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Spaces defined by topological games *
by

Rastislay Telgdrsky (Bratislava)

Abstract. A pursuit-evasion game G (K, X) in which the pwrsuel and the evader
choose certain subsets of a topological space X in a certain way is defined and studied
here. Although this game resembles that of Banach-Mazur, it provides for completely
different methods and problems to be introduced. Besides the thorough study of the
game many interesting topological applications are investigated. Establishing the close:
relation between spaces of the class K and the space X in case of a winning strategy for
one of the players makes it possible to prove many new theorems for different types of
topological spaces (e.g., a very general product theorem for paracompact spaces is estab-
ligshed), Many open questions and research problems are stated throughout the paper.

Introduction. Since its introduction the theory of games has found
extensive applications in many scientific fields. D. Gale and F. M. Ste-
wart [7] have introduced and studied the games of perfect information
with -an infinite number of strategies. The notion of a topological game
with perfect information was introduced by C. Berge [2]. One specific
game of this type is that of Banach-Mazur (see J. C. Oxtoby [17], Chap-
ter 6). Since game-theoretical methods were implicitly used in the solution
of some topological problems (e.g., [1] and [18]), it seems appropriate
to conduct a more thorough investigation of the relation of game theory
and gemeral topology.

In the present paper we define and study the game G(K, X) and
its applications to different problems in general topology. Although this
game resembles that of Banach-Magur, it provides for completely dif-
ferent methods and problems to be introduced. We focus our attention
on topological and not on logical or set-theoretical aspects.

For a better orientation the paper is divided into 16 sections, each
containing only the results clogely related to the title. Section 1 contains
the basic notation and the definition of the game G(K, X). Section 5 is

* The first draft of this paper was written during my stay at the Mathematical
Institute of the Polish Academy of Sciences, Warsaw, May-July, 1972. Some results of
this paper were presented at; a Colloquium on Topology, Keszthely (Hungary), June 19-23,
1972. ’
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concerned with s.c. K-covers which are related to stationary strategios
and to some cover properties of spaces. In Section 9 gane-theoretical
properties of K-scattered spaces are studied. In Section. 14 we consider
games in product spaces which permit us to prove several new results
on the paracompactness of product spaces. Section 15 is dev oted to now-
here locally K spaces which form a dual class to K-seattered spaces.
Tinally, Section 16 treats of the determinacy of G(K, X).

The author in indebted to Professor C. Ryll-Nardzewski for discus-
sions and help in the preparation of this paper.

1. The games, Bach space considered here i assumed to be completely
regular and each map is assumed to be continuous. Spaces are denoted
by the letters X, ¥,-Z, ... By ClxE (IntxH) we denote the closure (resp.

the interior) of the subset B of X. 2% denotes the family of all closed

subsets of X. The set of all natural numbers 0,1, 2, ... is denoted by N
and natural numbers are denoted by m,m,k, .. The Greek letters a,
By 7, ... denote ordinal numbers.

The axiom of choice is used often and without special mention,
but 16.16-186.18.

The topological terminology and some basic facts are taken from
R. Engelking’s book [5].

Let K denotes a non-void class of spaces for which X e K implies
2% CK. i
'~ We shall take for K, in particular, the following classes of spaces:

1 — the class consisting of all one-point spaces and of the empty space; .

1:‘ — the class of all finite spaces; C— the class of all compact spaces;
¢ —the class of all spaces which are complete in the sense of Cech;
D —the class of all discrete spaces; and some other derived classes
(FK, oK, DK, LK and SK), which will be defined later.

For any class K and for any space X, ¢(K, X) denotes the following
positional game with perfect information. There are two players I and IT
(the pursuer and the evader). They choose alternatively consecutive
terms of a sequence (Ey: n ¢ N) of subsets of X go that each player knows
K, By, By, ..., By when he is choosing B, ;.

A sequence (Hy: n e N) of subsets of X is o play of (K, X) if J= X
and if for each n e N:

(1) B,,,, is the choice of I;

(2) Hyyys is the choice of II;

(3) Bopyar e K5

(4) Hn e 25,

(8) Bopiy C By
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(6) Bopys C o
(7) Bopyy 0 Bapyn = 0.

The player I wins if () {E,,: neN}= 0. The player IT wins if
() {Bap: n e N} 5 0. )

1.1. Remark. The game G(K,X) is a special case of a game
@,(K, X), where o is a given ordinal number. The players I and IT choose
conseeutive terms of a transfinite sequence (B,: £ < a) of subsets of X:
The game @, (K, X) is implicitly used by A.V. Arhangel’skif [1].

1.2. Remark, The game ¢(I, X) was discovered independently by
F. Galvin. A. Bhrenfeucht, F. Galvin and J. Myeielski have some un-
published results on G(I, X).

A finite sequence (Hn: m < n) of subsets of X is admissible for
G(K,X) if the sequence (Fy, Hy,..,En,0,0,..,0,..) is a play of
G(K, X).

A function s is a strategy for I (II) in G(K, X) if the domain of s
consists of admissible sequences (B, ..., Bn) with n even (resp.-odd);
it §(Hyy ooy Bu C2% and it (B, ..., B,, B,,,) is admissible for B,
= §{By, .., Iin).

A function 8 is a many-valued sirategy for I (II) in G(K, X) if the
domain of § consists of admissible sequences (Hy, ..., Ea) with # even
(vesp. odd) if 8(By, ..., Ba) C2% and if (By, ..., By, Bpyy) 18 admissible for
each B, ., € 8(By, ..., B,).

A function s: 2% 9% ~ K is a stationary strategy for I in G(K,X)
if s(B)C I for cach B ¢ 2%, A play (Eu: ne N) of G(K, X) is played with
the stationary strategy s if H,,., = s(H,,) for each neXN. :

A funetion s: 2% ~ K—2% is a stationary strategy for II in G(K, X)
it s(F)~E = 0 for each Ee2X A K. A play (Bp: nelN) of G¢(K, X) is
played with the stationary strategy s if Fopig= $(FBonss) 0 Bon for
each n e N. :

A strategy s is said to De winning tor I (for II) in G(K, X) if I
(vesp. TI) using s wins each play of G(K, X).

I(K, X) (IT(K, X)) denotes the set of all winning strategies of I
(vesp. of II) in G (K, X). oo

I(K, X) (IT4{(K, X)) denotics the set of all stationary winning
strategios of I (resp. of II) in G(K, X). o

Clearly, To(K, X) # 0 implies I (K, X) 0 and II;(K, X) # 0 implies
II(K,X) 0. : o

A space X iy said to be K-like if I(K, X) 5 0. A space X is said to
be anti-K-like if II(K, X) + 0. .

If I(K, X) 0 and it K=F, C, ¢ or D, we shall call X finite-like,
compact-like, Cech-like or discrete-like, respectively.
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2. Subclasses and closed subsets. The following theorem. follows easily
from the definition of the winning strategy:

2.1. TuroreM. Let Ky CK,. Then

21.1. I(K,X)CI(K,,X) and therefore I(K, X) #0 implies
I(K,, X) #0. :

2.1.2. II(K,, X)C II(K;, X) and therefore IL(K,, X) 0 implics
II(Ky, X) #0.

By 2.1 it follows that

9.9. COROLLARY. I-like implies finile-like, which implies (:omjmot-lqﬁ/w,
which implies Cech-like; finite-like implies discrete-like,

9.3. CoroLLARY. Anti-Cech-like implies anti-compact-like, which im-
plies amti-finite-like, which implies anti-1-like; anti-diserete-tike implies
anti-finite-like. :

9.4, TurorEM. Let B 2. Then I(K,X) = 0 implies I(K,H) +# 0.

Proof. Let seI(K,X). We shall define teI(K,B). Let us set
B,=X, F,=F, B, =s(B), F=F,~E and ()= F,. Then F,
e2% N K. Let us take F, 2% with FynF,=0. We set F,=1F,, T,
= s(Ey, By, B,), F, = By and t(F,, Fy, Fy) = F;. Continuing in this man-
ner, we get the play (Fn: neN) of G(K, X) and the play (Fu: n e N) of
G(K, B). Since B,=F, for each n>1, we have [ {Hm: neN}
= () {F,,: neXN}. Since seI(K,X), we have () {Fy,: n e N} = 0. Thus
N {Fop: n e N} = 0. Henece t e I(K, H).

2.5. TEHEOREM. Let B ¢ 2%. Then IT(K, B) # 0 implies II(K, X) # 0.

Proof. Let s e II(K,E). We shall define fe¢II(K, X). Let us set
Ey=X and F,= E. Let us take H, e2X ~ K. We set ¥, = I.~ Ky,
F,= s(F, F,), By = F, and t(B,, B,) = H,. Let us take B, ¢ 2* ~ K with
E,CEB,. We set Fy=E,, F,= s(ly, ', ,,T,), B,=F, and

(B, By, B, B))=E, .

Continuing in this manner, we get the play (Eu: n e N) of G¢(K, X) and
the play (Fn: ne N) of G(K, E). Since By = I, for ecach n >1, we have
N {By: meNy=[){Fy: neN} Since sell(K,H), we have [V{ll,:
neN} 0. Thus () {E,,: n e N} 5£0. Hence tell(K,X).

- 3. Maps.

3.1. THEOREM. Let us assume that there exvists a map f from X onto ¥
for which f(B) ¢ 2% ~ K, whenever B ¢ 2% A K,. Then I{K,, X) v 0 implies
I(K;,Y) 0.

Proof. Let selI(K,,X). We shall define teI(K,,Y). Let us sob
By=2X, B, =s(B), ¥y=Y, F, = f(B) and 1(F,) = F,. Since B, ¢ 2% A
~K;, we have F, 2¥ nK,. If F, is chosen in 2% so that I, ~ F, =0,
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then letting Hy = f~'(F,) we get By ~ By C Y (By) n YY) = f4F,) ~
NI = [Ty A Ty = 0. We set By = s(E,, By, B,), F; = f(H,) and
1(Fy, Fy, Fs) = Fy. Then Iy C Iy, because B, C H,. Moreover, Fy « 2% ~ K,.
Continuing in this manner, we get the play (F.: n e N) of G(K;, X) and
the play (#: n e N) of G (K, X). Since s e I(K;, X), we have 1) {B,,: n ¢ N}
= 0. Since [ {By:n e N} = "V {f Y Fyu): 1 e N} = fH) {Fon: m ¢ N}) and
f(X) =Y, we have () {Fy,: ne¢N}=0. Hence i e I(K,, ¥).

From 3.1 we get

3.2. COROLLARY. Let us assume that there exisis a map from X onto ¥.
Then

8.2.1. If X 4s finite-like, then Y is also finite-like.

3.2.2. If X is compaet-like, then Y is also compact-like.

3.3. TurorEM. Let us assume that there exists a closed map from X
onto ¥ for which f~(H) € 2% ~ K; whenever B e 2¥ ~n K,. Then I(K,, ¥) +# 0
implies I(K;, X) #0.

Proof. Let sel(K,, ¥). We shall define teI(K;, X). Let us seb
By=X, V=Y, By = s(F,), By = f7(F) and t(F,) = E,. Since F; e2¥ .
A K., we have B, e 25 ~ K,. If B, is chosen in 2% so that E, ~E,=0,
then, letting F, = f(%,), we have Iy ~ Fy= 0. For if yeF,nF,, then
there exists an @ ¢ B, with f(z) = y. Since B, = f~(F,) and y ¢ Fy, we
have @ ¢ B,. Thus e F, ~ B, and we have obtained a contradiction.
We set Fy = s(Fy, Iy, Iy, By = By ~f7(Fy) and t(F,, By, By) = Hy. Then
B,CE, and B, 2 ~nK,. I B, 2%, B, nE,= 0 and B, CE,, then we
set I, = f(B,). We claim that Fy~F,=0. Tf yeFynF,, then there
exists an 2 ¢ ¥, with f(z) = y. Since B, CE,, we have x ¢ E,. Since y ¢ Iy,
we have @ < f~(F;). Hence ¢ By ~ B, and we have obtained a contra-
diction. We set Fg= sy, ..., Fy), By= B ~f(F;) and t(Eyy ooy By)
= B;. Continuing in this manner, we get the play (Bn: n e N y of G(K;, X)
and the play (Fu: neN) of G(K;, Y). Since s eI(K,, Y),” we have
N {Fy,: e N} ==0. Since

() (Bt e N} == () Bz e N} 2F () (Bt me N

we have (7 {H,,: n e N} = 0. Hence ¢ eI (K, X).

3.4. TunoreM. Let us assume that there exists a dlosed map f from X
onto Y for which f~Y(B) € 2% ~ K, whencver B € 2% ~ K, Then II(K,X)
s 0 implies T1(K,,Y) 5 0.

The proof of 3.4 is similar to that of 3.3 and thus it is omitted.

3.5, TrarorREM. Let us assume that there exisis a map f from X onto ¥
for which f(B) ¢ 2V ~ K, whenever B « 2% ~ K. Then II(Ks, Y) = 0 implies
II(K,, X) #0.
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The proof of 3.5 is similar to that of 3.1 and thug it is omitted.

From 3.5 we have ‘

3.6. COROLLARY. Let us assume that there exisls a map from X onto Y,
Then

3.6.1. If Y is anti-finite-like, then X is also anti-finite-like (cf. 3.2.1),

3.6.2. If Y is anti-compact-like, then X s ualso anti-compact-like
(cf. 3.2.2).

Recall that a map f from X onto ¥ is called perfect if F(1) e 2 for
each B < 2% and if f~Y(y) e C for each y « X. A clasy K is said to be perfect
if the condition X e K is equivalent to Y e K, provided that there exists
a perfect map from X onto Y.

Combining 3.1, 3.3, 3.4 and 3.5 we geb

3.7. TuroreM. Let K be o perfect class and let there emist a perfect map
from X onto Y. Then '

3.7 I(K, X) 0 iff I(K,Y) 50, and

3.7.2. II(K, X) # 0 4ff II(K,Y) 0.

It is well known that the classes C and C are perfect. Henee, by 8.7,
we have

3.8. COROLLARY. Let us assume that there ewists a perfect map from X
onto Y. Then

3.8.1. X is compact-like iff Y is compact-like;

3.8.2. X is Cech-like iff ¥ ‘is Cech-like;

3.8.3. X is anti-compact-like iff Y is anti-compact-like;

3.8.4. X is anti-Cech-like iff Y is anti-Cech-like.

4. Finite and countable unioms. We denote by FK the clags of all
X = {Xn: m<n}, where {Xn: m < n} C 2¥~K and nedN.

Clearly, KC FK and X « FK implies 2% C FK.

4.1. TuworeM. I(K, X) = 0 4ff I(FK, X) -4 (.

Proof. (=) Let I(K,X) s 0. Then I(FK,X) #0 by 2.1.1.

(=) Let s ¢ 1(FK, X). We shall define t ¢ I'(K, X). Lot us ot B, = X,
By = s(B,) and F,= E,. Since B, « 2% ~ FK, wo have

B, = U {'Hl, mt TS (I‘VTJ} y

where {H, ,,: m <k} C2% ~ K. We set I, = H,, and ¢(F,) = . Lt us
take F, 2% with B A Fy= 0. We sct Fy=F, ~ H,, and (F,, ¥y, 1)
= F3;. Continuing in this manner, we get the admissible sequence
(Fys <oy Fyp,)) for G(K, X). We set Fopppr = P ~ Hy o and (7, .y Fog)
= Fy,y. Let us take Fi,,, 2% with B, ., CF, and F

7 AR A
= 0. We set By = Ty, 1. Clearly, B, n B, = 0. We st == s (fy, By, By).
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Since By € 2% ~ FK, we have By = J {H, ,+ m < k), where
"LHS,m: m < /‘3} E 2¥nK.

Continuing in this manner, we get the play (Hy: n ¢ N) of G(FK, X) and
the play (Fa: n ¢ N) of 6(K, X). Since s ¢ I(FK, X), wehave ) {Hy,: ne N}
= 0. Since {H.,: neNYC{F,: neN}, it follows that ({H,: neN}
=) {I"y,: m e N} Thug () {Fy: neNy= 0, Hence teI(K,X).

4.2, Trrorem. TI(K, X) 0 iff II(FK, X) + 0.

The prool of 4.2 is similar to that of 4.1 and thus it is omitted.

TFrom 4.1 and 4.2 immediately follow

4.3. CoroLrARY. X 48 L-like iff X ds finite-like;

4.4, COROLIARY. X ds anti-1-like iff X is anti-finite-like.

We denote by oK the class of all X = {J{X,: neN}, where
{X: %eN}Eer\K.

Tn the case of K== C, € or D, the space X < oK is called ¢-compact,
o-Oech or o-discrete, respectively.

Clearly, K C FK C oK, and X ¢ oK implies 2% C oK.

4.5. Tnuorem. If X ¢ oK, then Is(K, X) # 0.

Proof. Let X oK. Then X = | {Xs: neN}, where {Xn: neN}
C2X A K. We shall define s e I;(K, X). I B = 0, then we set s(¥)= 0.
T Ee2¥ and I 50, then we set s(B)=F n X,, where

n = min{m e N: B~ Xp < 0}

Let 71 25— {0} »N be the function defined by setting 7 (E) = n. Let
{By: n¢ N} bo a play of G(K,X) with By, = 8(Hy,) for each neXN.
We set B = () {Ha: ® N} Suppose that I 7 0. Then 7(B) > 7 (Hopis)
> 1(B,,) for cach n ¢ N, because Hy,,s N 8 (B,,) = 0 for each n e N. Hgnce
we have 7(B) = oo and we have obtained a contradiction. Thus E = 0.
Hence s ¢ I:(K, X). . N

4.0. Q,UmﬂfmdN. Ts To(K, X) # 0 if X = | {Xn: n e N}, where Xne2
and T,(K, Xu) # 0 for cach n e N¥

47, Punorisy. If X = ) {Xa: ne N}, where Xn 2% and I(K, Xa)
#0 for each m e N, then I(K,X) # 0. ‘

Proof. Liet X == | J {Xa: n ¢ N}, where {Xun: n eN}C 2% anc} I(K, X.fn)
# 0 for each n e XN. We decompose N into & family {N%: neN} of in-
finite subsets. Lot s, ¢ I (K, Xo) and let {k: n € N} be the set N, o;'dered
a8 o strictly incroasing sequence. It (Hu: m e N) is a play of G(K, X)%
then (X, ~ Hopgy Xo 0 Haggias Lo 0 By Xy 0 By ..) is a play o
(K, Xy ~ By,). By 2.4 we have I(K, X, By,) # 0. et

spe I(K, Xy Byy,) -
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Then we have [ {X, ™ Be,: ne N} = 0 provided that the player I
uses §;. Hence X, n [ {By,: # e N} = 0. Since N, is infinite, it follows
that () {Ey,: ne N} =) {By: ne N}. Thus Xy~ [) {By,: neN}=0.
Tt is clear now that s  I(K, X) can be defined by the alternate appli-
cation of strategies sy ¢ I(K, X,) which is prescribed by the decomposition
{Ny: ke N} of N. Thus I(K, X) # 0.

From 4.7 and 2.4 immediately follows

4.8. CoROLLARY. If E is an F,-set in X and if I(K, X) + 0, then
I(K, E) 0.

From 4.7 we also get

4.9. CoroLrARY. If X is countable (o-compact, o-Clech, o - discrete),
then X is finite-like (compact-like, Cech-like, discrete-like, resp.).

4.10. QuestioN. Does I(sK, X) # 0 imply I(K, X) 07

4.11. TusoreM. Let us assume that IT(K, X) #0, Yne2¥ A K for
each neN, ¥=1J{¥n: neN} and 25¥ n K C 2% ~n K. Then

IIK,X—Y) £0.

Proof. Let s e II(K, X) and ¥ = (J {¥u: n e N}, where Yy, e 25X n K
for each n ¢ N and 25-¥ A KC 2% ~n K. We shall define ¢ ¢ 17(K, X— T).
Let us set B,=X, B, =Y, B,=s(H, B) and F = X—1Y. Let uy
take F,e2X5 ¥ ~K Then F,e2¥nK. We set Hy= H,~F, I,
=s(Ey, B, B,, B,) and F,= E,—Y. Then F, 2% Y. Wo sct (7, )
= F,. Then (Fy, F, F,) is admissible for G¢(K, X—Y) and (H,, ..., B,) is
admissible for G(K, X). We set E;=E, nY, and Hy= s(H,, ..., T).
Let us take Fy ¢ 2X~% ~ K with F, CF,. We set B, = B, n F;. Continuing
in this manner, we get the play (Bx: nelN) of G(K, X) and the play
(Fn:n e N) of G(K, X—X). Since s « IT(K, X), we have () {By,: 0 e N} 5 0.
Itis clear that () {Hy,: n e N} C X—T. Since {Fy,: n e N} C {F,,~Y: ne N}
it follows that (M) {F.,: n e N} 3£ 0. Hence ¢ ¢ II(K, X—Y).
EECYCX and E«C, then F «2¥ ~2Y. Hence, by 4.11, we gob
. 4.12. COROLLARY. If X is anti-compact-like and Y is a o-compact
subset. of X, X—Y is anti-compact-like.

) 5. K-covers. A family # of open subsets of X is said to be a K-cover
if for each B ¢ 2% ~ K there exists an A4 ¢ 4 for which 1 C 4; i.e. it 9% n K
Tefines st. : i

Clearly, -1-covers and open covers coincide.

5.1. THBOREM. Let I(K, X) 3 0. Then for each soquence (4, :n cXN)
of K-covers there ewists a sequence (An : m e N) such that Ay e oty for each
nelN and | ) {dn:neN}=X. '

Proof. Let s ¢ I(K, X) and let (4 : 1 ¢ N) be a sequence of K-covers
of X. For each neN and B e2¥ n K there exists an () « &, with
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EC Aq(B). We define & strategy ¢ for the player II as follows. We set
gy ooe s Boir) = () AX = A3(Bypyy) : & << m} for each admissible sequence
{Byy o5 Bopyy) for G(K, X). Let (Bt n e N) be a play of G(K, X), where
Ezn_‘_l = S(Em ) Ezn) and -Eim-{-z == t(Eoy ey E2n+1) for each n ¢ N. Since
seI(K, X), it follows that (M {Hy,: % e N} = 0. Thus N {(X—A,(B,, ) :
neN}= 0. Hence | J {4,(By,,) ineN=X. .

5.2. Rexark. The previous theorem is provable under weaker con-
ditions, e.g. if I(K', X) s 0, where K'= {Y : I(K, ¥) # 0}

From b.1 we immediately have

5.3. CorOLLARY. Let I(K,X) 52 0. Then each K-cover of X contains
a countable cover of X.

From 5.1 we also get:

5.4. CoroLLARY. If X s finite-like, then X has property G (see ‘[8],‘
p. 527).

5.5, CororLARY. If X {is compaci-like, then X is a Hurewicz space
{see [10], p. 209).

Let m be an infinite cardinal. We say that a space X has the m-Lin-
delif property (or, that X iy an m-Lindelof space) if each open cover of X
contains a subeover of cardinality < m.

By the definition, §,-Lindeldf spaces and Lindelof spaces coincide.

5.6. Tuuorem, If I (K, X) s 0 and if each B € 2% ~ K has the m-Lin-
delif property, then X also has the m-Lindelsf property.

Proof, Liet /4 be an open cover of X. Let % be the family of all BC X
for which there ecxisty a family {d;:4e¢I}C# with cardl <m and
|J{di:iel)=B. Assume that cach Fe2* K has the m-Lindelof
property. Then B is a K-cover of X. Assume that I(K, X)# 0. Then,
by 5.3, $ containy a countable cover {B,:neN} of X. However,

CBy=J {4 : i e I} for some subfamily {44 : ¢ ¢ I} of A with cardl, <m.

Henco {Aq: i ely and n ¢ N} is a subcover of £ and its cardinality is < m.

Since each o-compact space hay the Lindeldf property, we have
from 0.6 the following

5.7. Corotrary. If X is oC-like, then X' has the Lindelof property.

5.8. TmoreM, If there exists a K-cover 4 of X so that no countable
subfamily of o covers X, then IT(K, X) 0.

Proof. Wo shall define s « IIy(K, X). Let # be a K-cover of X for
which no countable subfamily covers' X. Then for each B e 2% A K there
exists an A (B) ¢ for which ¥CA(H). We set s(H)=X—A(B) for
each T/ e2% A K. Lot (B, : n e N) be a play of G(K,; X), where By =
= §(Byppy) ~ By, for cach n ¢ N. Thon [ {By, : 1 N} = X—U {4 (Bapp):
7 e N} 5 0. Hence s e II4(K, X). '

From 5.8 we have
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5.9. COROLLARY. If X does not have the Lindelof property, then X is
anti-aC-like (cf. B.7).
» 5.10. THEOREM. Assume that there ewists a sequence (dy :n e N) of
K-covers of X for which the following condition holds: if (An:n e N) 4s
a sequénce of sets, where Ay e &y for each n e N, then | J{du:ne N} £ X.
Then IT (K, X) # 0 (cf. 5.1).

Proof. We shall define s ¢ II (K, X). Liet (/£ : n ¢ N) bo a sequence
of K- covers of X such that if 4, e #, for eachn e N, then | J{dn:n e N} # X,
For each n e N and Ee2¥ ~n K there oxists an A,(H) e sty Lor which
ECA,B). Let (B ..., oy, be an admissible sequence for G(K, X).
Then we seb

'S'(Eo; ) E2n+1) = ﬂ {X- Ak(Ezlc-l-l) R ES W‘} N

If (Bn:neXN) is a play of G(K, X), where By, o = $(Hy, ..., By}
for each nelN, then [\ {Hy :neN}=X—J {d,(Bopyy) : neN}o£0.
Hence s < II(K, X). g

Recall that a Baire measure on X is & non-negative, rcal-valued
o-additive set function m defined ‘on the family of all Baire sets (i.e. on
the ¢-algebra generated by cozero subsets of X). A Baire measure m on X is.
said to be reqular if m(E)=inf{m(U): BCU and U is a cozero set}
for each Baire set B C X. If m is a Baire measure on X, then we set
in*(A) = inf{m(B): ACE and F is a Baire set} for each 4 C X.

5.11. THEOREM. If there ewists a regular Baire measure m on X such
that m(X) >0 and mE)=0 for each E c2¥ ~ K, then II(K,X) = 0.

Proof. Leét m be a regular Baire measure on X such that m(X) >0
and m*(E) = 0 for each B ¢ 2% ~n K. Let o, be the family of all cozero
sets U with m(U) <»-27"" for each n ¢ N, where 0 < 7 < m(X). From
the regularity of m it follows that #, is a K-cover of X for each n e N.
It Ay e &y for each ne N, then m({J {4dn:n e N}) < I {m(dy) : ne N} <
< Z{r-2™ ' :neNt=r<m(X) Hence | J{dn:neN} s X. Thus, by
5.10, we have IT(K,X) 0.

Recall that the Sorgenfrey line Ry is the real line R retopologized as
follows: the family {[z, ¥) : # < y} is taken for a base of open, sety. Clearly,
each open set in E is open in Ry. It is easy to prove that cach o- compach
subset of B¢ is countable.

5.12. TaworEM. The Sorgenfrey line is anti-oC-like.

Proof. It. is easy to check that the o-algebra generated by
{lz, ) v &< y} is the same as the o-algebra generated by {(z,y) : < y}
Let m be the restriction of the Lebesgue measure with respect to the

o-algebra. Then m is a regular Baire measure on Eg. If I} is a countable

subset of By, then m(H) = 0. Since each o-compact subset; of R is coun-

table, we have II(sC, Rs) 0 by 5.11.
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From 5.10 we have:

5,13, CorOLLARY. If X has not property "', then X is onti-finite-like
(cf. b.4).

514, COROLLARY. If X 48 not @ Hurewics space, then X is anti-compact-

) like (¢f. b.h).

6. Psendo-characters. The psendo-character w(E, X) of a subset B of
a space X is the least cardinal number m for which B is the intersection
of m open ot

6.1, MuroruM. Let T(K, X') o 0 and w(B, X) < m for cach E e 29X K,
where m 48 an infinite cardinal. Then X has o cover # such that £C 23X A K
and card /4 < m. ‘ -

Proof. Let I(K,X)0 and 9(#, X)<m for each He2¥ K,
where m is an infinite cardinal. Then for each F e2* and Fe2¥ A K
with I C T there exists a tamily (2, ) C 2% such that | {H:H < S (H, F)}
= EB—F and card8(H,I") < m. Let s ¢ (K, X) and let Ty, be the set of
all admissible  sequences (Hy, ..., B,,) for G(K,X), where By, =
= §(Byy oy Byy) andl Hyyyp € S(Byyy Buyyy) for cach k< n. We set £, =
= {8(Byy vy By,) 1 (By, ..., By,) € Ty} for each e N. It is easy to point
out that card 4, = m for cach neN. Let us set = |J {#,: neN}.
Then # C 2% ~ K and card # =< m. It remains to prove that # covers X.
Suppose that there exists a point » in X—[) {4 : 4Ades#} Then
@ ¢ s(Hy) = H,, where J,= X. Thus there exists an H,eS(H,, H,) for
which 2 e B,. Since x ¢ s(H,, B,, H,) = T, there exists and B, e § (Ey;, Hy)
for which # ¢ B,. Continuing in this manner, we infer the existence of a play
(Bn:meN) of G(K,X), where (Ey,..,HB,)eT, for each neN and
) {Byy, : n e N} £ 0. Wo have obtained a contradiction with s ¢ I(K, X).
Hence 4 covers X. ’

From 6.1 we have the following P

6.2. CororrAry. Let T(K,X) 40 and (B, X)<m and cardB<m
Jor each 1 ¢ 2% ~ K, where mu is an infindte cardinal. Then card X < .

6.3. TroweM. If cach T € 25 A K is a Gy-set in X, then the following
conditions are equivalent: ‘

6.3.1. I(K, X) + 0;

6.3.2. Ty(K, X) 4 0;

6.3.3. X ¢ oK.

Proof. Assumo that cach He2¥ A K is a Gy-set in X. If X e ok,
then I(K, X) + 0 by 4.5. If I,(K, X) # 0, then obviously I(K, X} # 0.
It I(K, X) # 0, then X ¢« oK by 6.1.

As a consequence of 6.3 and 4.9 we geb
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6.4. COROLLARY. Let X be a space such that each I ¢ 2% s ¢ G- set
in X. Then

6.4.1. X ds finmite-like iff X is countable.

6.4.2. X is compact-like iff X is o-compact.

6.4.3. X is Cech-like iff X is o-Cech.

6.4.4. X ds discrete-like iff X 48 o-discrete. ‘

Since compactness and Cech completeness are preserved by fand 1,
where f is a perfect map, we have from 6.4 and 3.8 the following

6.5. THEOREM. Assume that there ewists o perfect map from X onto Y,
where each B e 2¥ is a Gy-set in Y. Then

6.5.1. X s compact-like iff X is o-compact;

6.5.2. X is Cech-like iff X 4s o-Cech.

7. Discrete unions. We denote by DK the class of all spaces X for which
there exists a discrete cover {Xy: ¢ eI} with {X;:4¢ eI} CK.

Let us remark that DF = D, DD = D and DC = €. Clearly, X « DK
implies 2% C DK,

7.1. Lemwa. If X has o discrete cover {Xy: 4 e I}, where T(K, Xy) 5 0
Jor each i eI, then I(DK,X) 0.

Proof. Let us take s;eI(K, X;) for each iel. We shall define

8 «I(DK, X). Let us set By= X, B, = | {sX}) : ¢ el} and s(W,) = E,.
Clearly, B, <2¥ A DK. Let (E,, ..., B,,) be an admissiblo sequence for
G(DK, X}, where Ey,,, = s(H,, .., By) for each k< n. Wo sct By
= U{s(Xsn By, ..., Xy~ B,) 10 eI} and §(Hyy ey Hgy) = By, . Clearly,
Bopyy €2 ~ DK and (X, ~ By, ..., X; ~ B,,) is admissible for 4K, X)),
where Xin Byyq = s(X; ~ By, ..., X; A EByy) for each k< n and iel.
Let (B,:neN) be a play of ¢(DK, X), where H,,, = (B, .., By)
for each n ¢ N. Then [\ {#,: ne N} = [ J{N {Xin By :neN}Y:iell
Since s; e I(K;X:), we have {Xin By ineNy=0. Thus [ {Hy,:
neN}= 0. Hence s < I(DK, X) » )
From 7.1 and. 4.7 we get

7.2. THEOREM. If X has o o-diserete cover {Xy:
and I(K, X)) == 0 for each ¢ eI, then I(DK,X) s 0,

i eI}, where Xy e 2%

8. Locally K spaces. A space X is said to be locally K if for each poinb

@ X there exists an open nbhd ¥ of 2 in X for which ClxU ¢ K. We denoto
by LK the class of all locally K spaces.

Let us remark that DK C LK, Clearly,

Let us recall that a space X is
cover of X has a o-discrete cloge
were studied by D. K. Burke [3]

X ¢ LK implies 2~ C LK.

said to be subparacompact if each open
d refinement. Subparacompact spaces,
and L. F. McAuley [11].
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8.1, Tuworss. If X 4s subparacompact and X ¢ LK, then X ¢ ¢DK.

Proof. Let & be a subparacompact space with X ¢ LK. Then X has
an open cover /&, where Clxd e Kfor cach 4 ¢ . Since X is subparacompact,
it follows that # has a ¢-discrete refinement $ with $C2%. 1t B B,
then B e 2% A K, because B C A C Clyd for some 4 4 Hence X ¢ oDK.

From 8.1 and 4.7 we get

8.2. CoronrAvy., If X ds subparacompact and X eLK, then
I(DK, X) + 0. :

9. K-scattered spaces. A space X i said to be K-scattered if for each
non-void K e 2% there oxist an @ ¢ ¥ and an open nbhd U of # in X for
which I ~ Clx 77 « K. We denote by SK the class of all K-scattered spaces.

K-seatterod spaces were investigated by A. H. Stone [21]. We shall
recall some bagie facts about K-scattered spaces. For any B ¢ 2%, B* de-
notes the set of all @ « X such that B ~ ClxT ¢ K for each open nbhd U
of in X. We set XO = X, XM= (XOP and X@ =N {X?: f< o}
for the limit ordinal a. X@ is called a K-derivative of X of order a. We
set E(X) = inf{a: X = 0} and &(X)= oo otherwise. Hence it follows
that X iy K-geattored iff £(X) = a for some «. Finally, we set X# = X©
it £(X) == a--1 and A = 0 otherwise. We denote by S,K the class of all
K-seatteved spaces X with £(X) < a.

" It is casy to point out that X@ ¢ 2% for each o, X « SK implies 2% C SK,
SK =LK and SSK == SLK == SDK == SK. In particular, SI= SF= SD’

coincide. Seattered spaces were studied by Z. Semadeni [19] and C-scat-
tered spaces were studied by R. Telghrsky [22].

9.1. TurormM. Assume that there exists o perfect map from X onto ¥.
Then

0.1.1. X 4y SC-like iff Y 1s SC-like.

012, X 48 anti-SC-like iff Y is anti-SC-like.

Proof. The clags SC is perfect by Theorem 1.3 of [22]. Hence, by 3.7,
the theoremi follows.

0.2, TgMMA. If there ewists an I e 25~ K so that I(K, B) #0 for
each X e 2% with B ~ W == 0, then T(K, X) 5 0.

Proof. Assumo that there exists an e 2% ~ K so that I(K, B) = 0

and B~ K= 0. Weo shall define s e I(K, X). Set Bp=X, B =1F and
$(Hy) == By, Lot us tako My e 2% with By » B, = 0. Then we set F“Yz B,
1;11 — 'S‘Iv'g(‘lﬂ())y ~”:} - 1/11 and S(MO; E“ jﬂz) o Eﬁ. Let us take _E4 € 2 with
BCE, and By A Jl, = 0. Wo sob Iy == By, Fy= sp(Fo, 1, F), By=TFy
and §(#y, ..., B,) = H;. Continuing in this manner, we get the play
{Bn:neN) of G(K,X) and the play (Fn:neN) of G(K,F,), where
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F,= B, ,for each n ¢ N. Since sp, « I(K, Fy), wehave (| {F,, :ne N} = 0.
Thus () {Esy : 7 € N} = 0. Hence s e I(K, X).

9.3. TaEoREM. If X is o Lindelof space and X « SK, then I(K, X) # 0.

Proof. We shall prove the statement by induction with respect
to &(X). If £(X)=0, then X = 0. Thus I(K, X)# 0. If §(X) = a+t1,
then X©@ = X# -« 0 and X¥ ¢ 2¥ ~ LK. Hence for each » ¢ X there exists
an open nbhd U, of # in X with X¥# A Olx Uz e K. If X hag the Lindelof
property, then {U,: ¢ X} contains a countable subcover {U, :n ¢ N}
of X. Hence we have X = | {ClxUs, : n ¢ N}. According to 4.7, it suffices
to prove that I(K, ClxUs,) # 0 for each n e N. Let H e {ClxUs, : ne N}
Then H ~ X#¥ 22 ~n K. If B 2% and B ~ X¥ =0 then £(H) < . Thus,
by the inductive assumption, we have I(K, H) 0. Applying 9.2 we

icm

get I(K,H) # 0. Hence I(K, X) # 0. If £(X) is a limit ordinal, then

{X¥—X© : a< £(X)} is an open cover of X. Hence for each x <X there
exist an open nbhd U, of 4 in X and an ordinal a<< £(X) for which

0Ly U, C X—X®. Thus &(ClxVa) < é(X) for each » ¢ X. Hence, by the

inductive assumption, we have I(K, ClxUs) # 0 for each x € X. If X has
the Lindelof property, then {U,: x ¢ X} contains a countable subcover
{Us, :n e N} Since X =) {ClxUs, :ne N}, we infer from 4.7 thab
I{K, X) #0.

From. 9.3 and 4.7 immediately follows

9.4. COROLLARY. If X is a Lindeldf space and X ¢ oSK, then I (K, X)

From 9.4 we get :

9.5. COROLLARY. Let X be a Lindelif space. Then

9.5.1. If X ¢ aSF, then X is finite-like.

9.5.2. If X €aSC, then X is compact-like.

9.5.3. If X ¢ oSC, then X is Cech-like.

9.6. QuEsTION. Does there exist a scattered Lindelsf space X for
which I(F, X) = 0%

9.7. TeeoReEM. If X is subparacompact and X ¢ SK, then I (DK, X) 0.

Proof. We shall prove the statement by induction with respect. to
E(X). Tf &(X)=0, then X = 0. Thus I(DK,X) 0. If &X)= a-1,
then X®@ = X¥# £ 0 and X# ¢ 2% ~ LK. Hence for each # ¢ X there exists
an open nbhd U of z in X with X¥ ~ Cly U, ¢ K. If X is subparacompact,

" then the open cover {Us:2e¢X} of X has a o-discrete refinement

{Xs : 1 eI}, where X; 2% for each ieI. According to 7.2, it suffices to
prove that I(DK, X:) =0 for each 4 eI. Let iel. Then X% ~ X;eK.
If B is a closed subset of X; with B ~ X¥ = 0, then £(H) < a, because
E@ = 0. Thus, by the inductive assumption, we have I(DK, E) 0.
Applying 9.2 (where K is replaced by DK), we get I (DK, X;) # 0. Hence
I(DK,X)+#0. If £(X) is a limit ordinal, then {X—X®:q< £(X)} is

#0.
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an open cover of X. If X is subparacompact, then {X— X@ .4« E(X)}
has a o-disercte refinement {X,:4 eI} with X; 2% for cach 4¢T. Let
ieI. Then there exists an ordinal a<C £(X) for which X;C X~ X®,
Henee &(Xy) < £(X). Thus, by the induetive assumption, I (DI{, X)) 0.
Applying 7.2, we getb I(DK, X) 0.

As a consequence of 9.7 and 4.7 we have

9.8, Conorrany. TIf X s
I(DK, X) + 0.

From 9.8 we get

0.9. CorournAry. Lel X be a subparacompect space. Then

9.9.1. 1f X e aSD, then X is D-like.

0.9.2. If X ¢oSC, then X is DC-like.

9.9.8. If X ¢ aSC, then X is C-like.

9.10. QuesrioN. T8 XN eoSK if X iy a paracompact space with
I(K, X) = 07

9.11. Quusrron. Iv T(K, X) # 0 if X is a Lindelof space for which
I(DK, X) # 0%

9.12, Tunore. If X e oS, K, then I(LK, X) = 0. .

Proof. Lot X € 65, K. Then & == J{Xn: n e N}, where Xy e 2% A S,
for cach n e N. Lot J7 ¢ 2% and n ¢ N.TE B ~ Xy 5 0, then (B ~ X% 0,
because &(Xn) << @p. We shall deline s e I(LK, X) as follows. If B =0,
then we set §(J) == 0. Let B 5% 0. Then there exists a least # ¢ N for
which B ~ Xy £ 0. Weset s (1) == (B ~ X T6is clear that s(B) 2% ~nLK
and s(E)C X for each Il ¢ 9%, Lot {B,:n e N} be a play of G(LK, X),
where Em:l == § (I, for cach n e N. Suppose that there exists an o e N {Bag:
neN}. Then there exists the least meN for which v e X,. Hence we
conclude that &(H, ~ X,) > E(H, ~ X,) > ... and this is a contradiction.
Thus ¢ e Iy(LK, X).

9.13. QuistIoN. T8 X ¢ 0S, K it L(LK,X) # 0%

Trom 912 woe gob

Q.11 Covonrary, If X e oS, D (.\feo-SmnC,XeaSwoC‘), then X 1is
D:like (LC-like, LC-like, resp.).

subparacompact and X ¢ oSK, then

10. Closure-preserving covers.

10.1. (L B. Potoczny [18], Lemina £ and Lemma 6), 1f X has a closure-
preserving cover by compact sels, then there ewists a funetion §: 9% 2% A DC
Jor-ahich the following holds:

1011, s(BY C B for each B 2%, and

10.1.2. 4f (Un:neN) is « sequence of open sets, where s(X)C U,
and §(X—|_J {U,, + I = n}) C Uy Jor cach n ¢ N, then U {Un 2 7 e =1
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Tt is clear from 10,1.1 and 10.1.2 that s e I;(DC, X).

Thus from 10.1 and 4.7 we get

10.2. CorOrLARY. If X has a o-closure-preserving cover by compact
sets (i.e. a cover =) {#kn:n e}, where &, i a closure-preserving
family of compact sets for each n e N), then X is DC-like.

From 10.2 and 6.3 we have

10.3. COROLLARY. Assume that X has a o-closure-preserving cover by
compact sets and that each B e 2% is a Gy-set in X. Then X ¢ oDC.

In the sequel we shall need this result:

10.4. (R. Telghrsky [25], Theorem 6). If X has a closure-preserving
cover by finite sets, then X € 68, D.

10.5. TaEOREM. If X has a 0-closwre-_presewiwg cover by finite sets,
then X is discrete-like.

Proof. Let {X;:iel, and n e N} be a cover of X, where the family
{X::1ely} is closure-preserving for each n ¢ N and X is finite for each
ielJ{In:neN}. We set Xp= |J{Xi:4¢ely} for cach % eXN. Then
X, ¢ 2% and, by 10.4, X, ¢ 65, D for each % ¢ ¥. Thus X ¢ 605, D = 48, D.
Hence, by 9.14, X is discrete-like.

10.6. TuroREM. If X 4s collectionwise normal and eDC-like, then X is
paracompact.

Proof. Let X be a collectionwise normal space and let I (eDC, X) 5 0.
Let # be an open cover of X. If B ¢ 2% ~ oDC, then B = | J{H;:iel,
and n ¢ N}, where each family {B; : i e I,} is discrete and each E; is com-
pact. For each ¢ e | J {In : e« N} there exists a finite subfamily #; of 4 for
which B:C1J{4 : 4 e} Foreach neN there exists a discrete family
{Us:ieln} of open sets such that B; C U; for cach i e I,. It is easy to
point out that {4 ~ Ui : A e A,4 e Iy and n € N} is a o-locally finite family
of open sets, and that it refines £ and covers . Let us set B = | {d ~
~ U Aedyyiely and ne N}. Then {B': B e 2% ~ ¢DC!} is 4 ¢DC-cover
of X. Hence, by 5.3, {E':He2¥n aDC} containg a  countable cover
{B,,: m e N} of X. It is clear that {B,: m e N} determines a o-locally finite
open refinement of +£ Hence X is paracompact.

From 10.6 and 10.2 we have

10:7. CoROLLARY. If a collectionwise normal space X has a o-closure-
Dreserving cover by compact sets, then X s paracompact.

As a corollary of 10.7 we. get

10.8. (H. B. Potoczny [18], Theorem). I 'f a collectionwise normal space X
has a closure-preserving cover by compact sets, then X is paracompact.

10.9. TrmorEM. If X s countably compact and DC-like, then X 1
compact.
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Proof. Let A be a countably compact space. Then each T ¢ 2% DC
is compact. Thus I(DC, X) = I(C, X). Assume that I (DC, X) £ 0. Then
I(C,X) =0 and according to 5.7 we conclude that X is a Lindelst space..
Thus X is compact, because X is a countably compact Lindelst space..

As a corollary of 10.9 and 10.2 we have

10.10. TonworeM. If a countably compact space X has a o-closure-
preserving cover by compact sets, then X is compact.

Lot us note that il a space X has a closure-preserving cover by compact
sets, then U need not be subparacompaet (see [25], Added in proof)
The following result is, in & certain sense, & conversion of 10.3:

1011, (R, Telghrsky [25], Theorem 2 and Theorem 5). Let X be a para-
compact space. If X« oD (X e oLC), then X has o closure-preserving cover
by finite sets (by compact sets, resp.).

11. Hereditarily paracompact spaces.

111 Tuwonem. If X ds hereditarily paracompact and I(K, X) # 0,
tﬁm X has a cover {Xu: n e N}, where each Xy is o FK- scattered closed subset
of X with &§(Xy) = w15 hence X ¢ 68, FK.

Proof. Tiet B and J he closed subsets of X with F C B. Tf X is here-
ditarily paracompact, then there existy a family §(E, F) of closed subsets.
of X wuch that

1L ) {H: H e S8, 1)} == B~F, and

11.1.2. S(H, 1) is locally finite at each point of E—F.

Let s e I(K, X) and let 1% be the set of all admissible sequences
(Bqy ooy By )y for ¢(K, X), where for each & < n:

1113, Bypyy = &(Byy oory Bap), and

114 By g€ S(Hyyy By )

We set for each n e N:

X, o U {"’(-Mm (LN -7'}271,): (Hyy oves Eﬂn) e Tubs
and
Ko ws U {¥xe bz}
It iy easy to point out that for ecach neN:
11.1.6. P, 8 o rvefinement of Py,
ILL6. \J{B: B e Py} we X Xy, .
1LLA. P, is locally finite at cach point of X— Xy,
1118, Y, CX— Xy,

11.1.9. ¥,,, is locally closed in X (see [8], p. 65), and
11110, Y,,, e LFK.
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The -proofs of 11.1.5-11.1.10 are omitted.

Clearly, P, = {X} and X, ¢ 2% ~ K. Therefore; X, is an FK-scattered
closed subset of X and &(X,) < 1. Let us assume that X, i§ a FK-scattered
closed subset of X with &(Xn) <n-1 for some n e N. We shall prove
that X,,, is a FK-scattered, closed subset of X with &(X,,.) < n-+2.
We claim that X, is FK-scattered. Lt H be a-closed non-void subset
of Xy, It HC Xa, then H is FK -scattered, because H is a closed subset
of X,. Thus there exist an » ¢« H and an open nbhd U of 2 in X' for which
HACQxUeFK. B HAY,,, #0and e HnY,,,, then there exists an
open nbhd U of # in X for which ¥, » Cly U ¢ FK, because Y, « LFK
by 11.1.10. Since X is a regular space and X, « 2% we may agssume, without
Toss of generality, that X, ~ ClxU = 0. Hence H ~ACxUCY,,, and
therefore H A ClxU C Y, ,, » ClxU. Thus H ~ Clx U « FK. Hence it follows
that X,,, is FK-scattered. Since ¥, e LFK and X, is closed, we have
E(X 1) < n-+2, because the FK-derivative of X,py will certainly remove
the set ¥,,,. We claim that X, is closed in X. Let z e X— X, ... Since
% ¢ X, there exists an open nbhd U of & in X for which X, ~ ClxU = 0.
Since P,,, covers X— X, and is locally finite at ecach point of X—X,
(see 11.1.6 .and 11.1.7), there exists an open nbhd ¥ of « in X for which the
family R = {E ¢ P,,,: E ~ OlxV % 0} is finite and V' C U. Henee ClxV C
C U {E: B ¢ E}. From the definition of Y, ,, 11.1.7 and 11.1.8 it follows
that ¥,., » U {H: E <R} is closed in X. Thus W= V-1, is an open
nbhd of # in X and W n X, = 0. Hence X,,,, « 2%. Tt remains to prove
that {Xu: n e N} covers X. Let us suppose that a ¢ X» for each neN.
Then ¢ s(E;,) = B,, where B, = X. Thus there exists an I, ¢ S(H,, E,)
for which # e E,. Since 2 ¢ s (Ey, By, E,) = Hs, there exists an I, e §(H,, By)
for which 2 ¢H,. Continuing in this manner, we infer the existence of
a play (E,:neN) of G(K,X), where (Ey,..,H,,) e T, for cach neXN
and [ {B,,: n ¢ N} 0. We have obtained a contradiction with s eI (K, X).
Thus {Xn: n e N} covers X.

In the sequel we shall need the following:

11.2. (R. Telgérsky [24], 2.9 and 2.10). Let X be o hereditarily pare-
compact space. If X is scattered (C-scattered), then X has a closure-preserving
cover by finile sets (by compact sets, resp.).

11.3. THEOREM. Let X be a hereditarily paracompact space. Then the
Jollowing conditions are equivalent:

113.1. X s discrete-like.

11.3.2. X is o-scattered (i.e., X e oSD).

11.3.3. X has a o-closure-preserving cover by finite sels.

Proof. Let X be hereditarily paracompact. If X is discrete-like, then
X ¢0S,FD by 11.1. Since FD= D and S,,D C SD, it follows that X is
o-seattered. If ¥ is o-scattered, then X has a o- closure-preserving cover
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by finite setis by 11.2. If X has & o-closure-preserving cover by finite sets,
then X is discrete-like by 10.5. ‘

11.4. TunorEM. Let X be a hereditarily paracompact space. Then the
following conditions are equivalent:

11.4.1. X is DC-like.

11.4.2. X i8¢ LC-like.

11.4.3. X is SC-like.

11.4.4. X ¢ 0SC. '

11.4.5. X has a o-closure-preserving cover by compact sels.

Proof. Lot X bo hereditarily paracompact. Since DCCLCC SC,
we infer ‘from 2.1 that DC-liko implies LC-like, which implies SC-like.
By 11.1 wo have X ¢ oSC provided that X iy SC-like, because FSC = SC
(see Theorem. 1.1 of [22]) and 65,,SC=aSC. If X ¢¢SC, then X has
2 o-closure-preserving cover by compact sets, because of 11.2. Finally,
11.4.5 implies 11.4.1 by 10.2.

12. Metrizable spaces.

12.1. Toworsm. If X is melrizable, then the following conditions are
equivalent: ’ ‘

12.1.1. X ds diserete-like.

12.1.2. X ds o-scaltered.

12.1.3. X 45 o-discrete.

12.1.4. X has o closure-preserving cover by finite sets.

12.1.5. X has a o-closure-preserving cover by finite sels.

Proof. Let X be a metrizable spaée. Then X is hereditarily paracom-
pact and each closed subset of X is a G,-seb in X. Thus 12.1.1, 12.1.2
and 12.1.5 are equivalent by 11.3. From 6.4 we obtain the equivalence
of 12.1.1 and 12.1.3. Trom 10.1L it follows that 12.1.3 implies 12.1.4.
Clearly, 12.1.4 implies 12.1.D.

12.9. TumioreM. If X is metricable, then the following conditions are
equivalent:

12.24. X 48 DC-like.

12.2.2. X is LC-like,

12.2.3. X 4¢ SC-like.

12.2.4. X ¢ oDC.

12.2.5. X e oLC.

1226 X € aSC.
12.2.7. X has a closure-preserving cover by compact sets.
12.2.8. X has a o-closure-preserving cover by compact sets.
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Proof. Tet X be a metrizable space. Then X is hereditarily paracom-
pact and each closed subset of X is & @y-set in X. Thus 12.2.1, 12.2.9,
12.2.3, 12.2.6 and 12.2.8 are equivalent by 11.4. It follows from 6.3 that
12.2.1 is equivalent to 12.2.4. Clearly, 12.2.4 implies 12.2.5, and 12.2.5
implies 12.2.6. By 10.11 we infer that 12.2.5 implies 12.2.7. Finally, it is
clear that 12.2.7 implies 12.2.8.

13.” M-spaces. Recall that X is said to be an M -space if there exists
a closed map f from X onto a metric space Y such that f~*(y) is countably
compact for each ¥ « Y.

Tt is immediate that each metrizable and each countably compact
space is an M -space. J -spaces were introduced by XK. Morita (see [14])
and studied by many authors.

13.1. TEEOREM. If X is an M-space, then the following conditions are
equivalent:

13.1.1. X s DC-like.

13.1.2. X € aDC.

13.1.3. X has a closure-preserving cover by compact sets.

13.1.4. X has a o-closure-preserving cover by compact scls.

Proof. Let X be an M -space. Then there exists a closed map f from X
onto a metric space Y such that f~*(y) is countably compact for each y ¢ ¥.
If X is DC-Tike, then, by 10.9, f~*(y) is compact for each y ¢ Y. Since 13.1.2
implies 13.1.1 by 4.5, 13.1.3 implies 13.1.4, and 13.1.4 implies 13.1.1
by 10.2, we may assume that f is a perfect map. Hence, if X is DC-like,
then Y is SC-like by 9.1.1. Since f~* preserves properties 13.%.1-13.1.4,
the theorem follows from 12.2.

14. Product spaces.

14.1. QuesTioN. Is X X X finite-like if X ig finite-like?

14.2. TuEoREM. If X is compact-like and Y is compact, then X X Y is
compact-like. ‘

Proof. Let p be the projection from X X ¥ onto X. If Y is compact,

then p iy perfeet. Thus, by 3.8.1, if X is compact-like, then X x ¥ is also
compact-like.
) 14.3. Exaverr. The product space X X X of a oC-like space X by
itself need not he oC-like. To show that, we refer to Example 1.4 (with
n=1) of E.A. Michael [13]. The space X is obviously oC-like (even
oF-like) and X x X does not have the Lindelsf property. Thus, by 5.7,
X x X is not ¢C-like.

14.4. Bxavers. The product space XX Y of two Lindelof spaces
X eSoCand ¥ eSC need not be normal. To show that, we refer to pa-
per [12] of B. A. Michael. The space X is a modification of an uncountable
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" subset X, of the real line, where each nowhere dense subset of X, is coun-

table. The space ¥ is the space of irrational numbers.

14.5. TumoruM. If X 4 SC-like and Y is compact, then XX Y is
SC-like.

Proof. Let p bfa the p}'ojection from X' x ¥ onto X. If ¥ is compact,
then p is perfect. Hence, by 9.2.1, it X is SC-like, then X x Y is also
SC-like.

14.6. TurormM. If X is paracompact and SC-like and Y is paracom-
pact, then the product space X X Y ds paracompact. -

Proof. For cach paracompact space Z there exist a paracompact
space %, with dim.Z, == 0 and a perfect map p, from Z, onto Z (see [16]).
By 9.2, if Z is SC-like, then Z, is also SC-like.

Let X be a paracompact, SC-like space and let ¥ be a paracompact
space. It X, X ¥, i3 paracompact, then X X ¥ is also paracompact, because
the map px X py is perfeet and paracompaetness is preserved by perfect
maps (see [16]). Hence, without loss of generality, we may assume that
dimX = dim ¥ = 0. Let 4 be an open cover of X X ¥. We shall make use
of the following property of paracompact spaces with dim = 0: Hach
open cover has a discrote (closed-open) refinement. We shall construct
a discrete. refinement of 4. We consider a game &(K;, X X ¥), where
K, = {B 2%*Y ; projzll « 2% ~ SC}. We assume that all moves of the
players are restricted to closed rectangular subsets of X x ¥ (i.e., sets of
the form B xJF, where B e2% and I e2%). Let Fe25*Y, We set
B = projy ¥ and B = projyl. It is now clear that E is rectangular
it B =B xBT'". Let s e I(SC, X). We define a strategy ¢ for the player I in
G(Ky, Xx Y) as follows: If (H,,..., E,,) is an admissible sequence for
G(K,, XX XY), then we set t(Hy, ..., By) = $(Hy, ..o, Byp) X By, Next,
we shall define & many-valued strategy 7' for the player IT in G(K,, X X X);
simultaneousty we shall define an auxiliary function §. Let E be a closed-
open rectangular subset of X x ¥ and let F' be a closed rectangular subset
of Xx ¥, wheve I C 1, 1" ¢ SC and I = ', We assert that there exist
two families §(1,1") and T(#,T) of closed-open rectangular subsets
of Xx ¥ for which the following conditions are satisfied:

14.6.1. S(H, I o I(H, T is o diserete family in X'x Y.

14.6.2. \J{H: H ¢ S(H, ) v T(H,F)} = 1.

1463, (J{H: HeS(H, M} DT

14.6.4. Tor each H e S(W,F) there exists a finite subfamily #A(H)
of & for which H C|J {4: A e A(H)}.

The existence of § and 7' can be proved (by induction with respect
t0 o = £(F")) in tho same manner as Theorem 2.3 of [22]; the situation here
is much simpler beeause of dim. == 0. There are two sbeps in the proof. The
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Dbasic step: the assertion holds if I is compact. The inductive step: it
there exists a discrete family J€ of closed-open rectangular subsets of & guch
that | {H: H ¢ ¥} = F and the assertion is true for each (H,H ~F),
where H e %, then the assertion is true for (¥, .

Tt can easily be seen that ¢ is a winning strategy for the player I if
the player II is using the strategy I. Let Py be the set of all admissible
sequences (B, .., Hy,) for G(Ky, X x Y), where for each k< # we have
Bopyr=t(Byy ooy Byy) and By p € T By y Bogoy)- Lef} us set By =0 and
By = U {8(Bapy Bonya): (Byy ey Bopyps) € Proq}e Tb is casy to point out
(by induction with respect to n) that the family B, is diserete in X'x ¥,
Moreover, we have '

14.6.5. It m<n, Hy ¢ Bn and Hy ¢ By, then Hy ~ H, = 0.

Let us set B = |J {By: n e N}. We claim that B covers X X ¥. Suppose
that there exists a point (z, y) in (X X ¥)—{J {B: B « $}. Since (v, ) is
not covered by $;, there exists a sequence (I, E,, Il;) in P, for which
(%, 9) € By € T(Ey, B,). Since (z, y) is not covered by B,, there exist a set ,
and a set B, for whick (X, ..., B,) ¢ P, and (z,y) ¢ By ¢ T(H,, H;). Con-
tinuing in this manner, we get the play (Fn:n e N) of G (K, X X Y) for
which (z,9) € ()} {Eo: n e N}. However, (H,: n e N) is a play of G(SC, X)
and By, = s(By, ..., By,) for each n e N. Thus (M) {Hy,: ne N} =0 and
this is a contradiction. Since $ covers X x ¥, it follows from. 14.6.5 that B is
a discrete cover of X X Y. If B ¢ %, then there exists a finite subfamily +£(B)
of 4 for which BC|J {4: 4 ¢ #A(B)}. Thus the family {4 ~ B: A ¢ A(B)
and B e B} is a locally finite open refinement of 4. Hence X x ¥ is para-
compact.

As a corollary of 14.6 and 10.2 we have

14.7. TamoREM. If X is o paracompact space with a o - closure-preserving
cover by compact sets-and Y is o paracompdct space, then X X Y s paracom-
pact. ) ‘

As a corollary of 14.6 and 4.5 we have

14.8. THROREM. If X is a paracompact space with X ¢ eSC and ¥ is
paracompact, then X X Y is paracompact.

‘We shall need the following result:

14.9. (R. Telgarsky [25], Theorem 8). Let X be a paracompaci space.
If X has two order locally finite covers {By §< o} and {Ug &< o}, where
B, 2% ~ SC and U, is an open nbhd of B, for each &< a, then X ¢ aSC.

As a corollary of 14.8 and 14.9 we have

14.10. (R. Telgirsky [22], Theorem 2.5). Let X and Y be paracompact
spaces. If X has two order locally finite covers {By: < a} and {Ug E< a}y

@Iwre B, < 2% ~ SC and U, is an open nbhd of B, for each & < a, then XX Y
a8 paracompact.
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In the same way a8 in 14.6 the following results can be proved.

14.11. TuworeM. If o Lindeldf space X is SC-like and Y is Lindelgf
space, then X x X is a Lindeldf space.

14.12. TuroreM. If X is a compact-like space and Y is o Hurewics
space, then X X Y is a Hurewice space.

Ag a corollary of 14.12 and 9.4 we geb

14.13. (R, Telgdrsky [23], Theorem 3.5). If X s a C-scattered Lindeldf
space and X 4s « Hurewicz space, then X X Y is a Hurewice space.

From 14.11 and 2.1 we get

14.14. CorortAwry. If X is a compact-like space and Y it o Lindeldf
space, then X'x ¥ is a Tindeldf space.

From, 14.14 immediately follows

14.15. COROLLARY. If X is compact-like, then X x X has the Lindelof
property.

14.16. QuusmoN. Ts X' x X paracompact if X is paracompact and
X ¢SC? The question is very nabtural, beeause it we replace “X e SC”
by “X € SC” or by “X « €7, then the answer is positive (see R. Telghrsky [22]
and Z. Trolik [6], resp.).

15. Nowhere locally K spaces. A space & is sald to be nowhere locally K if
each T ¢ 2% ~ K is nowhere dense in XX. 'We denote by NLK the class of
all nowhere locally K spacoes.

It ds important to note that X e NLK does not imply 2% C NLK.
However, if J is a regulaxly closed subset of X (i.e., ClxIntx¥ = F) and
X e NLK, then B/ « NLK. Similarly, if U is an open subset of X and X ¢ NLK,
then U ¢ NLK.

The definitions of SK and NLK easily imply

18.1. TuroreM. X s K-scattered iff 2% A NLK = {0}; i.e. SKnr
ANLK = {0}. ‘

15.2. Turorem. Jf X ¢ NLK and I(K,X) 0, then X is the union
of a countable family of its nowhere dense subsets.

Proof. Let & € I{K, X)), where X ds nowhere locally K. For each pair
(B, 7), where J is vogularly closed in X and F' e 2% ~ K there exists a fa-
mily 8 (%, 1" of pairwise disjoint regularly closed subsets of X for which

-.the following conditions hold:

1821, It I e S(H, 1", then H nJ'==0, and

15.2.2. \J {H: H e S(I}, F)} is & dense subset of .

It is easy o check that | J {IntyH: H ¢ §(B, F)} is also dense in B.
Let P, be the set of all admissible sequences (EHy, ..., Hs,) for

G(K,X), where for cach k< n we have By, = (B, .., By) and

By € 8 (Byyy By py). Lot us seb By = | {IntxBy: (Boy oo Bop) € Py} for
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each n ¢ N. Tt is easy to point out (by induction with respect to ) that
each B, is an open and dense subset of X. We claim that () {Bn: n ¢ N} = ¢,
Let us suppose that there exists a point # in () {Bn: n ¢ N}. Then g
€B,=X. Let us set By =X and B, = s(H,). Bince # ¢ B;, there exists
a seb B, 2% with o ¢IntzB, and (Hy, By, B,) « P;. Continuing in this
manner, we get the play (Bu:nel) of G(K,X), where H,, =
= §(By, .., Byy,) and @ € By, for cach n e N. Bub this is a contradiction.
Thus {7 {Bx: # « N} = 0 and hence | J {X-~Bu: n ¢ N} = X. Bach X—B,
is & nowhere dense closed subset of X, because B, is dense and open in X,

_15.3. TurorEM. If I(K,X) # 0, then there exists a set Y € 2% syl
that ¥ is @ set of the first category in X and X— ¥ ¢ LK.

Proof. Let Y be the K-derivative X* of X. Then Y 2% and
X— Y ¢LK. Clearly, IntxY ¢ NLK. Let us set Z = ClxIntx¥. Then also
Z e NLK. Lot us assume that I(K, X) 52 0. Then I(K, Z) % 0 by 2.4.
Thus, by 15.2, Z is a set of the first category in itself. But then Z is a set
of the first category in X. Clearly, ¥ = (¥ —IntxY) v Z. Since ¥Y— IntxY
is nowhere dense in X, it follows that ¥ is a set of the first category in X.

A space X i said to be countadly basiscompact (cf. [20], p. 24) if there
is an open basis B for open sets in X so that () {ClxBu: # e N} 7 0 for
each decreasing sequence {B,: 1 ¢ N} with By e B for each neN.

It is obvious that each countably compact space is countably basis-
compact.

15.4. TrmoreM. If X eNLK, X CY, Y is counlably basiscompact
and Y—X is a set of the first category in ¥, then II (K, X) == 0.

Proof. et X e NLK, X C Y, ¥~ X = {J {Fu:n e N 1, where each I is
nowhere dense in Y, and let % be an open basis of ¥ for which ¥ is coun-
tably -basiscompact. We shall define s e IT(K, X). Let us set B, = X.
Let us take #, ¢ 2% ~ K. Then T, is nowhere dense in X, Thus &, is nowhere
dense in ¥ as well. Thus there exist a 4, ¢ ¥ and a By e B with y, e By
and (B; v Fo) ~ ClpBy = 0. We set By = X ~ Cl,B, and s(H,, By) = B,
Let us take ; e 2% ~ K with B, C 7,. Since X ~ Byis open in XX and X ~ B,
is dense in B, it follows that B, e NLK. Thus J, w (I, ~ B,) it nowhere
dense in F,. Hence there exist & y,¢ ¥ and a B, B with y, ¢ By,
ClyB,CB, and (B, F)n ClpB, = 0. We st M, == X ~ Cl »B; and
8(By, By, By, By) = E,. Continuing in this mannor, woe gob the play
(Hn: n € N) of G(K, X), where Bypio =X ~ OlB, for cach n e N. Clearly,
() Bop: ne N} =X [ {ClyBy: m e N}. Lot us seb T == () {C1,Buz n e N},
Since the sequence {By: n e N} is decreasing, we have I = 0. Fowever,
B Fp=0 for eack ne¢N. Hence BC X and thus () {By,: 1 € N} 5 0.
This proves that s e II(K, X) - ;

15.5. TavoreM. If X ¢ NLK and X C Y, where Y ¢ ¢ and Y—X is -

a set of the first category in X, then II(K, X) = 0.
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Proof. Let X e NLK and X CY, where ¥ ¢ € and Y—X is a set of
the first category in ¥. Let Z be a compactification of Y. Then Z— ¥ is
o-compact. Thus Z— Y is a set of the first category in Z. Since ¥— X is
a set of the first category in Y, it follows that ¥— X is a set of the first
category in Z. Hence Z—X is a set of the first category in Z. Finally,
by 16.4, we get II(K, X) 5 0.

15.6. Tuvorem., If X ¢ C and X ¢ SK, then II(K, X) 0.

Proof. Let X ¢ SK. Then there exists an H e 2% ~ NLK such that
B #0. Let X eC. Then F ¢ C. Hence, by 15.5, we have II(K, E) 0.
Thus 17 (K, X) % 0 by 2.5. .

15.7. Tnuowny. If X e C and I(K, X) #0, then X ¢SK (cf. 15.6).

Proof. Let X eC If X ¢ SK, then IT(K,X)0 by 156. Hence,
it I(K,X) %0, then X ¢ SK.

From 15.7 we have the following

15.8. Corornrary. Let X e C. Then

15.8.1. If X is finite-like, then X is scattered.

15.8.2. If X ds disorete-like, then X is scattered.

15.8.3. If X dis compact-like, then X is C-scaitered.

15.8.4. If X is SC-like, then X is C-scatiered.

For each Z C X we set Z' = () {Z*: « is an ordinal}, where Z is
the oLC-derivative of Z of order a (see Section 9).

We shall need the following result:

15.9. (A. H. Stone [21], Theorem 4', p. 63, P = ¢LC). Let X be a metric
space. Then X—X'eaDoLC = oLC. Hence, in porticular, if X ¢oLC,
then X' +# 0.

A subset X of o space ¥ is said to be an A -set if there exists a family
Bt (Byy ey d) € N™ and n e N} C 2Y such that X = U {) Fy..0nf
e N} (dyy 4y ...) e NV

15.10. TurormM. If X is an A.-set in a complete metric space ¥ and X is
not o-locally compact, then there ewisis a set B e 25 ~ 2% which is homeo-
morphic to the space of wrrational numbers.

Proof. We shall modify & construction of A. G. El'kin [4]. Let X be
an A-set in a complote metric space Y. Assume that X is not o-locally
compact. Then X’ -4 0 by 15.9. Moreover, X' ¢ NLoLC. Since X' e2%,
it follows that X’ is also an A -set in Y. We shall prove that X' contains
a set B ¢ 2% which is homeomorphie to the space of irrational numbers.
Let X' = (J{N\ Foi: RN} (fgydyy o) ¢« NV}, where {F; it
{ioy vrey in) € N1 and m e N} C 2%, We may assume, without loss of gen-

. . N . . . n+2
era hat for eac 4 and n e N.
erality, that Iy, .z CHy g for each (i, ey iny fnps) €
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= UAN i 1€ N}t (igy by, ) € NV and iy = o, i =

m =

Set X, i .
= jm} for each (jo, ..., Jm) € N™* and m e N. It is easy to see that
15101 X' = {J {Xs: j e ¥},
15102, Xy .= U{&. 10 J € N} and
18103, Xy i Cso..oim

for each (jy, -.., jm) e N™™* and m ¢ N. Now we shall construct a family
{G4...i0 (Ggy ey B) € N and € N} of non-void open sets in ¥ such that

e

15.104. Gy i C Gyt TOT €ACR (G5, vony 4y Gy py) € NP2 and m e N,

15.10.5. the family {@; ;. (4, ..., %,) e N} is diserete in ¥ for
each 7 e XN,

k!

1 _ _ .
15.10.6. diamG-o_._iﬂgm for each (i, ..., 4,) e N** and neX,

and

15.10.7. for each a sequence (%y,4;,...) ¢ NV there exists a sequence
(Jos Juy ) € N¥ such that &, , ~Xj , 50 for each ne XN,

‘We proceed by induction with respect to n ¢ N. Since X’ ¢ NLoLC,
it follows that X’ ¢ C. Thus there exists a discrete family {Gs: i e N} of
open sets in ¥ such that G ~ X" £ 0 and diam @ < 1 for each e N,
We claim that

15.10.8. for each ieN there exists a je N such that G, X £ 0.

Suppose that there exists an ¢ N such that G~ X; 5 0 for each
jeN. Hence G;nX; CX,—X; for each jeXN. By 15.10.1 we have
Gin X' =] {6~ X je N} Thus & ANX' CU{X;~X;: jeN}. How-
ever, we have X;,—X;eoLC by 159. Hence |J {X;—Xj: j e N} e oLC.
Since G ~ X’ s 0, there exists an open set U in ¥ for which Cl,UCG,;
and U~ X' 0. Clearly, this implies that X’ ~ ClyU e 6LC and thus
X’ ¢ NLeLC. This is a contradiction.

Assume that for some # e ¥ the family {Goy. i By wony ) € NP}
with the required properties is constructed. By the inductive agsumptbion,
for each (i, ..., in) e N we have (Joy +ory Jn) € N* guch that @

y
Towin 7

X, 1, # 0. Since X, ;¢ NLoLC, X}y.sn ¢ C. Hence there exists o dis- ,

crete family {6}, ;¢ ¢ N} of open sets in ¥ such that Gigoti C Gy
Giptat O Xy g0 # 0 and diam Fioini <
that :

Jin¥

1 R .
P for each i ¢ N. We claim:

n-t

,15.10.9. for each ie¢XN there exigty g jeN such that Gsoii O
~ X:fuminf #0.
Suppose that there exists an ie¢ N such that &, .~ X;o.l.

. < In?
for each jeX. Then Gy i X0 C Xioorti— X 1ng or each j e N.
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Using 15.10.2, we get
Gio... i an”,j,, = {Gio... tai O Xio...m: jem}
: CUE o ga— Xy ing? e N}
However, by 15.9, wehave Xy, ;,— X}, ;e oLC. Hence | J {X,

ELTE 7%
— X}, st J € N} € oLC. Bince Gy, 4~ X, . 5 0, there exists an open.
seb U in Y such that ClyUC Gy 0 and Un X , =0. Clearly, this.
implies that Xy, 4, » OlpU e 6LC and thus X Jontn ¢ NLaLC. This is a con-

tradiction. Set
B={J{NA{UpGy. 0 n e N}: (G, 4y, .00 < NV},
By 15.10.8 we may write

B= (U {ClpG. 00 (g ey i) e N i e N} (cf. [8], p. 32).
Hence it follows that I is closed in Y.
Let (4, 4y, -..) € NV, Then () {OlpGy, . ;.: m e N} is just a singleton set
by 15.10.6 and by the completencss of Y. Let f: ¥¥ » F be the function
defined by setting

J(Cigy gy o)) € () {OlpGy,. gt e N}

Then f(N¥) = I and, by 15.10.4 and 15.10.5, f is a homeomorphism,
where NV iy considered as a product of N copies of the discrete space N
(cf. [8], p. 438). However, N¥ ig homeomorphic to the space of irrational
numbers (cf. [8], p. 442, Corollary 3a). Hence it remains to prove that
ECX'. By 15.10.7, for each (4, ¢, ...) e NV there exists a (jy, jy, -..) € NV
such that Gy ™ Xoogu 70 for each nelN. Since Xj ; CX; ; C
CFy,. 4,0 1t follows that Fy, , ~Clp@, , #0 for each neX. Thus

MA@y g0 e Ny = () {F,_p, 0 Clply i3 1 € N}
CNFy,. gineNICX .

Hence B C X", »

15,11, Tuxorsw, Let X be an A - set in a complete metric space. Then X is
anti-LC-like iff X is not o-locally compact. .

Proof. Lieb X be an 4 - et in. a complete metric space. X is u-locqlly
compact, thon I(LC, X) s 0 by 4.5 and therefore X is not antl-LC~11k%.r
If X is not o-locally compact, then, by 18.10, X contains a closed: subset

which is homeomorphic to the space of irrational 1_11u11bgrs. Sli']i:e
E ¢~ NLC, B is anti-LC-like by 15.5. Hence, by 2.5, X is anti-LC-like.

16. Determinacy of G:(K, X). The game G (K, X) is said to be determ-~
ined if I(K,X) =0 or II(K,X) #0.
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'16.1. TumorEM. If X has a cover {Xn:neN}, where X, ¢ 2% gug
K, Xn) is determined for each n e N, then G(K, X) is determined.

Proof. If I(K, Xy) 0 for each ne N, then I(K,X) 0 by 4.7.
Let I(K, Xm) = 0 for some m e N. If G(K, X,) is determined for each
n e N, then II(K, Xy) # 0. Hence II(K, X) # 0 by 2.5.

As a corollary of 3.7 we have

16.2. TaeorEM. Let K be a perfect class and asswme that there exisis
 perfect map from X onto ¥. Then G(K, X) is determined iff G(K, ¥) is
determined.

16.3. TuEoREM. If X € 6C and X has the Lindelsf praperty, or if X is
<-discrete, then G(K, X) is determined.

Hence, in particular, if X is o-compact, or if X is an I,-set in a Polish
space, then G(K, X) is determined.

Proof. Let X ¢ C. If X « SK and X hag the Lindelot property, then
I(K, X) +# 0 by 9.3. If X ¢ SK, then IT (K, ¥) 5 0 by 15.6. Now let X < D.
IEX oK, then I (K, X) # 0by 4.7. If X ¢ oK, then 25 ~ K is such a K-
cover of X that 2% ~ K does not contain a countable cover of X. Thus
II(K,X) 0 by 5.8. By 16.1 the theorem follows.

16.4. TEROREM. If X 4 subparacompact and X e 6C, then G (DK, X)
and F(LK, X) are determined.

Hence, in particular, if X is an F,-set in a complele metric space,
then G(DK, X) and G(LK, X) are determined.

Proof. Let X be a subparacompact space with X e ¢\, If X e SK,
then I(DK,X) 0 by 9.7. Since DKCLK, we also have I(LK,X) 0
by 2.11. It X ¢SK, then IT(LK,X) 0 by 15.6. Since DK CLK, we
also have IT(DK, X) # 0 by 2.1.2. Hence G(DK, X) and G(LK,X) are
determined. By 16.1, the theorem follows.

16.5. THEOREM. If X ¢ oC or if X ¢ 6SC, then G(F,X) and G(C,X)
are delermined.

Hence, in particular, if X ¢ aC or X e gLC or X ¢ oSF or X eaD,
then G(F, X) and G(C,X) are determined.

Proof. Let X eaC. If X has the Lindelst property, then &(F,X)
and G(C, X) are determined by 16.3. It X does not have the Lindelof
;propgrty, then II(C, X) 0 and II(F, X) %0 by 6.9 and 2.1.2. Now
let X eSC. If2¥ A C CSF, then X ¢ SF. Tt X ¢ SF and X has the Tindelof
p]‘:'Opel‘ty, then I(F, X) s£ 0 by 9.3. If X ¢ SF and X does not have the
Lindelof property, then II(F, X) = 0 by 5.9 and 2.1.2. It 2¥ ~ C ¢ SF,
then there. exists a compact dense-in-itself subset B of X i.e. I e2%¥
~CANLF. Thus II(F,H)%0 by 155 and therefore II(F, X) 0
by 2.1.2. Hence G’(E, X) is determined. Tf X has the Lindelst property,
then I(C, X) # 0 by 9.3. Tt X does not have the Lindelof property, then

Spaces defined by lopological games 291

II(C, X) % 0 by 5.9 and 2.1.2. Hence 6(C, X) i determined. If X e sSC,
then the determinacy of ¢(C,.X) follows from 16.1,

16.6. Tunorem. If X ds countably compact, then G(F,X), 4(C, X),
6(sC, X), G(D, X) and G(DC, X) arc determined.

Proof. Tf X is countably compact, then 2X ~ 6C= 25~ C,2¥ A D =

inacy of G(F, X) and @¢(C, X). Let X be countably compact. If X has
the Lindelof property, then X is compact and therefore G(F,X) and
G(C, X) are determined by 16.5. Tt X does not have the Lindelsf property,
then JI(F, X) # 0 and II(C, X) s 0 by 5.9 and 2.1.2.

16.7. Tuuoruy, If X s an A-set in a complete melric space,
then G(F,X), (C,X), ¢(D,X), G(DC, X) and ¢LC, X) are determ-
ined.

Proof. Let X be an A-set in a complete metric space. Assume that
X eoLC. Then G(F,X) snd G(C,X) are determined by 16.5, because
6LCC oC. The games (D, X), G¢(DC, X) and G(LC, X) are determ-
ined Dy 16.4. Now assume that X ¢ eLC. Then, by 15.10, X has a closed
subset B which is homeomorphic to the space of irrational numbers.
By 15.5 we have IT (LC, X) # 0. Thus, by 2.1.2, it follows that II(F, X) =0,
II(C, X) 0, 11(D, X) 5 0 and II(DC, X) # 0. .

16.8. Turorw, If X 48 o subset of o Polish space Y for which ¥— X is
totally metacompact (see [10]), then G(F,X) ds determined. .

Proof. The theorem follows immediately from the ;Eollf)wing resul't
of A. Tielek [9]: T8 X i8 o subset of a Polish space ¥ for which Y—X is
totally metacompact, then X is countable or X contains a copy of the Cantor
discontinmum. In the first caso I(F, X) # 0 by 4.7 and in the second case
we have 1I(F, X) s 0 by 15.6. -

16.9. QumsTioN. Does there exist o scattered space X for whic
@D, X) i not determined? 1

“J. Myeielski [15] has investigated the consequences of a gam@thegle;;
tical axiom (A) which postulates the determinacy of a game on cach su ;ﬁ
of the Cantor discontinwun, (A) implies that each uncounmblﬁ sepm;a7e
metric spaco containg a copy of tho Cantox discogtinuu:n ([1';]:’_13' dli)ie};
(A) also implies a weak form of the axiom of choice (’[1.)], p. 207) w
enables s to construet winning strategies in G(F, A),' where X 'lSF &Ey)
metrie separable space. Hence (A) implies the determinacy of G(F, |
for any metric separable space X. .

IT‘].YC;;{X};I‘L( 11:»&;1)(501rf,n‘mn;]i{cnmd to me that he can prove the fﬁllm‘gxﬁi
If the continwun hypothesis, or if the Martin axion, 18 ass:uﬂ.ledy ecint .
exists a subset X of the veal line for which G(F,X) is not dete
ined.
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Let us state thle n'lajlll p?blelf of :ﬁisnpaﬂertﬁif; ;‘é}éna;lsfunsolgedh: [28] Ri' rf;f;;)ky Conaerning product of paracompact spaces, ihidom 74 (1973),
N i t characterize [t or whi pp. 153150, . . ’ -
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