Partition topologies for large cardinals

by

Erik Ellentuck * (New Brunswick, N. J.)

Abstract. Two topologies are introduced on the power set of a large cardinal.
Partition theorems in the style of Kleiheberg-Shore are obtained for the first
topology and most in the style of Galvin-Priddy for the second.

1. Introduction. Let κ, λ, and ν be cardinal numbers and $a, b, c, d \subseteq \kappa$.
c is the order type of c and $[a, b] = \{a \leq c \leq b \}$ and $\nu = \{b \in \kappa : c \leq \nu \nu \}$. $[a, b]^c$ is
defined in the same way except $c = \lambda$ in the definition of $[a, b]^c$, replaced
by $\nu < \kappa$. $[\nu, \kappa]^c$ will be written $[\nu]^c$ where ν is the empty set.
We define two topologies on $[\nu]^c$ where $\alpha < \lambda < \kappa$ and ω is the first infinite
continuous. The classical topology (c-topology) is generated by a basis consisting
of $[\alpha, \beta]$ where $\alpha, \beta \subseteq [\nu]^c$. If x is measurable let $D \subseteq [\nu]^c$ be a ν-complete
$[\nu]^c$ is a measure topology if it is generated from the open sets by complementation
and $< \kappa$ intersections. It is meager if it is the union of $< \kappa$ nowhere dense
sets and is Baire if its symmetric difference with an open set is meager.
$[\nu]^c$ is Ramsey if there is a $\alpha \subseteq [\nu]^c$ such that $[a, b] \subseteq S$ or $[a, b] \subseteq [\nu]^c - S$.
Such a α is called homogeneous for S.

THEOREM 1. If x is a Ramsey cardinal and $S \subseteq [\nu]^c$ is c-Borel then S is Ramsey.

THEOREM 2. If x is a measurable cardinal and $S \subseteq [\nu]^c$ is d-Baire then S is Ramsey.

Our proof of Theorem 1 is based on the work of Kleiheberg-Shore [3] and that of
Theorem 2 on the work of Galvin-Priddy [2] and of the author [1].

2. Details. Write $a < b$ if every element of a is strictly less than
κ and every element of b. $[a, b]^c = \{a \subseteq b \subseteq \kappa : \lambda \in a, \lambda < b - \lambda\}$
is defined in the same way except $a = \lambda$ in the definition of $[a, b]^c$ is

* Prepared while the author was partially supported by NSF Grant Proposal 33848.
replaced by \(u < \lambda \). If \(f: \alpha \to \aleph_1 \) let \(f''(u) = f'(u) \) if \(u \in A \) and \(|u| = \text{the cardinal of } u. \) \(u \in \text{a Ramsey cardinal if } \).

\[(1) \quad u < \kappa \wedge f: [x]^{<\kappa} \to y \implies \left(\forall u < \kappa \right) \left(\forall v < \omega \right) \left| f''(u)^v \right| = \lambda . \]

Such a \(u \) is called homogeneous for \(f \). For further notice assume that \(u \) is a Ramsey cardinal and \(S \subseteq [x]^\kappa \). As in [3] we say that \(S \) is regular if there is a \(u < \kappa \) and an \(f: [x]^{<\kappa} \to y \) such that every \(u \in [x]^\kappa \) which is homogeneous for \(f \) is also homogeneous \(S \).

Lemma 1. Every \(e \)-open set is regular.

Proof. Assume \(S \) is \(e \)-open and define \(f: [x]^{<\kappa} \to 2 \) by \(f(s) = \emptyset \) if \((s, \gamma) \subseteq S \) and \(f(s) = 1 \) otherwise. Let \(u \in [x]^\kappa \) be homogeneous for \(f \). Case 1. There is a \(n < \omega \) such that \(f''(u) = \emptyset \). If \(v \in [u]^\kappa \) let \(s \) be the first \(n \) elements of \(v \) (recall that \(u < \lambda \)). Then \(v \in (s, \gamma) \subseteq S \) and hence \([u]^\kappa \subseteq S \). Case 2. \((\forall u < \omega) f''(u)^v = (1) \). We claim that \([x]^{<\kappa} \subseteq S \). If not there is a \(u \in [x]^\kappa \) such that \(v \in (s, \gamma) \subseteq S \). Since \(S \) is \(e \)-open there are \(s, t \in [x]^{<\kappa} \) such that \(v \in (s, \gamma) \subseteq S \). Let \(a, b \) be an element larger than every element of \(v \). Then \((s, a) \cup (b, \gamma) \subseteq (s, \gamma) \subseteq S \) and hence \(s \cup \{a\} \in \omega \). Contradiction. Q.E.D.

Lemma 2. The complement of a regular set is regular.

Lemma 3. The intersection of \(\kappa \)-regular sets is regular.

Proof. Let \(\langle S_i \mid a < \gamma \rangle \) be a sequence of regular sets where \(\gamma < \kappa \). For each \(a < \gamma \) there is a \(v_a < \kappa \) and \(f_a: [x]^{<\kappa} \to 2 \) such that every \(u \in [x]^\kappa \) which is homogeneous for \(f_a \) is also homogeneous for \(S_a \). Define \(g: [x]^{<\kappa} \to \bigcap S_a \). (The direct product of the \(v_a \)) by letting the \(a \)-the component \(g(a) \) be \(f_a(s) \). Note that \(\bigcap S_a \) is a regular element and that any \(u \in [x]^\kappa \) which is homogeneous for \(g \) is simultaneously homogeneous for each \(S_a \). It readily follows that any \(u \in [x]^\kappa \) is homogeneous for \(\bigcap S_a \). Q.E.D.

Proof of Theorem 1. Every \(e \)-Borel set is regular and the partition property (1) immediately gives \(u \in \bigcap S_a \) which is homogeneous for \(S \). Q.E.D.

It is possible to somewhat strengthen Theorem 1: \(f: [x]^{<\kappa} \to y \) is a Borel function if \(f''(a) \) is Borel for each \(a < \nu \). If \(u \in [x]^\kappa \) and \(f''(u)^v = (1) \) then \(u \) is homogeneous for \(f \). Finally \(f \) is regular if there is a \(\nu' < \kappa \) and \(g: [x]^{<\kappa} \to \nu' \) such that every \(u \in [x]^\kappa \) which is homogeneous for \(g \) is also homogeneous for \(f \).

Lemma 4. If \(u < \kappa \) and \(f: [x]^{<\kappa} \to y \) is Borel then \(f(u) \) is regular.

Proof. \(f''(a) \) is Borel and hence regular for each \(a < \nu \). Hence there are \(v_a < \kappa \) and \(f_a: [x]^{<\kappa} \to v_a \) such that every \(u \in [x]^\kappa \) which is homogeneous for \(f_a \) is also homogeneous for \(f''(a) \). Define \(g \) as in the proof of Lemma 3. Then just as in that proof it follows that any \(u \in [x]^\kappa \) which is homogeneous for \(g \) is also homogeneous for \(f \). Q.E.D.

Corollary 1. If \(\alpha \) is a Ramsey cardinal, \(\omega < \lambda < \alpha \), \(\gamma < \kappa \), \(f: [x]^{<\kappa} \to y \) is a Borel function, \(u < [x]^{<\kappa} \) and \(u \in [x]^{<\kappa} \) then there is an \(\alpha \in [x]^{<\kappa} \) such that \(|f''(\alpha)^u| = 1 \).

Proof. Define \(g \) on \([x]^{<\kappa} \) by \(g(v) = s \cup \nu \). Let \(\gamma < \kappa \) be greater than every element of \(s \) and let \(h \) be a strictly increasing function mapping \(\gamma \) onto \(u \). Then \(g \cdot h : [x]^{<\kappa} \to [x]^{<\kappa} \) is \(e \)-continuous making \(f \cdot g \cdot h \) \(e \)-Borel. By Lemma 4 there is an \(\nu' \in [x]^{<\kappa} \) which is homogeneous for \(f \cdot g \cdot h \). Then \(\nu' \in h''(u) \) is easily seen to satisfy the corollary. Q.E.D.

Now assume that \(\alpha \) is a measurable cardinal and \(D \subseteq [x]^{<\kappa} \) is a \(\kappa \)-complete normal ultralfilter. The normality of \(D \) allows us to prove

(2) If \(u \in D \) for \(\gamma < \kappa \) then \((s, a) \not\in \bigcap D \).

(3) \(u \in [x]^{<\kappa} \to \gamma \) implies \((\forall u \in D) \left(\forall u < \omega \right) \left| f''(u)^v \right| = 1 \).

Proofs of these results as well as a comprehensive discussion about measurable cardinals can be found in [4]. For the following definitions let \(S \subseteq [x]^{<\kappa} \) be fixed. If \(s \in [x]^{<\kappa} \) and \(u \in D \) then \(u \) accepts \(s \) if \((s, a) \subseteq S \) and \(u \) rejects \(s \) if for no \(v \in [x]^{<\kappa} \) \(D \) does \(v \) accept \(s \) (cf. [2]).

Lemma 5 (cf. [2]), (i) \(u \) accepts (rejects) \(s \) if and only if \((a \in \bigcap u) \) (accepts) \(s \). (ii) \(u \) accepts \((\forall s) \) \(\gamma \) then \(\gamma \in \bigcap D \). (iii) For any \(s \in [x]^{<\kappa} \) and \(u \in D \) there is a \(v \in [x]^{<\kappa} \) \(D \) which either accepts or rejects \(s \).

Lemma 6. There is a \(u \in D \) which either accepts or rejects every \(s \in [x]^{<\kappa} \).

Proof. By Lemma 5 and the \(\kappa \)-completeness of \(D \) for each \(\gamma < \kappa \) \(u \in D \) accepts or rejects every \(s \in [x]^{<\kappa} \) \(\gamma \). Let \(u = \langle a < \kappa \mid (a \in \bigcap u) \rangle \). By (2) \(u \in D \). Let \(s \in [x]^{<\kappa} \) have \(\gamma \) as its largest element. Then \(u \) accepts or rejects \(s \) and if \(a \in u \) and \(a > \gamma \) then \(a \in u \). Hence \(u \) accepts or rejects \(s \). Q.E.D.

Lemma 7. There is an \(u \in D \) such that if \(u \) rejects \(\emptyset \) then \(u \) rejects every \(s \in [x]^{<\kappa} \).

Proof. Define three sets contained in \([x]^{<\kappa} \) as follows.

\[A := \{ s \in [x]^{<\kappa} \mid (\forall v \in D) \text{ accepts } s \} \]
\[B := \{ s \in [x]^{<\kappa} \mid (\forall v \in D) \text{ rejects } s \} \]
\[C := [x]^{<\kappa} - (A \cup B) \]

If \(s \in A \cup B \) then there exist \(\gamma \) \(\rho \in D \) such that \(s \) is rejected \(\gamma \) \(\rho \) and \(\rho \). Then \(\nu \gamma \in D \) and by Lemma 5 both accepts and rejects \(s \). Contradiction. Thus \(A \cap B = \emptyset \) so \((A, B, C) \) is a partition of \([x]^{<\kappa} \). By (3) we can find an \(u \in D \) which is homogeneous for this partition, i.e., \(\left(\forall v < \omega \right) \left| f''(u)^v \right| = 1 \).
Lemma 8. If \(S \) is \(d \)-open then there is a \(u \subseteq D \) such that \((u) [\subseteq \mathcal{S} \) or \([u] [\subseteq \mathcal{S} \) for \(S \).

Proof. Let \(u \subseteq D \) satisfy Lemmas 6 and 7. If \(u \neq \emptyset \) then \([u] [\subseteq \mathcal{S} \) and we are done. Otherwise \(u \) does not contain every \(x \in [\mathcal{S} \). We claim that \([u] [\subseteq \mathcal{S} \) for \(S \). If not then there is a \(\psi \in [\mathcal{S} \) such that \(\psi \in [\mathcal{S} \) for \(S \). Since \(S \) is \(d \)-open there must be an \(x \in [\mathcal{S} \) and \(\psi \in [\mathcal{S} \) for \(S \). But then \(\psi \subseteq u \) and \([\psi] [\subseteq \mathcal{S} \) so \(u \) and \([\psi] [\subseteq \mathcal{S} \) for \(S \) contradict \(u \). Contradiction. Q.E.D.

Lemma 9. If \(S \) is \(d \)-meager then there is a \(u \subseteq D \) such that \((u) [\subseteq \mathcal{S} \) and \([u] [\subseteq \mathcal{S} \) for \(S \).

Proof. If \(S \) is \(d \)-nowhere dense then so is its closure \(\overline{S} \). By Lemma 8 there is a \(u \subseteq D \) such that \((u) [\subseteq \mathcal{S} \) and \([u] [\subseteq \mathcal{S} \). Since the former cannot occur we have \((u) [\subseteq \mathcal{S} \) and \([u] [\subseteq \mathcal{S} \). Now let \(\mathcal{S} \) and \(\mathcal{S} \) be a sequence of \(d \)-nowhere dense sets of length \(\gamma \) such that \(\mathcal{S} \) and \(\mathcal{S} \) are \(S \). For each \(\gamma \) choose \(u \subseteq D \) so that \((u) [\subseteq \mathcal{S} \) and \([u] [\subseteq \mathcal{S} \). If \(u = \bigcap_{\gamma} u \gamma \), then we clearly have \(u \subseteq D \) and \([u] [\subseteq \mathcal{S} \) for \(S \). Q.E.D.

Lemma 10. If \(S \) is \(d \)-Baire then there is a \(u \subseteq D \) such that \((u) [\subseteq \mathcal{S} \) or \([u] [\subseteq \mathcal{S} \) for \(S \).

Proof. Let \(S = S_\alpha \Delta S_\beta \), where \(S_\alpha \) is \(d \)-meager, \(S_\beta \) is \(d \)-open, and \(\Delta \) is symmetric difference. By Lemma 9 we can find \(u \subseteq D \) such that \((u) [\subseteq \mathcal{S} \) or \([u] [\subseteq \mathcal{S} \) for \(S \). If the former occurs then \([u \cup v] [\subseteq \mathcal{S} \) while in the latter case \([u \cup v] [\subseteq \mathcal{S} \) for \(S \). Our proof is complete since \(u \cup v \subseteq D \). Q.E.D.

Proof of Theorem 2 is now an immediate consequence of Lemma 10 since \(D \subseteq [\mathcal{S} \). Q.E.D.

This result may be strengthened as in Corollary 1. If \(f : [x] \rightarrow [y] \) is a Baire function, then \(f^{-1}(a) \) is Baire for each \(a \subseteq [y] \).

Corollary 2. If \(f \) is a measurable cardinal, \(D \subseteq [\mathcal{S} \) is a \(v \)-complete normal ultrafilter and the \(d \)-topology is defined as above, then \(\lambda \leq \kappa \), \(\lambda = \kappa \), \(\nu < \kappa \), \(f : [x] \rightarrow [y] \) is a \(d \)-Baire function, \(s \in [\mathcal{S} \) and \(u \subseteq D \) such that \(f^{-1}(s) \subseteq [\mathcal{S} \).

Proof. Define \(g \) on \([x] \) by \(g(s) = s \cup v \). We easily see that \(g \) is \(d \)-continuous, so that \(f \circ g \) is \(d \)-Baire. Now \((f \circ g)^{-1}(a) \) is \(d \)-Baire for each \(a \subset [y] \) so by Lemma 10 we may choose a \(\mu \subseteq D \) so that \([\mu] [\subseteq \mathcal{S} \) for \(\mathcal{S} \).

References

Return to the State University,
New Brunswick, New Jersey

Accepted for publication by the Journal of Symbolic Logic, New Brunswick, New Jersey, 16, 1, 1974.