a proper
retract of Y. For such an X, we shall write X ¢ APR.

Suppose now that X ¢ APR. Then FX is a compact metrie space and,
as a consequence, we can suppose that FX lies in @, the Hilbert cube.
It follows from well-known characterizations of the Freudenthal com-
pactification that ¥(Q— EX) is Q. Therefore the inclusion of X into
(@— EX) is end-preserving, and hence X is a proper retract of (Q— EX).
Since (Q—EX) ¢ ANR, we have X ¢ ANR. As a matter of fact, we can
suppose that X is embedded in @ as a Z-set, from which it follows
that (Q— EX) is contractible, and hence an absolute retract. (The informa-
tion on Z-sets required for our purposes can be found in [1].) Also, since
no compact space is a proper image of a mnon-compact space, X must be
non-compact. Thus we have the following result. ’

TueorEM 2.2. If X ¢ APR, then X is non-compact and X ¢ AR.

The converse of Theorem 2.2 is false. For example, let B ‘denote
& 3-cell and let p e BAB. Let E*= BAdB—{p} and H = B— {p}. Then
the inclusion of E? into H is end-preserving. If there were a proper retrac-
tion #: H — &2, then Fr would yield a retraction of B onto Bd B, an impossi-
bility. Hence E? ¢ APR. :

We wish now to classify the APR’s among the ANR’s. The results
of the next section shall provide the necessary tools for this.

3. The Freudenthal compactification of an SUV®- ANR. Suppose X e ANR,
There are apparently few known results which connect some geometric
property of X with the property of having a certain compactification X such
that £ ¢ AR. In this section we provide one such result where X is FX.
This result will then be ajpplied in the next section to obtain the classifica-
tion of the APR.

- The geometric property we use is called property SUV®, and if X has
this property we write X e SUV*®. For information on property STUV®
and its geometric significance, see [5], [8], and [9]. For our purposes we
need not even state the definition of property SUV® (given in [5] and [8]),
but shall require only statements (x) and (+#) below. In these statements,
by tree we mean a locally finite, connected and simply connected simpli-
eial 1-complex.

(%) If X ¢« ANR, then X ¢ SUV®if and only if there exists a tree T such
that 2 is property homotopically dominated by 7. (This follows from
[8; Corollary 3.5] and [2; Theorem 3.12].)

(##) If X e SUV® and X is embedded as a Z-set in the @-manifold I,
then there exists a tree T such that X has arbitrarily close closed neigh-
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Tf X is a space and X' C X, then X’ is an unstable subset of X if there
exists a homotopy H: X xI—X such that H(z,0)=2 for all z¢X
and Hz,t) ¢ X’ for all e X and 0<<?<<1. (See [6].)

Now we are in a position to state the main result of this section;
it was inspired by, and answers, a question raised by T.A. Chapman
during a coffee-break conversation with the author.

TaEoreEM 3.1. Suppose X is a locally compact connected metric ANR,
Then X ¢ SUV® 4f and only if

(1) FXeAR, and
(2) BX is an unstable subset of FX.

We precede the proof of Theorem 3.1 by threc lemunas. The first of
these has an easy proof and was stated as Lemma 2.2 of [8]. We restate it
here for convenience.

Levua 3.2. If T is o tree, then FT ¢« AR and BT 1s an unstable subset
of IT. ’

Lewnis 8.3. Suppose X'CXCY and r: Y»X dis a relraction.
Then X' is an unstable subset of X if r~(X") is an unstable subset of Y.

Proof. Let H: ¥ XI—Y be a homotopy such that H(y, 0) = y for
allye Yand H(y,t) ¢ r X Vforally e Yand 0 < ¢t < 1. Define @: X x [ - X
by G(z,1)=r(H(z,1). Then G(z,0)=rH(=, 0))=r(w)=x for all
seX. T 2eX and 0<i<l, G(z,t)=rH(w,1)¢X" since
H(z,t) ¢ »(X'). Hence X’ is an unstable subset of X.

Lenva 3.4, If T is a tree, then F(TX Q) e AR and B (T X Q) is an
unstable subset of F (T X Q).

Proof. If ¢ iy a positive integer and 0 <t < 1, let It = [—t, t]. We

let Q;= [T I%, and we let §, be our model for Q. Let g: FT—[0, 1] be
=1

a map such that ¢(z) = 0 if and only if @ ¢ BT. Lot ¥ = {(, ) e FT X
X QY € Quy} and Yy={(&,9) ¢ Y|we BT}. Tt is casy to construct a re-
traction r: FT X @ =Y such that #~(Y,) = BT x Q. It is also easy to show
that the pair (¥, Y,) is homeomorphic to the pair (F(7 % @), B(T x Q)
Now, by Lemma 3.2, FT ¢ AR, and hence T X () ¢ AR. Then, since Y is
a retract of FI'xQ, Y ¢ AR -and, since Y = F(I'%Q), F(T'xQ)e AR.

By Lemma 3.2, BT is an unstable subset of FT. Tt follows easily
that BT x @ is an unstable subset of F7T x Q. Since 1 (Y,) = ET xQ,
it follows from Lemma 3.3 that ¥, is an unstable subset of Y. Since
(Y, ¥o) = (F(TxQ), B(TxQ), B(TxQ) is an unstable subset of
F(TxQ).

Proof of Theorem 3.1. Suppose first of all that X « SUV®. By
[1; Theorem 3.1], we may suppose that X is a Z-set in K = Q— {pt}.
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Since X ¢ ANR, it follows from Theorem 2.1 that there exist a neigh-
borhood U of X in K and a proper retraction s: U —.X. By (%), there
exist a tree I and a closed neighborhood W of X in Q such that WC U
and W= Tx Q. We denote s|W by s*. Since s* is proper, s* extends to
Fs*: FW -+FX. Hence, regarding FX as a subspace of FW,FX is a re-
tract of F'W via a retraction r=Fs* so that r~{EX)= EW. Since
W= T'xQ, it follows from Lemma 3.4 and Lemma 3.3 that X ¢ AR and
that EX is an unstable subset of FX.

Now suppose that FX ¢ AR and that BX is an unstable subset of FX.
We may regard FX as being embedded in  so that EX is a Z-set. Tt is
easy to construct a tree 7' C (Q— EX) so that T is a strong proper deforma-
tion retract of (@ —HX). From this it follows that 7 and (@—EX) are of
the same proper homotopy type and hence, by (+), that (@—EX) e SUV™.

By [8; Lemma 2.1] there exists a retraction s: @ —»FX such that
${@Q—EX)CX. Then r= s|(Q— EX) is a proper retraction of (Q—EX)
onto X. It follows that X is properly homotopically dominated by
(@Q— EX). But (Q—EX) < SUV™ and so, by (), X ¢ SUV™.

In the second half of the above proof, the general hypothesis that
X ¢ ANR follows from the fact that X is an open subset of F.X. , assumed
to be an AR. In the first half of the proof, the hypothesis that X ¢ ANR
is necessary, and cannot be replaced by the weaker condition that X be
locally contractible. A compact example is the space Y construeted in
[3; Corollary 11.2, p. 126], and non-compact examples can be obtained by
attaching a tree to Y at its vertex. (My thanks to B.-J. Ball for pointing
this out.) One can also construct in B* a 2-dimensional locally connected
(although, of course, not locally contractible) space X such X e SUV* but
FX ¢ AR.

4. The classification of absolute proper retracts. We are now equipped
to prove the main classification theorem for APR’s.

TuEOREM 4.1. Suppose X is a locally compact metric space. Then
X ¢ APR if and only if X is non-compact, X ¢« ANR, and X e SUV™,

Proof. Suppose first of all that X ¢ APR. We have already seen,
in Theorem 2.2, that X is non-compact and X ¢ ANR. We may assume
that FX is embedded as a Z-set in @, from which it follows, as in the proof
of Theorem 3.1, that (@— HX) ¢ SUV*™. The inclusion of X into (Q—EX)
is end-preserving, so that X is a proper retract of (Q— BEX). Hence, X is
properly homotopically dominated by (@— EX) and, by (), X e STUV®.

Now suppose that X is non-compact, X ¢ ANR, and X ¢ SUV™.
Since X « SUV™, X is separable and connected, hence X ¢ X. By The-
orem 3.1, FX ¢« AR and FX is an unstable subset of FX. Also, since X is
non-compact, BX is non-empty. Now suppose ¥ ¢ X and that h: X - ¥ is
an end-preserving embedding. Then Fh is an embedding of FX into FY.
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Let X* = (FR)(FX), and let f: ( U (BY)>X* be a map such that
fIX* = idy. and f(EY)C (Fh) (EX ) (The existence of f follows from the

fact that every non-empty closed subset of a compact, 0-dimensional
space is a retract of that space.) By [8; Lemma 2.1], f extends to a map
f* FY->X* such that f(Y—EY)Ch(X). Define r: ¥-h(X) by
7(y) = f*(y) for all y ¢ ¥. Then r is a proper retraction of ¥ onto 7(X),

and thus X ¢ APR. '
Combining Theorems 3.1 and 4.1, we have the following

TaEOREM 4.2. Suppose X is o locally compact metric space. Then
X ¢ APR if and only if X is non-compact, F.X ¢ AR, and BEX is an unstable
subset of FX.

5, Some extension theorems for proper maps. While not going deeply
into the theory of APR’s at this time, we shall at least give the obvious
analogs of the well-known extension theorems of [3; Chapter IV, Sec-
tion 4].

To simplify the statemen‘ns of these results, we shall introduce the
following notation: (X, X,) e £ shall mean that X, is a closed subspace
of X, each of X and X, are in the class X, and the inclusion of X, into X
iy end-preserving.

The proof of the following theorem is evident and shall be omitted.

TEEOREM 5.1. Suppose ¥ is a locally compact metric space and X is
a closed subspace of Y.

a) If X ¢ ANR, then there exists a neighborhood U of X in Y such
that if Z is a space and f: X —Z is a proper map, then f extends to a proper
map f*: U-2Z.

(b) If (X, XY)e X', X « APR, Z is o space, and f: X —Z is a proper
map, then f extends to a proper map f*: ¥ >Z.

THEOREM 5.2. Suppose X ¢« X. Then X e APR if and only if for each
{Z, Zy) € X7, every proper map from Z, into X extends to a proper map from Z
anto X.

Proof. Suppose first of all that X ¢« APR. Suppose (Z, Z,) ¢ X" and
f: Z, - X is a proper map. Then Ff maps the pair (FZ,, EZ,) into (FX, BX).
Since the inclusion of Z; into Z is end-preserving. Ff extends to a map G of
(FZ,) v (BZ) into FX such that G(EZ)C EX. Now, FX ¢ AR and BX is
an unstable subset of FX so, by [8; Lemma 2.1], there exists a map
k:# FZ->FX such that k|(FZ0) v (BZ) = G and k(FZ—(FZ) v (BZ))C
CFX—EBEX = X. Define f*: Z—X by f*(2) = k(2) for all z ¢ Z. Then f* is
proper and f*|Z, = f.

To prove the sufficiency of the given condition, suppose ¥ ¢ X and
that h: X - Y is an end-preserving embedding. Then (Y, h(X)) e 2 and
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7 h(X) - X is proper, so there exists a proper map g: ¥ —X such that
for all y e 1(X), g(y) = A™*(y). Let r = Jiog: T —h(X). Then r is a proper
retraction of ¥ onfo %(X), and hence X ¢ APR.
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