On movability and other similar shape properties

by

Juliusz Olgąski (Warszawa)

Abstract. The hereditary shape property called the \mathcal{R}-movability has been defined. Some relations between the \mathcal{R}-movability and other shape properties: the movability, the \mathcal{R}-movability and the \mathcal{A}-movability have been established. There are answers the following questions:

1° Is it true that if compacta X and Y are \mathcal{R}-movable, then $X \times Y$ is \mathcal{R}-movable?
2° Is it true that if a compactum X is \mathcal{A}-movable and \mathcal{B}-movable then X is \mathcal{A}-\mathcal{B}-movable?

where the binary operation \times is the Cartesian product or the join or the one-point union or the topological sum.

1. Introduction. K. Borsuk introduced hereditary shape properties: \mathcal{R}-movability and \mathcal{A}-movability ([3] and [4]). Let \mathcal{I} be a family of compacta. In this paper we define \mathcal{R}-movability, which is a generalization of those shape properties. The aim of this paper is to study the properties of \mathcal{R}-movability and to determine the relations between \mathcal{R}-movability, \mathcal{A}-movability, \mathcal{R}-movability and movability.

2. \mathcal{R}-movability. Let A and X be compacta and let $X \subset M \times \mathcal{A}B(3)$. X is said to be A-movable if for every neighborhood U of X in M there exists a neighborhood U_0 of X in M such that for every neighborhood U of X in M every map $a: A \to U_0$ is homotopic in U to a map with values in U. K. Borsuk showed ([4]) that A-movability does not depend upon the choice of a space M and that A-movability is a hereditary shape property, i.e., if $Sh(X) \subseteq Sh(Y)$ and Y is A-movable, then X is A-movable. To generalize this property, consider a family \mathcal{I} of compacta. A compactum $X \subset M \times \mathcal{A}B(3)$ is said to be \mathcal{R}-movable if for every neighborhood U of X in M there exists a neighborhood U_0 of X in M such that for every neighborhood U of X in M and for every $A \in \mathcal{I}$ every map $a: A \to U_0$ is homotopic in U to a map with values in U. By a slight change in the proofs of an analogous theorem for A-movability ([4]) one proves that
The choice of the space M and the embedding of X into M are not important for the definition of \mathcal{K}-movability and that

If X is \mathcal{K}-movable and $\text{Sh}(X) \geq \text{Sh}(Y)$, then Y is \mathcal{K}-movable.

It is easy to see that

If a compactum X is movable, then X is \mathcal{K}-movable for every family \mathcal{K}.

A compactum X lying in the Hilbert cube Q is said to be n-movable ([3], p. 859) if for every neighborhood U of X in Q there exists a neighborhood U_0 of X in Q such that for every compactum $A \subset U_0$ with $\text{dim} A < n$ and for every neighborhood \bar{U} of X in Q there exists a homeomorphism $\psi: A \times [0,1] \rightarrow U$ satisfying conditions: $\psi \circ \alpha = \alpha$ and $\psi(\alpha(1),0) \in U$ for every point $\alpha \in A$. Put $\mathcal{M} = Q$ in the definition of \mathcal{K}-movability. Since for every compactum $A \subset Q$ and its neighborhood U_0 in Q every map $\alpha: A \rightarrow U_0$ is homotopic to an embedding of A into U_0, we get

If \mathcal{K} is a family of all compacta of dimension n, then \mathcal{K}-movability is equivalent to n-movability.

Let \mathcal{K} and \mathcal{K}' be families of compacta, \mathcal{K} is said to be \mathcal{M}-dominated by \mathcal{K}' ($\mathcal{K} \subseteq \mathcal{K}'$) if every \mathcal{K}-movable compactum X is also \mathcal{K}'-movable. If $\mathcal{K} \subseteq \mathcal{K}'$, then \mathcal{K} and \mathcal{K}' are said to be \mathcal{M}-equivalent ($\mathcal{K} \cong \mathcal{K}'$).

If families \mathcal{K} and \mathcal{K}' consist of single elements A and A' respectively, then we write $A \cong A' \mathcal{M}$ ($A \cong A'$) instead of $\mathcal{K} \cong \mathcal{K}'$.

Hence for the neighborhood U_n of A' in Q there exists a neighborhood V_n of B in N and an integer n such that

$$g_{n, [n]} \approx g_{n+1, [n]} \text{ in } U_n, \quad \text{for } n \geq n_0.$$

Let U be a neighborhood of X in Q. Since $g_{n, [n]}$ carries B into U_n and X is \mathcal{K}-movable, there exists a homotopy $\psi: B \times [0,1] \rightarrow U$ such that $\psi(p,0) = g_{n, [n]}(p)$ and $\psi(p,1) \in U$ for every point $p \in B$. Define a map $F: B \times [0,1] \cup (N \times \{0\}) \rightarrow U$ by

$$F(p,t) = \begin{cases} \psi(p,t) & \text{for } (p,t) \in B \times [0,1], \\ g_{n, [n]}(p) & \text{for } (p,t) \in N \times \{0\}. \end{cases}$$

Since $B \times [0,1] \cup N \times \{0\}$ is a compactum and U is open in Q, there exists a neighborhood W of $B \times [0,1] \cup N \times \{0\}$ in $N \times \{0\}$ and a map $F: W \rightarrow U$ extending F. There exists a neighborhood V of B in N satisfying three conditions: $V \subset V_n$, $V \times [0,1] \subset W$ and $F(V \times \{1\}) \subset U$. Since I is a fundamental sequence and $g \cong g_{1, [1]}$, there exists an $n_0 \geq n$ such that

$$f_{n_0}(A') \subset V$$

and

$$g_{n_0} \circ f_{n_0, [1]} \cong g_{n_0, [2]} \text{ in } U.$$

By (2.7) and (2.8) it follows that

$$g_{n_0} \circ f_{n_0, [1]} \cong g_{n_0, [2]} \text{ in } U'. $$

$$F|_{f_{n_0}(A' \times [0,1])} = f_{n_0}(A') \times [0,1] \rightarrow U$$

is a homotopy satisfying conditions $F(p,0) = g_{n_0, [n]}(p)$ and $F(p,1) \in U$ for every $p \in f_{n_0}(A')$. Let $F_1: f_{n_0}(A') \rightarrow U$ be defined by the formula $F_1(p) = F(p,1)$. Therefore

$$g_{n_0} \circ f_{n_0, [1]} \approx F_1 \circ f_{n_0, [1]} \text{ in } U.$$

By (2.6), (2.7), (2.10) and (2.11), g is homotopic in U to a map with values in U_0, and thus X is \mathcal{K}-movable.

Corollary. If $\text{Sh}(A) \cong \text{Sh}(B)$, then $A \cong B$.

Example. Let S^j_i be i-dimensional spheres for $i = 1, 2, j = 1, 2$ and let $S^j_i \cap S^j_{i'} = \emptyset$ for $(i,j) \neq (i',j')$. Let $A = S^j_i \cup S^j_{i'} \cup S^j_i$ and $B = S^j_i \cup S^j_{i'} \cup S^j_{i'}$.

Shapes of A and B are not comparable, but one can easily see that

$$A \cong B.$$
Example. Let \(R \) be a family of solenoids and let a family \(\{G_i\} \) consist of a single circle \(G \). Then \(\mathcal{H} \subset \{G_i\} \).

Assume that a compactum \(X \subset N \in \operatorname{AR}(3) \) is \(\mathcal{H} \)-movable. By Corollary (2.12), \(X \) is \(T \)-movable, where \(T \) is a solid torus. Let \(U \) be a neighborhood of \(X \) in \(N \). There exists a neighborhood \(\tilde{U} \) of \(X \) in \(N \) such that for every neighborhood \(V \) of \(X \) in \(N \) every map \(\alpha : \tilde{U} \to U \) is homotopic in \(U \) to a map with values in \(\tilde{U} \). Let \(\tilde{U} \) be a neighborhood of \(X \) in \(N \) and take \(\beta \in \mathcal{H} \) and \(\beta : \tilde{U} \to U \). The solenoid \(S \) can be described as an intersection of a decreasing sequence of solid tori \(T_i, i = 1, 2, ... \).

There exists an integer \(n_i \) and a map \(\beta_i : T_{n_i} \to U \) extending \(\beta \). Since \(\beta_i \) is homotopic in \(U \) to a map with values in \(\tilde{U} \), \(\beta \) is homotopic in \(U \) to such a map. Thus \(X \) is \(\mathcal{H} \)-movable.

Problem. Is the family of all solenoids \(M \)-equivalent to a circle?

3. Relations between movability, \(n \)-movability, \(A \)-movability, and \(\mathcal{H} \)-movability. S. Mardešić and J. Segal ([8], p. 651) proved the following.

Lemma. If \(X = \lim \{X_n, \rho_m\} \), where \(X_n \in \operatorname{ANR} \) for \(n = 1, 2, ... \), then \(X \) is movable if and only if for every integer \(n \) there exists an integer \(n \geq n \) such that for every \(n > n \) there exists a map \(r : X_{n-1} \to X_n \) satisfying the condition \(p_m \circ r = \rho_m \).

By a slight modification of the proof of this lemma one can easily show the following.

Lemma. If \(X = \lim \{X_n, \rho_m\} \), where \(X_n \in \operatorname{ANR} \) for \(n = 1, 2, ... \), and \(\mathcal{H} \) is a family of compacta, then \(X \) is \(\mathcal{H} \)-movable if and only if for every integer \(n \) there exists an integer \(n \geq n \) such that for every \(n > n \) and for every \(A \in \mathcal{H} \) and for every map \(f : A \to X_n \) there exists a map \(A \to X_n \) satisfying the condition:

\[
p_m \circ f = \rho_m \circ A.
\]

Corollary. If \(X = \lim \{X_n, \rho_m\} \), where \(X_n \in \operatorname{ANR} \) for \(n = 1, 2, ... \), and \(\mathcal{H} \) is a family of compacta and for all \(n \) and for every \(A \in \mathcal{H} \), every map \(f : A \to X_n \) is homotopic to a constant map, then \(X \) is \(\mathcal{H} \)-movable.

Lemma. Let \(X = \lim \{X_n, \rho_m\} \), where \(X_n \in \operatorname{ANR} \) for \(n = 1, 2, ... \) and let \(\mathcal{H} \). If \(X \) is \(\mathcal{H} \)-movable, then \(X \) is movable.

Proof. Let \(n \) be an integer. It follows by Lemma (3.2) that there exists an integer \(n \geq n \) such that for every \(n > n \) and for every \(A \in \mathcal{H} \) and for every map \(f : A \to X_n \) there exists a map \(A \to X_n \) satisfying condition (3.3). Let \(\mathcal{H} \). Take \(A = X_n \) and \(A = \rho_m \). Hence there exists a map \(A \to X_n \) satisfying condition (3.3). Thus \(p_m = \rho_m \circ A \). Put \(r = A \). By Lemma (3.1), \(X \) is movable.

Theorem. There exists a countable family \(\mathcal{W} \) of polyhedra such that \(\mathcal{W} \)-movability is equivalent to \(\mathcal{H} \)-movability.

Proof. One knows that there are only countably many homotopy types of polyhedra. Let \(\mathcal{W} \) consist of elements taken singly from all homotopy types of polyhedra. Let a compactum \(X \in \mathcal{W} \)-movable. \(X \) can be described as an inverse sequence of a decreasing sequence of solid tori \(T \).

Conversely, if \(X \) is movable, then by (2.3) \(X \) is \(\mathcal{W} \)-movable for every family \(\mathcal{W} \) of compacta, in particular for \(\mathcal{W} \).

Corollary. There exists a compactum \(W \) such that \(W \)-movability is equivalent to \(\mathcal{H} \)-movability.

Proof. Let \(W \) be a one-point compactification of a disjoint union of elements of \(\mathcal{W} \). It is clear that the family consisting of the single element \(W \) is \(\mathcal{H} \)-equivalent to \(\mathcal{W} \).

Corollary. There exists a maximal element (the family \(\mathcal{W} \) of compacta or the compactum \(W \)) in the partial ordering “\(\leq \)”.

Problem. Does there exist, for every family \(\mathcal{W} \) of compacta, a compactum \(\mathcal{A} \) such that \(\mathcal{A} \mathcal{W} \mathcal{A} \mathcal{W} \)?

Theorem. For \(n = 1, 2, ... \), there exists a countable family \(\mathcal{W} \) of polyhedra of dimension \(\leq n \) such that \(\mathcal{W} \)-movability is equivalent to \(\mathcal{W} \)-movability.

Proof. There is only a countable number of homotopy types of polyhedra of dimension \(\leq n \). Let \(\mathcal{W} \) consist of polyhedra taken singly from all these types. Let \(\mathcal{H} \) be a family of all compacta of dimension \(\leq n \).

By (2.4), \(\mathcal{W} \)-movability is equivalent to \(\mathcal{H} \)-movability. Since \(\mathcal{H} \subset \mathcal{W} \), \(\mathcal{W} \)-movability implies \(\mathcal{W} \)-movability. Assume now that \(X \) is \(\mathcal{W} \)-movable. Let \(X \subset N \in \operatorname{AR}(3) \) and let \(U \) be a neighborhood of \(X \) in \(N \). Since \(X \) is \(\mathcal{W} \)-movable, there exists a neighborhood \(U \) of \(X \) in \(N \) such that for every neighborhood \(\tilde{U} \) of \(X \) in \(N \) and for every \(K \subset \tilde{U} \) there exists a map \(\varphi : K \to U \) satisfying the conditions:

\[
\varphi \approx \varphi' \quad \text{in} \quad U \quad \text{and} \quad \varphi(K) \subset \tilde{U}.
\]

Take \(A \in \mathcal{H} \) and a map \(\alpha : A \to U \) and let \(\tilde{U} \) be a neighborhood of \(X \) in \(N \). Since \(\dim A < n \), there exist polyhedra \(K_i \) for \(i = 1, 2, ... \), and maps \(p_i : K_i \to K_i \) for \(i > n \) such that \(\dim K_i = n \) and \(A = \lim (K_i, p_i) \).

Let the maps \(p_i : K_i \to K_i \) for \(i = 1, 2, ... \) be projections such that \(p_i = p_i \circ p_i \) for \(i = 2, ... \). Since \(U_n \) is open in \(N \in \operatorname{AR}(3) \), there exist an integer \(\tilde{u} \) and a map \(\tilde{u} : K_n \to U \) such that \(\tilde{u} : p_n \approx u \).
Let \(K_a \) be homotopically equivalent to \(K \times W^n \). Hence there exist maps \(f : K_a \to K \) and \(g : K \to K_a \) such that \(g \circ f \simeq 1_{K_a} \). Take \(\varphi = a \circ g \). Since \(X \) is \(W^n \)-movable, there exists a \(\varphi' : K \to U \) satisfying (3.11). Thus \(\varphi' \circ f \cdot p_{a} \simeq a \circ g \cdot f \cdot p_{a} \simeq a \in U \) and \(\varphi' \circ f \cdot p_{a} \subseteq U \). Then \(X \) is \(\mathcal{R} \)-movable, and thus by (3.4) \(X \) is \(n \)-movable.

Let \(W^n \) be a one-point compactification of a disjoint union of polyhedra belonging to \(W^n \). The family \(\mathcal{M} \) is \(\mathcal{M} \)-dominated by the family consisting of the single element \(W^n \). Combining this with Theorem 17 in [4] and with Theorem (3.10) we get the following

(3.12) COROLLARY. The following conditions are equivalent:

(a) \(X \) is \(n \)-movable,
(b) \(X \) is \(\mathcal{A} \)-movable for every compactum \(A \) of dimension \(< n \),
(c) \(X \) is \(W^n \)-movable.

By Corollary (2.12) we can replace "dim\(A \)" by "\(\mathcal{F}(\mathcal{A}) \)" in condition (b).

(3.13) THEOREM. If a compactum \(X \) is \(n \)-movable and \(\mathcal{F}(\mathcal{A}) < n \), then \(X \) is movable.

Proof. Since \(\mathcal{F}(\mathcal{A}) < n \), there exists a compactum \(Y \) such that \(\mathcal{S}(Y) = \mathcal{S}(X) \) and \(\dim(Y) < n \). Hence there exist polyhedra \(Y_i \) for \(i = 1, 2, \ldots \) and maps \(p_{Y_i} : Y_i \to Y \) such that \(\dim(Y_i) < n \) for \(i = 1, 2, \ldots \) and \(Y = \lim(X_i, p_{Y_i}) \). \(Y \) is \(n \)-movable ([3], p. 860). Then it follows by Theorem (3.10) that \(Y \) is \(W^n \)-movable. Let \(\mathcal{A} = (Y_i : i = 1, 2, \ldots) \). By Theorem (2.5), \(Y \) is \(\mathcal{R} \)-movable. Finally, by Lemma (3.5), \(Y \) is movable. Movable is a shape property ([1], p. 142), and thus \(X \) is movable.

It is easy to see that if a compactum \(X \) is \(\mathcal{R} \)-movable, then \(X \) is \(\mathcal{A} \)-movable for every \(A \in \mathcal{A} \). But the converse implication fails.

(3.14) EXAMPLE. There exist a family \(\mathcal{A} \) of compacta and a compactum \(X \) which is \(\mathcal{A} \)-movable for every \(A \in \mathcal{A} \), but is not \(\mathcal{R} \)-movable.

For every natural \(n \) let \(T_n \) be the orientable surface with \(n \) handles. Put \(\mathfrak{A} = (T_n : n = 1, 2, \ldots) \) and let \(X \) be a non-movable continuum described by K. Borsuk in [2]. The compactum \(X \) can be obtained as an inverse limit of a sequence \((T_n, p_{m,n}) \) satisfying the condition: for \(m < n \) there exists a point \(x_m \in T_n \) for which \(p_{m,n}(x_m) \) is an embedding. By Lemma (3.5), \(X \) is not \(\mathcal{R} \)-movable. It remains to prove that \(X \) is \(T_2 \)-movable for every \(T_2 \in \mathcal{A} \). Let \(m \) be an integer and let \(u \neq 0 \) be greater than \(n \) and \(k \). Take \(\alpha = x_m \) and \(\beta \) a carry \(T_n \) into \(T_{2n} \). Since the number of handles of \(T_n \) is greater than \(n \), it is homotopic to a map \(\beta \) with values in \(T_{2n} \). Define \(\alpha : T_{2n} \to T_2 \) by \(\alpha(x) = \beta \cdot z_{m,n}(\beta(x)) \); thus (3.3) is satisfied. By Lemma (3.2) \(X \) is \(T_2 \)-movable.

4. Some properties of \(\mathcal{R} \)-movability.

(4.1) EXAMPLE. For \(n = 2, 3, \ldots \), there exists a continuum \(X_n \) which is \((n-1) \)-movable but not \(n \)-movable.

Let \(X_n \) be an inverse limit of a sequence \((S_k, p_{2k}) \), where \(S_k \) is a \(n \)-dimensional sphere for \(k = 1, 2, \ldots \) and the maps \(p_{2k} : S_k \to S_{2k} \) for \(k > k \) are such that \(deg(p_{2k}) > 1 \). \(X_n \) is a solenoid and \(X_n \) is the suspension of a solenoid. Since the homotopy classes of the maps \(p_{2k} \) are given, the shape of \(X_n \) is completely determined. \(X_n \) is non-movable ([8], p. 692); therefore by Theorem (3.13), \(X_n \) is not \(\mathcal{R} \)-movable. By Corollary (3.4) and Theorem (3.10), \(X_n \) is \((n-1) \)-movable. This example is an answer to the Problem (4.6) from [3], p. 864.

For a family \(\mathcal{A} \) of compacts and for an arbitrary binary operation \(\circ \) in the family of all compacts, the following two problems arise:

1° Is it true that if \(X \) and \(Y \) are \(\mathcal{R} \)-movable, then \(X \circ Y \) is \(\mathcal{R} \)-movable?

2° Is it true that if \(X \) is \(\mathcal{A} \)-movable and \(\mathbb{B} \)-movable, then \(X \) is \(\mathcal{A} \circ \mathbb{B} \)-movable?

First, we are going to answer these two questions for \(\circ \) being the Cartesian product. By a slight change of the proof that if \(X \) and \(Y \) are movable, then \(X \times Y \) is movable ([1], p. 142) one proves the following

(4.2) THEOREM. \(X \) and \(Y \) are \(\mathcal{R} \)-movable if and only if \(X \times Y \) is \(\mathcal{R} \)-movable.

(4.3) COROLLARY. \(X \) and \(Y \) are \(n \)-movable if and only if \(X \times Y \) is \(n \)-movable.

By Example (4.1), for \(n = 1, 2, \ldots \) there exists a \(n \)-movable compactum which is not \((n+1) \)-movable. Therefore

(4.4) If \(X \) is \(n \)-movable and \(Y \) is \(m \)-movable, then \(X \times Y \) is \(min(n, m) \)-movable and the last number cannot be increased in general.

The statement (4.4) is an answer to Problem (1.6) from [3], p. 860.

It is not true that if \(X \) is \(\mathcal{A} \)-movable and \(\mathbb{B} \)-movable, then \(X \) is \(\mathcal{A} \circ \mathbb{B} \)-movable.

(4.5) EXAMPLE. There exists a compactum \(X \) which is \(S^m \)-movable but is not \(S^m \times S^m \)-movable. Furthermore the non-movable compactum \(X \) is \(\mathcal{R} \)-movable, where \(\mathcal{R} \) is a family of shapes of all dimensions.

Let \((a_k) \) and \((x_k) \) be sequences of prime numbers greater than \(1 \). Let \(S_k \) and \(S_k' \) be circles for \(k = 1, 2, \ldots \) and let \(a_k \) be \(S_k \) and \(a_k' \) be \(S_k' \). Denote \((S_k \times S_k') \cup ((a_k \times S_k') \cup S_k \times S_k') \), \(X_k \). Let \(S_k \cup S_k' \), \(k = 2, 3, \ldots \)
and $S_1 \times S'_1$ be pairwise disjoint sets. Put $X_n = S_1 \times S'_1$ and $X_{n+1} = S_1 \times S'_1 \cup \bigcup_{k=1}^{n} S_k \cup S'_k$ for $n \geq 2$. Define maps $p_{n+1} : X_{n+1} \to X_n$ by

$$p_{n+1}(x) = \begin{cases} \rho_{n+1}(x) & \text{for } x \in S_1 \times S'_1, \\ (p_n, \rho_n)(x) & \text{for } x \in S_1 \times S'_1', \\ x & \text{for } x \in \bigcup_{k=1}^{n} S_k \cup S'_k, \end{cases}$$

where the map $\rho_n : S_1 \cup S'_1 \to S_1 \cup S'_1$ is a homeomorphism and maps $p_n : S_1 \to S_1$ and $p'_n : S'_1 \to S'_1$ are such that $\deg p_n = \lambda_n$ and $\deg p'_n = \lambda'_n$ for $n = 1, 2, \ldots$. Put $p_{n+1} = p_{n+1} \circ \cdots \circ p_{n+1} : X_{n+1} \to X_n$ for $n > n$. Let $X = \lim \{X_n, p_n\}$. Let X be a family of spheres of all dimensions. We will prove that X is n-movable. Let n be an integer and put $n_0 = n$. Take $\alpha = n$ and a map $a : S^n \to X_{n_0}$. If $m > 1$, then a is homotopic to a constant map. Let $a' : S^m \to X_{n_0}$ be a constant map such that the sets $p_{n_0} \circ a(S^m)$ and $a(S^m)$ are both included in the same component of X_{n_0}. Then condition (3.3) is satisfied. In the case of $n = n_0$, we put $a' = a$; then condition (3.3) is also satisfied. Consider $m = 1$ and $n > n_0$. If $a(S^1) \cup S_1 \cup S_1' \supset S_2$, then define $a' : S^1 \to X_{n_0}$ by $a'(x) = a(x)$ for $x \not\in S_1$. Thus $p_{n_0} \circ a = a = a$. If $a(S^1) \subset S_1 \times S_1'$, then a is homotopic to some map $\tilde{a} : S^1 \to X_{n_0}$ with values in $S_1 \cup S'_1$. Then define $a' : S^1 \to X_{n_0}$ by $a'(x) = \tilde{a}^{-1}(G(a(x)))$. Thus $p_{n_0} \circ a = a = a$. Assume that a map $a' : S^1 \to X_{n_0}$ is connected, $a'(S^1) \subset S_1 \times S_1'$ or $a'(S^1) \subset S_1' \times S_1$. In the first case, since λ_1 and λ_1' are greater than 1, $p_{n+1} \circ a$ and $p_{n+1} \circ a'$ are not homotopic. In the second case, $p_{n+1} \circ a'(S^1) \subset S_1 \times S_1'$ or $S_1' \times S_1$. But $p_{n+1} \circ a$ is homotopic to a map with values in a proper subset of $S_1 \times S_1'$. By Lemma (3.2) we infer that X is not n-movable. Thus X is nonmovable. Since X is n-movable, X is n-movable for $n = 1, 2, \ldots$.

Example (4.5) is now the same as Problem 19 from [4].

Now consider the join of two spaces as the operation \ast. The join $X \ast Y$ of two compacta X, Y is the quotient space $(X \times Y) \cup \{0\}$, where Θ is the decomposition of $X \times Y \times \{0, 1\}$ into sets of the form $(a) \times X \times \{1\}$ or $(b) \times Y \times \{0\}$ where $a \in X$ and $b \in Y$ and into single points. The shape of $X \ast Y$ depends only upon $Sh(X)$ and $Sh(Y)$ ([10]), p. 854).

In general for the operation of the join the answers to questions 1 and 2 are negative. Indeed, the join $S^n \ast S^n$ of a solenoid S^n and a n-dimensional sphere S^n (i.e., the space S^n in Example (4.1)) is not movable. $S^n \ast S^n$ is a inverse limit of a sequence of $n+2$-dimensional spheres. By Lemma (3.3) $S^n \ast S^n$ is not n^{n+3}-movable, while by Corollary (3.4) S^n and S^n are n^{n+3}-movable. Also it is easy to see that the join $A \ast B$ of two two-point spaces A and B is a circle S^1. By Corollary (3.4) a solenoid is A-movable and B-movable, but is not S^n-movable.

(4.6) Theorem. Let \mathcal{K} be a family of compacta such that if $A \ast \mathcal{K}$ and a compaction B is the closure of an open subset of A, then $B \in \mathcal{K}$. If compacta X and Y are \mathcal{K}-movable, then the join $X \ast Y$ is \mathcal{K}-movable.

Proof. Let Q and Q' be the Hilbert cubes. Assume that $X \ast Q$ and $Y \ast Q'$ are \mathcal{K}-movable in Q and Q' respectively. Let $U = Q \ast Q' \in \mathcal{K}$ and let U' be a neighborhood of $X \ast Y$ in M. There exists a neighborhood U_1 of X in Q and a neighborhood U_2 of Y in Q' and a number $\varepsilon \in (0, 1)$ such that the sets $U_1 \ast U_2 = \{(x, y, t) \in M_1 \times U_1, y \in U_2, K(U_1, U_2) = \{(x, y, t) \in M_1 \times U_1, y \in U_2, 1 - \varepsilon < t < 1\}$. Then U' is a subset of $U_1 \ast U_2$.

Since X and Y are \mathcal{K}-movable, for U_1 and U_2 there exist neighborhoods: $U_1' \subseteq U_1$ in Q and $U_2' \subseteq U_2$ in Q' satisfying required conditions of the definition of the \mathcal{K}-movability. Then $U_1' \ast U_2' = \{(x, y, t) \in M_1 \times U_1', y \in U_2', K(U_1', U_2') = \{(x, y, t) \in M_1 \times U_1', y \in U_2', 1 - \varepsilon < t < 1\}$ and $U_1' \ast U_2' \subseteq U_1 \ast U_2$.

Define maps $p : b \ast U \to b$ by $p(a) = a(a)$ for $a \in b'$. Since X and Y are \mathcal{K}-movable, there exists a homotopy $F : b \times [0, 1] \to U^2$ and there exists a homotopy $F' : b' \times [0, 1] \to U^2$ satisfying conditions: $F(b, 0) = b(b)$ and $F(b, 1) = b'$. Define a map $q : b \ast U \to b'$ by $q(a) = a(a)$ for $a \in b'$. Since X and Y are \mathcal{K}-movable, there exists a homotopy $F : b \times [0, 1] \to U^2$ and there exists a homotopy $F' : b' \times [0, 1] \to U^2$ satisfying conditions: $F(b, 0) = b(b)$ and $F(b, 1) = b'$. Define a map $r : b \times [0, 1]$ by $r = (x, y, t) \in b \times [0, 1]$ and $r(a) = a(a)$ for $a \in b'$. Let $a_1 \in b_1$ such that $a_1(0)$ is a subset of U_1 and $a_1(1)$ is a subset of U_2 and $a_1(t) = F(a_1(a))(t)$ for $t \in [0, 1]$.
Define a homotopy $H: A \times [0,1] \to U$ by the formula:

$$H(a,s) = \begin{cases} p_{2} (a(s)), & 0 < s < \frac{1}{2} \text{ and } \alpha(a) \leq \frac{1}{2}, \\ p_{1} (a(s)), & 0 < s < \frac{1}{2} \text{ and } \alpha(a) > \frac{1}{2}, \\ 1, & s = \frac{1}{2}, \\ q_{3} (a(s)) = q(a(s)), & s > \frac{1}{2} \text{ and } q(a(s)) < 1, \\ q_{4} (a(s)) = q(a(s)), & s > \frac{1}{2} \text{ and } q(a(s)) \geq 1. \\ \end{cases}$$

This homotopy satisfies conditions: $H(a,0) = q(a)$ and $H(a,1) = q_{3} \circ q^{4} \in U$ for every $a \in A$. Thus $X \times Y$ is \mathcal{A}-movable.

Remark. If the compacta X and Y are n-movable, then the join $X \star Y$ is n-movable.

Proof. n-movability is equivalent to \mathcal{A}-movability, where \mathcal{A} is a family of all compacta of the dimension $\leq n$ (cf. (2.4)). If $A \in \mathcal{A}$ and a compactum $B \subset A$, then dim $B \leq n$, then $B \in \mathcal{A}$. Hence satisfies the assumption of Theorem (4.8).

Example. There exist compacta X^{1}, X^{2}, A^{1} and A^{2} such that $X^{1} \times X^{2} = \{x_{i}^{1}, X^{1} \times A^{2} = \{y_{i}^{2}\}$, X^{1} is $A^{1} \times A^{2}$-movable and $X^{2} \times X^{1}$ is $A^{2} \times A^{1}$-movable for $i = 1, 2$, but $X^{1} \times X^{2}$ is not $A^{1} \times A^{2}$-movable.

The main idea of this example is due C. Cox [5]. Let $i = 1, 2$. Let $\{j_{k}\}$ be sequences of prime number different from 1. For $k = 1, 2, ..., \{k_{j_{k}}\}$ let $S_{j_{k}}^{1}$ be pairwise disjoint k-dimensional spheres, except the pair $S_{j_{k}}^{1}$, $S_{j_{k}+1}^{1}$ with the point a_{k} in common. Let $f_{j_{k}}^{1}: S_{j_{k}}^{1} \to S_{j_{k}+1}^{1}$ be a map such that deg $f_{j_{k}}^{1} = 1$ and $f_{j_{k}}^{1}(a_{k}) = a_{k}$ for $j_{k} = 1, 2, ..., \text{ and let } h_{j_{k}}^{1}: S_{j_{k}}^{1} \to S_{j_{k}}^{1}$ be a homeomorphism for $k = 1, 2, ...$. Put $X_{j_{k}}^{1} = \bigcup_{k=1}^{\infty} S_{j_{k}}^{1}$. Define $p_{n+1}^{1}: X_{j_{k}}^{1} \to X_{j_{k}}^{1}$ by

$$p_{n+1}^{1}(x) = \begin{cases} f_{j_{k}}^{1}(x) & \text{ for } x \in S_{j_{k}}^{1}, \\ x & \text{ for } x \in S_{j_{k}+1}^{1}. \end{cases}$$

Let $p_{n}^{1} = p_{n+1}^{1} \circ ... \circ p_{n+1}^{1}$ for $n < n'$ and $p_{n}^{1} = \text{id}_{X_{j_{k}}^{1}}$. Let n be an integer and put $n_{0} = n$. Put $n > n_{0}$. Define a map $r_{j_{k}}^{1}: X_{j_{k}}^{1} \to X_{j_{k}}^{1}$ by

$$r_{j_{k}}^{1}(x) = \begin{cases} x & \text{ for } x \in S_{j_{k}}^{1}, \\ (h_{j_{k}}^{1})^{-1}(x) & \text{ for } x \in S_{j_{k}+1}^{1}. \end{cases}$$

Then $p_{n}^{1} \circ r_{j_{k}}^{1} \circ p_{m}^{1} = \text{id}_{X_{j_{k}}^{1}}$. By Lemma (3.1) $X_{j_{k}}^{1}$ is movable; then $X_{j_{k}}^{1}$ is B-movable for every compactum B. Let $A^{1} = S_{j_{k}}^{1} \times A^{2}$ and $A^{2} = S_{j_{k}}^{1}$. It is easy to see that a compactum $X = X^{1} \times X^{2}$ is A^{1}-movable and A^{2}-movable. It remains to prove that X is not $S_{j_{k}}^{1} \times S_{j_{k}}^{1}$-movable. Let $S_{j_{k}}^{1} \times S_{j_{k}}^{1} = A$. We have $X = \lim_{n \to \infty} (X_{j_{k}}^{1}, a_{n})$, where $X_{j_{k}}^{1} = X_{j_{k}}^{1} \times X_{j_{k}}^{1}$ and $a_{n}(x) = p_{m}^{1}(x)$ for $x \in X_{j_{k}}^{1}$. Take $\varepsilon = 1$ and let $n_{0} = 1$. Put $n = n_{0} + 1$ and let $a: A \to X_{j_{k}}^{1}$ be an inclusion map. Take a map $a^{1}: A \to X_{j_{k}}^{1}$. For $i = 1, 2$, $S_{j_{k}}^{1}$ is reeled $(s_{0}^{1}, ..., s_{m-1}^{1})$ times in $S_{j_{k}}^{1}$ by $p_{m}^{1}(x)$ for $x \in A$. Since A is connected, $a^{1}(A)$ is contained in some component of $X_{j_{k}}^{1}$. If $a^{1}(A) \subset S_{j_{k}}^{1}$ for $k > 1$, then $a^{1}(A)$ is not homotopic to a constant map. If $a^{1}(A) \subset S_{j_{k}}^{1} \times S_{j_{k}}^{1}$, then for $i = 1, S_{j_{k}}^{1}$ is reeled s_{0}^{1} times in $S_{j_{k}}^{1}$ by $a^{1}(A)$ for some integer s_{0}^{1}. Since $s_{0}^{1} > 1$, $S_{j_{k}}^{1}$ and $S_{j_{k}}^{1} \times S_{j_{k}}^{1}$ are different. Thus $p_{m}^{1} \circ a$ and $p_{m}^{1} \circ a^{1}$ are not homotopic. By Lemma (3.2), X is not $A^{1} \times A^{2}$-movable.

(4.9) **Theorem.** If every component of a compactum X is \mathcal{A}-movable, then X is \mathcal{A}-movable.

Proof. Assume that $X \times N \in \mathcal{A}(\mathcal{B})$. Let U be a neighborhood of X in N. As in the proof of a similar theorem for movability (113, p. 140) we can choose a free system of components $X_{1}, ..., X_{n}$ of X and pairwise disjoint open sets $U_{1}, ..., U_{n}$ satisfying three conditions:

U_{i} is a neighborhood of X_{i} in N for $i = 1, 2, ..., n$, $U_{n} = \bigcup_{i=1}^{n} U_{i}$ is a neighborhood of X in N, $U_{i} \subset U_{i+1}$ for $i = 1, 2, ..., n$, for every neighborhood U_{i} of X_{i} in N and for every $A \in \mathcal{A}$ every map $a: A \to U_{i}$ is homotopic in U to a map with values in U_{i}.

Let U_{i} be a neighborhood of X in N and take $A \in \mathcal{A}$ and a map $a: A \to U_{i}$. Define $a_{i}: A \to U_{i}$ for $i = 1, 2, ..., n$ by

$$a_{i}(x) = \begin{cases} a(x) & \text{ for } x \in A_{i}, \\ x_{i} & \text{ for } x \not\in A_{i}, \end{cases}$$

where x_{i} is a fixed point of X_{i}.

For $i = 1, 2, ..., n$, put $H_{i}: X \times [0,1] \to U$ be a homotopy such that $H_{i}(x,0) = a(x)$ and $H_{i}(x,1) = x$ for every $x \in A$. Define $H: X \times [0,1] \to U$ by $H(x,t) = H_{i}(a(t))$ for $a \in A_{i}$. $H(x,0) = a(x)$ and $H(x,1) = x$ for every $x \in A$, then $X \in \mathcal{A}$-movable.

On the other hand, it is not true that if X is \mathcal{A}-movable, then every component of X is \mathcal{A}-movable. There exists a movable compactum with a solenoid as a component (K. Borsuk's Example [13], p. 140, also the compactum X^{1} in Example (4.8)). As in Example (4.8), for every compactum X which is not \mathcal{A}-movable one can construct an \mathcal{A}-movable compactum Y with X as a component.
(4.10) Theorem. If \mathcal{A} is a family of all components of a compactum A, then (\mathcal{A}) and \mathcal{A} are M-equivalent.

Proof. Assume that $X \subseteq Y$ in N. Assume that for every $B \in \mathcal{A}$, there exists a homotopy $\varphi_0: B \times [0,1] \rightarrow U$ such that $\varphi_0(a,0) = a$ and $\varphi_0(a,1) \in \hat{U}$ for every $a \in B$. Since a component B is closed in A and U is open in N, a homotopy φ_0 can be extended over a set $B' \times [0,1]$ such that B' is a closed-open neighborhood of B. As in the proof of Theorem (4.9), one can choose a finite system of components $B_1, ..., B_n$ such that the sets $B_1', ..., B_n'$ constructed for them are pairwise disjoint and $\bigcup B_i' = A$. Define a homotopy $H: A \times [0,1] \rightarrow U$ by $H(a,t) = \varphi_0(a,t)$ for $a \in B_i'$; then $H(a,0) = a$ and $H(a,1) \in \hat{U}$ for every $a \in A$. Conversely, assume that $B \in \mathcal{A}$, a map $\beta: B \rightarrow U_0$ and that every map $a: A \rightarrow U_0$ is homotopic in U to a map with values in \hat{U}. There exists a closed-open neighborhood B' of B in A and a map $\beta': B' \rightarrow \hat{U}$ extending β. Let $U_0 \in U_0$, and define $a: A \rightarrow U_0$ by

$$a(a) = \begin{cases} \beta'(a) & \text{for } a \in B', \\ U_0 & \text{for } a \in A - B'. \end{cases}$$

Therefore, $\beta = a|_B$ is homotopic in U to a map with values in \hat{U}. Thus \mathcal{A}-movability and \mathcal{A}-movability are equivalent.

The notion of \mathcal{X}-movability has recently been studied by Kodama and Watanabe and by Koskiewicz and Segal (see [6] and [7]). They obtained independently the following results contained in the present paper: Theorems (3.6), (3.10) and (3.13), Example (4.11) and Corollary (4.3).

References