icm

A Nielsen number for fixed points and near points
of small multifunctions

by
Helga Schirmer * (Ottawa)

Abstract. A Nielgen number N(p) is defined for use multifunctions ¢: |[K|—|K|
on a polyhedron |K| if @ is small, i.c. if each ¢(w) is contained in the star of a vertex
of |K|. We show that, for suitable &> 0, the set S(g, &)= {v < |K|| d(z, (@) < &}
of e-near points of  has at least N (p) path-components, and construet within the small
homotopy elass of ¢ functions y with exactly N (p) path-components of S(y, ¢). For
acyclic multifunctions §(p, &) can be replaced by the fixed point set §(p) = S(p, 0)
in these statements. The proof in this case uses a fixed point index for acyclic use multi-
funetions.

1. Fixed points and ¢-near points of multifunctions. Self-maps of spaces
with a minimal set of fixed points have been studied for some time.
Nielgen’s work [4], concerned with fixed points on surfaces, is now almost
50 years old. The Nielsen number N (f) provides a lower bound on the
number of fixed points of maps in the homotopy class of f. Self-maps
of certain polyhedra with exactly N (f) fixed points were constructed by
Wecken [9], and on more general polyhedra by Shi [6]. The easiest intro-
duction to current results is found in R. F. Brown’s book [1], which we
shall frequently use as reference.

We attempt here to extend some of these results from single-valued
to multi-valued functions. A Nielsen number N(p) for multifunctions
@: |K|~|K| on a connected polyhedron is defined in § 2 if ¢ is small in
the sense of [5]. It equals the usual one if ¢ is single-valued, and is in-
variant under small homotopies. As a small multifunction is often fixed
point free, we relate N (p) in § 3 to minimal sets of ¢-near points rather
than fixed points. If ¢ is acyclic, then its fixed point behaviour resembles
more clogely that of single-valued mappings, and we therefore study
minimal fixed point sets of acyclic small multifunctions in § 4. The fixed
point gets and s-near point sets of multifunctions can usually not be
expected to consist of isolated points, hence their path-components
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rather than single points are investigated. All proofs rely heavily on the
existence of a single-valued simplicial map approximating a small multi-
function which was established in [5]. In the case of acyclic multifunctiong
we also make use of a fixed point index for such multifunctions. The
definition and mnecessary properties of such an index are sketched in an
appendix.

In order to ensure that fixed point sets are closed, and to be able
0 apply the results about small multifunctions from [5], we only consider
use (upper semi-continuous) multifunctions @: X — ¥, which means that
for every open set ¥V in ¥ with ¢(2) CV there exists an open neighbour-
hood U of @ such that ¢(U) CV. We will also assume, without explicitly
stating it later on, that all use multifunctions are poini-closed, i.c. that
each ¢(z) is closed in Y. By a map we always mean a single-valued con-
tinuous function. .

It is well-known that an use multifunction ¢: X — X need not have
a fixed point even if X has the fixed point property. A typical oxample
is the multifunction ¢: I+ on the unit interval I = [0, 1] given, for
any 0< k<1, by

|%<1+k> it o<y,
pl@) =1 (J0—%), §A+R} i o=3,
]%(1—76) it w>1.

Obviously its fized point set 8{p) = {w e X| x ¢ p(w)} is empty. But we
notice that ¢ comes close to having a fixed point if % is Vei;y small, and
we shall find this idea worth pursuing. So we shall study, for multi-
funetions ¢: X—X on a space with a metric d, the e-near point set
8(p,e)= {# e X| dlw,p(®)) < e}. (¢-near points have also becn. called,
by various authors, e-invariant points or e-fixed points; see e.g.
[8, p. 98 ff.] and the literature mentioned there.) Obviously the structu]?e
of S(p, ¢) depends on the choice of e. We have 8(p, 0) = §(¢), and in
our example §(p, ¢) is empy, consists of one point or of a closed’intcrval
it e< %k, e = $k, & > & respectively, with % equal to the supremum of
the diameters diame(z). Thus the example illugtratos two ‘T)ropm‘tios

of S(p, &). T
Prorosrrion 1.1. If (X, d) is a metric space, ¢ O arbitrary, and

o: XX use, then 8(p,e) is closed. ’
ihe proof is straightforward. Now let Int.A denobe the interior of 4.
ROPOSITION 1.2. Let (X, d) be a metric space, ¢: X —X use ]
the supremum of diamg () for all w e X. If thefa aa;is?s on &’ } {;WSZOZ“%;:

S(p, &) # O, then IntS(p,e) # @ for all e>e - k. }

. AP;oif. It S(p,e)#@ and &> &'+k, select ¢ 8(p, ). Write
(4,8)={weX| d(w, A) < 8} As g is use, there exists a 6 >0 such
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that @ e U(#, 8) implies ¢(2)C Ulp(wy, &) with &= }(e—e'—F%) > 0.
If 0 < ey <5 6 and 0 << gy =5 &, then we have for all » ¢ T(m,, &)

Az, ¢(@) < d(@, 20)+ (o, p(00))4 diame (a,) + d{p (), ¢ ()

G eg e ke < e

Hence U (%, &) C S (@, &) and IntS(p, &) # @.

We shall lator use a special case of Proposition 1.2.

ConrorrAry 1.8, Let (X, d) be a meiric space and f: X —» X be a map
with a fiwed point. Then IntS(f, ¢) £ @ for all & >0.

Note that it is mot possible in Proposition 1.2 to replace the con-
dition ¢ > &' +% by &> ¢'; counterexamples are easy to construct.

2. A Nielsen number for small multifunctions. We shall now define
a Nielsen number for multifunctions in the case that diame(s) does not
exceed a certain size, and relate this number to minimal sets of fixed
points and e-near points. More precisely, we shall work with the small
multifunctions studied in [B]. We repeat some of the definitions.

Let |K| be a polyhedron underlying the finite simplicial complex K.
We shall agsume throughout this paper that |K| is connected. Let
st(v; X) denote the star of the vertex v of K, which is the open subset
of |K| consisting of the union of the interiors of all simplexes which
have v a8 a vertex. A multifunction g: X — | K| is called small (with respect
to the simplicial structure K of |K|) if

(@) Cst{v; K) for all 3 e X,

where » = v () is a suitable vertex of K. A small homotopy between two
use multifunctions @, p: X —|K| is a small and use multifunction
@: Xx I—|K| with &(z, 0) = g,(z) and & (2, 1) = gy(s) for all & ¢ X. Our
proofs shall’depend on the fact that a small use multifunction ¢: | K- K|
has o simplicial approwimation f: |K‘|—|K|, i.e., that there exists a sim-
plicial map f from a suitable subdivision of K into K for which

p(st(0; ) C sb{f(0); K)

for all vertices v e K’ [B, Theorem 2.4].

Wo define the Nielsen number N (@) of a small use multifunction
@i ||~ K| by N(p) = N(f), wheve N (f) is the Nielsen number of any
map [1, p. 87] related to ¢ by a small homotopy. That N (p) is independent
of the choice of f follows from the facts that two maps which are both
related to ¢ Dy a small homotopy are homotopie [5, Theorem 3.4], and
that N (f) is homotopy invariant [1, p. 951 N (p) is always defined as it
equals the Nielsen number of any simplieial approximation of g, and is
of course equal to the usual one if ¢ is single-valued. It is also homotopy

invariant:
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ProposITION 2.1. If two small use multifunclions @, @ |K|-|K|
are related by a small homotopy, then N (po) = N (py).

This follows immediately from [3, Theorem 3.1], as the simplicial
approximations of g, and ¢, are homotopic.

3. Minimal sets of ¢-near points of small multifunctions. We now attempt
to relate the Nielsen number N (@) of a small use multifunction ¢: |K| - K|
to its -near point set S(p, ¢) for suitable values of e. The example in § 1
shows that the choice of & is important if we want to obtain results re-
sembling those for minimal fixed point sets of maps: if & is too small,
then 8 (g, s) might be empty; if & is too large, then S(p, ) might equal
all of |K|. Nevertheless we shall show, in Theorem 3.1, that there always
exist values of & > 0 for which S(p, &) has at least N (p) path-compounents.
Then we construct, within the small homotopy class of ¢, a map f for
which S(f, ¢) has exactly N(p) path-components (Theorem. 3.3) and
a small use multifunction u for which S(y, ¢) consists of exactly N (p)
points (Theorem 3.4).

‘We shall denote by w(K') the mesh of the star-covering of a sub-
division K’ of the polyhedron |K|, i.e. the supremum of the diameters
of the set of stars with vertices of K'. By m we mean the minimum of
the dimensions of the maximal simplexes of I, where a simplex is maximal
if it is not a proper face of any other simplex.

THEOREM 3.1. For every polyhedron |K| there evists an &= e([K|) >0
with the following property: If K' is a subdivision of K with u(K')<<e
and @: |K| - |K| is any use multifunction which is small with respect to K',
then 8(p, ) has at least N (p) path-componenis of dimension = m.

Proof. We know from [1, p. 39] that there exists a == §(JK|) >0
for whieh the following is true: If

W= {@ o) e |K|x|E|| d(,a)< 8},
then there exists a map h: WxI— K| such that
hiz,o',0)=2, hz,o,1)=2a,
hiz,s,t) =a for all tel.

Hence if p: I - [K| is a path in [K| and f: |E| - |K| a selt-mayp with f « p(0)
=p(0),fop@) = p(1) and d(w, f(x)) < 6 for all # ¢ p(I), then the puths p
and fop are homotopic in |K| modulo the end-points.

Now take & = 4. According to [3, Theorem 2.4] there exists u sim-
plicial approximation f: |K'|~ |K'| of ¢, i.e. a simplicial map from a gub-
division K'' of K into K’ for which

p(st(v; E)) Cst(f(v); K') for all vertices v e K.
We shall relate. §(f) to S(g, ¢).
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(1) S(f)CS((p,e:): Take any o eS(f). Select a vertex v ¢ K with
west(v; K”). As f is a simplicial approximation of @ we have

¢ (@) C plst(v; E"))C st(f(o); I).
As f is simplicial, f(st(v; K"))C st(f(v); E’), and hence
@ = f(o) e f(sti(v; K"))C st{f(v); ).

Therefore d(x, @(x)) << & 80 that @ < 8(p, &).

(i) I @4, @7 ¢ 8(f) lio in different fixed point classes, then they lie
in ditferent path-components of S(g, s): Assume to the contrary that
there exists a path p: I —8(p,e) with p(0) = @; and p(1) = x;. Take
any point @ = p(d), ¢ I, and select a vertex » e K" with ¢ sti(v; K'").
Ag f iy & simplicial approximation of ¢ we have

p(@) Cplst(o; X)) C st{f(v); K).

From, this and
f(@) « flst(v; K')) C st(f(v); K)

it follows that d(f(»),¢(#)) <e As we8(p,e) we have dlz,p(®)<e,
and 48 ¢ is small with respect to K’, we see that diame ()< &. Therefore

do, (o) < A(@, ¢ @)+ dismp(2)+d(p(2), f(@)) < e = 6 ,

50 that p and f o p are homotopic modulo #; and @;. But this is impossible
if @; and @ lic in different fixed point classes of f.

In consequence of (i) and (ii) the set S(p, ¢) must have at least N (p)
path-components, as f has N(f)= N(p) essential fixed point classes.
It remains to show that every path-eomponent of S(p, ) which is related
to an essential fixed point class of f in the manner of (i) is at least m-di-
mengional. ’

We saw in (i) that o= f(#)est(f(o); K’) and o(a)Cst(f(v); K')
for some v ¢ K. As st(f(v); K') is open and ¢ is usc, there exists a 6’ >0
such that d(w,a’) < &' implies ¢(z") C st(f(v); K') and o' e sb(f(v); K').
But then d(2’, p(2')) < & Lot |v| bo a maximal simplex of K which has
the carrier gimplox of @ ag its (proper or improper) face. Then Uz, ') »
A || s at least m-dimensional, is contained in 8(gp, ), and is path-con-
nected. Hence it is contained in the same path-component of §(p, &)
a8 @, and Theorem 3.1 follows.

Wo state the gpocial case of Theorem 3.1 in which ¢ is a map.

COROLLARY 8.2, Tor every polyhedyon K| there ewists an & = e([K|) >0
suoh that the e-noar point set of every self-map f of |K| has at least N (f)
path-components of dimension = m.

Our next task is to show that the lower bound for S(g, ¢) established
in Theorem 3.1 can actually be achieved. First we relate ¢ by a small
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homotopy to a map f for which S(f, &), for a suitable e = &(p), is minimal.
As in the corresponding case for fixed points of maps (see [1, p. 140])
we have to agsume that the polyhedron [K| is of type S, which means
that the dimension of |K| is at least three and that, for each vertex v
of |K|, the boundary Bdst{v; K) is connected.

TaporEM 3.3. Let |K| be a polyhedron of type 8 and @: |K|—|K| be
use and small with respect to K. Then there ewists an &= &(p) >0, and
o map f: | K|~ K| related to ¢ by o small homotopy, such that 8(f, ) has
ewactly N (@) path-components, and each is homeomorphic to an m-ball.

Proof. Choose a simplicial approximation g: |[K'|—|K| of ¢. Then
it follows from [1, p. 140 f] that there exists a map g’ | K|~ K| with
exactly N (g) = N(p) fixed points z; (j=1,2, ..., N(p)), and such that
each w; lies in a maximal simplex of dimension > m.

If N(p)= 0, then ¢’ is fixed point free, and therefore d(w, g'(#)) = o
for some & > 0. Hence f= g’ and any & with 0 < ¢ << § will satisfy Theo-
rem 3.3.

If N(p) # 0, then we select for each x; a maximal simplex |v;} of
dimension m. (The |z;| need not be distinet.) As |K| is of type 8, we can
by repeated use of Lemma 6 in [1, p. 135] find & map ¢'": | K| — K| which
is homotopic to g’ and has precisely N (p) fixed points y;, with ¥y [w].
Tor each y; choose a ;>0 such that (with Ol denoting the closure)

OLU (ys, ) Clwsl , 9" (OLT (s, 69)) C ]
and all O1U(y;, 8;) are distinet. Select £ >0 such thab
dlw, 9" (@) >e for all ¢ Ulys, ).

Then 8(g”, ) CU{OLT (g3, )| §=1,2, .., N(g)}

We now construct f: |[K|—|K|. If @¢ U(ys, §;) for any j, let f(w)
= ¢"(@). If % e Uy, 8;)\{ys} for some j, then » ¢ |7y and g”(GlU(y,, é1)
C |75]. Let 4 € |75] be the unique point in which the ray from y; to » inter-
sects Bd U (yy, 6;), and define f(2) e'|v;] by

_— —>

——
y;f (@) = y;0+d(y;, 9)/d;99" (y) .

Finally put f(y;) = y;. This defines f continuously over all of [XK|.

We have 8(f,e)C U {U(ys, 8 1=1,2,..,N(p)}. For cach j the
set S5(f, &) = 8(f, &) » Uly;, &;), which contains yy, is path-connocted, and
f;herefore these N (p) sets are the path- components of 8(f, £). Hach S;(f, &)
isa closed subset of an m-simplex, and a homeomorphism onto an m-Dball
can be obtained by selecting, for each # ¢ Bd U (yy, dy), the point y on the
segment [y;,#] for which dfy,f(y))=¢, and mapping [y;,y] linearly
onto [y;, 2]. Hence Theorem 3.3 holds.
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In particular Theorein 3.3 can again be applied fo single-valued
maps to obtain o result about minimal sets of ¢-near points within a homo-
topy class of maps, On the other hand, we can construct a function with
only isolated &-noear points if we stay within the framework of small
multifunetions. Thix is done in the next theorem.

TuROREM 3.4. Let || be a polyhedron of type 8 and p: |K|— |K| be
use and small with respect to K. Then there emists an & = &'(¢) >0 and
a small use multifunction y: |K| - K| velated to @ by a small homotopy
such that Sy, &) consists of ewactly N (g) points.

Proof. Tt N(p) =0, then Theorem 3.4 is a consequence of Theo-
vem 3.3, If N () # 0, we modify the map f constructed in the proof of
Theorem 3.3 in the following way to obtain y: Let o (#) = f(2) if # ¢ 8i(f, ¢)
for any 4. It @ e 85(f, ©)N\{ys}, leb 9 € |vy| be the unique point on the ray
from y; to @ for which d(y,f (g/)) = g, and define y(x) =2 as the point
in |z for which

— e e .
Y2 = yya-- HA@)F1)yf(y)  with (@) = dlyy, 2)/d(y;, ) -
Finally 1ot '

i

{1y = (ol 9% == Ff(y) for somo y « S(f, &) with dly, f(y)) = e} -

Tt is easy to check that then S(p, &)= | i=1,2,..,N(p)}, and
that p and &' == e sativfy Theorem 3.4.

We note that the multifunction y which we have just constructed
is not acyelic (see Definition 4.1 below) if N (@) # 0. This is necessary;
Theorem. 3.4 cannot be satisfied with an acyclic multifunction y if & is
sufficiently small in consequence of Proposition 1.2 (with ¢=0) and
Theovem 4.1. In particular, Theorem 3.4 has no equivalent for single-
valued maps.

4. Minimal sets of fixed points of acyclic small multifinctions. We now
twm our attention to acyclic multifunctions. In this case we study the
tixed point set, as results by Wilenberg and Montgomery [2] and others
indicato that acyelic multifunctions have fixed point properties similar
to thoso of maps. A frequent tool in the proof of known fixed point theo-
rems for seyelie multifuncetions is tho Vietoris—-Begle mapping theorem
[7, p. 344]. Wo employ thiy theorem indireotly, as wo require the existence
of a fixed point: index, and the dofinition of & fixed point index for acyclic
use multifuncetions deseribed in the appendix uses the Vietoris-Begle
mapping theorem. '

Acyclic multifunctions are dofined in the Lterature by different
authors in meore than one way. For our purposes the most convenient
definition. seems to be the following.

5 — Fundamenta Mathematicae LKXXVII
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DeriNtTioN 4.1. A multifunction ¢ on a space X is acyclic if
ﬁg(qa(m)) — 0 for all #eX and all integers ¢, where I denotes reduced
(ech cohomology over the rationals.

For acyclic small multifunctions, we can prove the analogue to
Theorem. 3.1 for fixed point sets.

TEROREM 4.2. For every polyhedron |K| there ewists an & = ¢(|JK|) >0
with the following property: If K' is a subdivision of K with u(K')< s
and if @ K}~ |E| is any multifunction which is use, acyclic, and small
with respect to K', then 8(p) has at least N (p) path-components.

Proof. Let f: [K''|—|K'| be a simplicial approximation of ¢, and
let 8; (j=1,2, .., N(p)) be the essential fixed point classes of f. Choose
¢(JK]) >0 as in Theorem 3.1. Write

S(f,0) = {we K dlo, fl)) < e}

(The set S(f, ) is open and contained in Int8(f, ¢), but in general S(f, ¢)
# Int8(f, ¢).) For each j define

U;= {w < |K|| there exists a path p: I->S(f, ¢) with

p(0) €8y and p (1) =gz},

The proof of Theorem 4.2 will be accomplished by eomparing.the fixed
point indices of ¢ and f over Uj;. Therefore we establish the noecessary
properties. of the sets U;. Remember that a path p: I-—S(f,s) with
fop(0)=p(0) and fop(l)=p(1) is homotopic in |K| to fop modulo
its end points if ¢ < §, where J is chosen as in the proof of Theorem 3.1,

(i) The U; are open: This is simple to check.

({) UjnUr=0 if j # k: Assume that # ¢ U; ~» Uy. Then we have
paths ps: I—-S(f,¢) and px: I - S8(f, e) with p;(0) = @y € 8, Pr(0) = @1 ¢ S,
and p;(1) = pi(1) = #. The path p; o p3* is a path from a; to oy in S(J, ),

which implies that #; and @ lie in the same fixed point clags. But this

is impossible if j # k.

(i) If w¢BdU;, then dlw,f(@))=e: If d(z,f(@)<e then there
exists a path-connected neighbourhood N (%) with N (z)C S(f, ¢). If also
# e ClU;, then N(z) contains a point &' e U; connected to » point in §;
by a path p’ in S(f, ¢). But then every point in N (s) can Do eonnectod
to a point in §; by the composite of p’ and a path in N (#), hence N (w)
‘CUjand @ e Int Ty. So d(s, f(w)) = & for @ e BA Ty, and that d(w, f(a)) > ¢
cannot hold follows from the continuity of f. '

(iv) 8(f) ~ OLU; = 8j: By definition of U; we have §; C Uy, and from
(iii) We see tpat BdU; ~ 8(f) = @. As every fixed point in Uy ig joined
to a fixed point in 8; by a path in §(f, &), we have (S(FINSg) ~ U} = (.

. (v) There exists a small acyclic homotopy from ¢ to f which is fixed
point free on BAU; for all j: Take the small homotopy ®: |K|x I-+K

i
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constructed in the proof of Theorem 2.4 in [B]. It is a small multifunction
for which @ (x, 0‘). = @(#) and P(w,1)=f(x) for all we|K|, is acyclic
it g is acyclic as & (@, 1) is homeomorphic to ¢(x) for all ¢ [0, 1), and has
the property that for all @ « |K]| there exists a vertex w of K’ with

B(m, 1) Csb(w; K'Y for all teI.

THence « ¢ P (w, 1), for some ¢ e I, implies @ ¢ S(f, &) and therefore, by (iii),
%¢BaU;.

Now congider, for every j, the index (K|, @, U;) defined in § 5.
Tt follows from. (i) and (iii) that this index ean be defined, and from (v)
a8 well as (B.1) that 4(lK], ¢, Us) = i(JK|, f, Uy). Bub i(|K|,f, U;) is
the index of the cssentind fixed point class S; and hence non-zero
[1, p. 871 Therefore i 1K), ¢, Uy) # 0, and (8.2) shows that ¢ has a fixed
point on Uy. Bo we obtain a fixod point y; of ¢ on each of the Uy, and as
the Uy are distinet, thiy yields N (p) fixed points.

If y is any point in S{p), then

aly, f) < diame(y)+dlp), fv)) < 2e <.

From. this we seo that y; and yx (§ # &) must belong to different path-
components of 8(p): otherwise the composite p = p;eq opyz* of a path
py: I->S(f, &) from. & point @; e 8y to yy, o path ¢ I-8(f, 2¢) from y;
to yx and a path px: I~S(f, ¢) from a point @ ¢ S to ¥ would give
a path from @y to oy whieh lies in S(f, 2¢) and hence is (a8 2¢ < ¢) end-point
homotopic to f o p. This contradiets the choice of 4y and 2 in different
fixed point elagses. 8o we soo that §(p) has at least N (¢) path-components.

Remarks. (i) The only reason why the proof of Theorem 4.2 requires
that ¢ is acyelic is that it uses a fixed point index for @ which satisfies
the homotopy and additivity axioms. But non-acyclic multifunctions
would weually not satisty Theorem. 4.2, as can e.g. be seen from the
example in § 1. Therefore it soems doubtful that a fixed point index can
be defined for small use multifunctions in a meaningful way.

(ii) We cannot strengthen Theorem 4.2 with a statement about the
dimension of the path-components of §(p), as it is not difficult to con-
straet examples where tho dimensions of the various path-components
assume all values - 0.

Two corollavics follow easily from Thoorem 4.2.

JOROLLARY 4.3. Let K| be a polyhedron of type S which has the fized

point property. Then there ewists a subdivision K' of XK such that |K| has

the fimed point property for all maltifunctions which are USC, acyclic, and
small with respect to I

Proof. Solect K’ as in Theorem 4.2, and let ¢: |K|- K| be use,
acyelic, and small with respect to JC'. If fis a simplicial approximation
%


GUEST


icm°

154 . Sehirmor

of ¢ then N (f)# 0 [1, p. 146] and hence N(p) # 0. A8 Theorem 4.9
implies that S(p) has at least N(p) path-components, S(p) must he
non-empty.

The second corollary is a special case of a fixed point theorem by
Rilenberg and Montgomery [2].

COROLLARY 4.4. Every usc and acyclic multifunction of an n-ball into
itself has a fized poind.

Proof. Imbed the n-ball B™ into an n-simplex |z|. Let r: [v|— B
be a retraction and i: B"— |7| be the imbedding, and consider the acyclic
use multifunction 4o or: |7]—|z[. For |[K|==|7| the valuo of § in the
proof of Theorem 3.1, and hence of & in Theorem 4.2, can ho arbitrarily
large, and it is therefore not necessary to subdivide |v| if we want to apply
Theorem. 4.2 to the multifunction 4o o r. It is small with respect to T,
and the identity map of |7| is a simplicial approximation. So N (4 o ® o7
=N(f)=1, and ¢ o o r must have a fixed point ». As » is o rot raction,
% ¢ B™ and hence 2 € p(%).

Finally we state the counterpart to Theorems 8.3 and 3.4, which is
very easy to obtain. '

TueoREM 4.5. Let |K| be a polyhedron of type 8 and - || = | K| be
use, acyelic, and small with respect to K. Then there emisis a map f: | K| | K|
related to ¢ by an acyclic small homotopy which has ciwactly N (p) fized
poinds.

Proof. Let g: |K'| »|K| be a simplicial approximation of @, and let
J: |E| K| be a map which is homotopic to ¢ and has exactly N(g) = N(p)
fixed points. (See [1, p. 140] for the existence of f.) The composite of the
acyclic small homotopy from ¢ to g and the homotopy from g to f is an
acyclic small homotopy from ¢ to f.

Corollary 4.4 points to a direction in which the results of this para-
graph should be extended: it seems essential for Theorems 4.9 and 4.5
that the multifunctions considered are use and aeyelie, but not that
they are small. The smallness of @ only facilitates the proofs which depend
on the existence of a single-valued map closely related to ¢. It should
be a fairly simple and straightforward tagk to define o Niclsen number
of an use acyclic multifunction in the same way as in the single-valued
case, and prove its invariance under acyclic homotopy. This would imply

that Theorem 4.2 still holds. An extengion of Theorem. 4.5 looks more
diffieult to obtain.

5. Appendix. An index for use acyelic multifunctions on polyhedra.
The proof of Theorem 4.2 uses the existence of a fixed point index for
use acyclic multifunctions on polyhedra. We sketeh here the definition
of such an index and the derivation of some of its propertics. Tho
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dévelolunmﬂi iy kopt parallel to that given in [1, Chapter IV] for the
single-valued case, 80 that details can casily be filled in by the reader.
© O Let A== || ba w finite connected polyhedron. It can be imbedded
into an. Huelidean space K™, and there exists an open subset W of R" and
a refraction r: W — X, Assume that U is open in X and that BdT ~
~ 8(p) =@ for an use acyclic multifunction g: X - X, With 7 — r~Y(T),
define & multifunetion §: Vs B* by §(#) == @ gr(»). Then § i use acyclic,
and it S{p, U) - S(g) ~ U, then §(V\8(yp, U))C.R“\O. We proceed to
define & homomorphism

s TR, RN0) = 1V, VNS (@, T )
For this purpose, denote by ¢ tho graph of 6 in ¥ x B" and by @ the
graph in (PN (g, U))x (I"0) of tho rostriction of & to V\8(p, U). Let

P VX E" V" and py: VX R* K" e the first and seecond projections

of Vx B" onto ity factors, and consider the induced homomorphisms
e, RN0)S e, 6 mw, vS(e, 1))

In eonsequence of the Vietorvis-Begle mapping theorem [7, p. 344] p¥ is

an isomorphism, hence wo can put 8% = (p¥)~ipk, _

Now neloet gonorators  p, e "R BE™0) and U, e HMS") in the
same way a8 in [1, p. 64], and use in analogy to [1, p. 56] the homo-
morphisms

o i) * .
HYB® BN0Y - 1MV, VNS (p, U))—> HM8", 8™8(p, U))— H"(8"),
where j* and &* are induced by inclusions, Then
K58 (un) = qom
for some rational number ¢, and we define the indew of  on U as
WXy, U)==gq.

Obviously &(A", @, U) is identieal with the index Vus.ed in [1, p- 54 1f]
it g is ginglo-valuod, as then 0" equals the d¢* in Brown’s definition.
We use tho following two properties of the index in the proof of Theo-
rem 4.2,

(B.1)  I@: X'xI—X i an use acydlic homotopy between the use and
acyclic - multifunetions @ (@, 0) = gy(@) and $(@, 1) = py(w) such
that @ ¢ P(w,1) for all @eBAU and eI, then

":r(»«"\’-‘; Poy ) e 7"4‘(-X7 D1y U).

(62) T (X, p, U) # 0, then ¢ has a fixed point on U.
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The pfoofs of (5.1) and. (5.2) are quite analogous to the ones of
Lemma 3, Theorem 4, and Theorem. b on p. b4 ff as well. as Corollary 1
on p. 53 of [1], and establish the fact that i(X, @, U) satisfies the homo-
topy and additivity axioms. The proof of the? count(?rpart'of Theorem 5
in [1, p. B9/60] requires that two usc acyclic multifunctions &, and 6,
which are related by an usc acyclic homotopy induce the same homo-

morphism _ B
& = o7 HME", E™N0) - H™V, VN8 (¢, U)) .

That this is true can be shown as in [8, Theorem 3]. It would be of interest
to cheek (but it is not needed in this paper) to what extent (X, ¢, U)
satisties other axioms often associated with a fixed point index, and how
it extends to more general spaces than polyhedra. Some modifications
will arise, e.g. in the commutativity axiom, as the composite of two
acyclic multifunctions need not be acyclie.
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Partition topologies for large cardinals
by
Erik Ellentuck * (New Brunswick, N. J.)

Abstract. Two topologics arvoe introduced on the power set of a large cardinal.
Partition thoorems in the style of Kleinberg-Shore are obtained for the first topology
and ones in the style of Galvin-Prikry for the second.

1. Introduction. Lot %, 1, be cardinal numbers and w,v,s,iCx.
@ i the order type of u and [s,v] = {u| sCuCsworm= 1} [s, v]< is
defined in the same way except @ = 4 in the definition of [s, v]* is replaced
by B<< A [@, v]* will be written as [v]* where @ is the empty set. We define
two topologies on [%]* where w < A s % and o ig the first infinite cardinal.
The classical topology (c-topology) is generated by a basis consisting of
[s, x—t]* where s, te[x]<“. If % is measurable let D C[»]" be a »-com-
plete normal ultrafilter. The measure topology (d-topology) is generated
by a basis consisting of [¢, «]* where s € [%]<® and u ¢ D. When we speak
of a topology without the ¢ or d prefix we mean either topology. § C [»]*
is Borel if it is generated from the open sets by comp]ement;tion
and < » intersections. It is meager if it ig the union of < » nowhere dense
sets and is Baire if its symmetric difference with an open set is meager.
8 C[#] is Ramsey if there is a u e [»]* such that [«]* C 8 or [u]* C [x]— 8.
Such a « is called homogencous for 8. - -

TuroreM L. If # is o Ramsey cardinal and S C [x]* is ¢-Borel then 8 is
Bamsey.

TugoreM 2. If % i o measurable cardinal and SC[x]* is d-Baire
then 8 s RBamsey. -

Our proof of Thoeorem 1 is hased on the work of Kleinberg-Shore [3]
and that of Theorem 2 on the work of Galvin-Prikry [2] and of the
author [1].

2. Details. Write w-<< v if every oclement of u is strictly less than
every clement of 0. (s,0)* = {u] sCuCsvoAT=AAs<u— s}. (s, 0
is defined in the same way except % = A in the definition of (s, o)t is

——

.
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