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The box product of countably many metrizable spaces
need not be normal

by
Eric K. van Douwen (Delft)

Abstract. The box product of the family {irrationals} U {Tn] T'» is a convergent
gequence} is not normal, If X = {X,| a « A} is a family of metrizable spaces, the sub-
space E, = {%; |%a # Po for at most finitely many a} of the box produet of this family is
stratifiable, p ¢ IT, X, arbitrary. If the family & is countable and all finite subproducts
are paracompact, Z, is paracompact.

1. Introduction. If {X_| ae A} is a family of spaces, we denote the
usual product space by II,X, and the box product (see [5, p. 107]) by
B, X,. Stone asked whether B, X, is normal if each X, is metrizable, [6].
A partial answer has been given by Rudin, who showed that the con-
tinunm hypothesis implies that B, X, is paracompact provided each Xy is
a locally compact metrizable space, [10]. (Actually this was stated under
the additional hypothesis that the X, are o-compact. However, a locally
compact metrizable space X, is the union of a disjoint open family
{X,.| @edy} consisting of locally compact o-compact subspaces, ef. [11],
50 ByXn, being the union of the disjoint open family

{Bn X pomy| (1) € Aﬁ for ne N},

is paracompact.)

We show that the product of countably many separable metrizable
spaces need not be normal, even if all factors but one are compact (the
noncompact factor is the space of irrationals). Quite surprisingly the
proof that our space is not normal, resembles Michael’'s proof that the
product of the irrationals and a certain space is not normal, [7]. This

. negative solution of Stone’s question also solves a question of Borges,

whether a box product of metrizable spaces is stratifiable, [2], in the
negative and kills a conjecture of Vaughan, that a product of linearly
stratifiable spaces is paracompact [12]. As a byproduct we show that a box
product of metrizable spaces cannot be hereditarily normal if infinitely
many factors are nondiscrete.
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Certain subspaces of box products are behaving better. For p ¢ B, X,
let &, be the subspace {x e B, X,| #, # p, for at most finitely many o).
(The eomponent of p is contained in &p, provided the X,'s are regular T,
[6, p. 51]. If each X, is a group, with identity p,, &p is the so-called direct
sum.) Then E, is stratifiable if the X’s are metrizable. If {Xy] n ¢ N} is
a countable family of spaces, &, is paracompact if each finite subproduct
is paracompact.

It is shown in [6] that B,X, is T; iff each factor is 7; for
i=10,1,2,3,3% N is the set of positive integers.

2. Non-normal products. For n ¢ N let T, be the space I' == {w]| 2 = 0
or 1/zeN}, let B=B,T, and let P be the discrete open subspace
{w e B| @y # 0 for neN}.

ASSERTION. P is not an I',-subset of B.

Proof. Let F,CP be a closed subset of B. Define a sequence
@y, Wy, ... Dy induection as follows: #, = 1. Assume that »; ¢ TN\{0} is known
for 1 <4< n and that a strietly positive function & on N is known if
1< i< n—1 such that F; ~ U; =@, where

U= [[fadx [] te Tyl t< a(h)}.
S J=it1
The point (2, %, ..., %n, 0,0,...,0,...) does not belong to P, hence
there is a strietly positive function &, on N such that U, ~ F, = 0. Pick
an ., € TN{0} such that @,,, < &(n-+1) for 1 < ¢ < n. This completes
the definition. Let & be the point (x, #,, ..., @4, ...). Then © ¢ P and « ¢ Fy,
for m e N, hence P = | J {Fy| n e N}.

COROLLARY. A bow product with infinitely many nondiscrete metrizable
spaces is not hereditarily mormal.

Proof. Such a produet containg a (closed) subspace homeomorphic
to B. B and T X B are homeomorphic. By a theorem of Katétov a product
X x Y is hereditarily normal only if every countable subset of X is closed
or Y ig perfectly normal [4]. Hence T'X B is not hereditarily normal(*).

Bxsmprm. A box product of countably many metrizable spaces
which is not normal.

Let B* be the space II,T, and let P* be the subspace {& eB*| &
# 0 for n e N}, let d be a metric for B* Then B and B* have the same
underlying set, and so do P and P*. Observe that P* is homeomorphic
to the irrationals. Let T, = P*, then P*x B and B{Ts| # =0 or n ¢ N}
are the same space. We claim that P* x B is not normal.

(*) B. Kunen has independently found a different proof that B is not hereditarily

normal, Some comments on box products, Coll. Math. Soc. Jé ]
iy . Janos Bolyai 10, Kesztheley,

icm°®

The bow product of countably mamy metrizable spaces need not be normal 129

F = {(x, ) #eP} and G = P*x(B\P) are disjoint closed subsets
of P*x B. Let U and V be neighborhoods of F and @ respectively. For
2 e P* and ¢ >0 define S(z, &) = {y ¢ P*| d(#,y) < }. Define

Pp={weP| S(x,1n)x {x} C U}.
Then P = |J Py, hence by the assertion there is a g« B\P and an n'¢ N

w

such that g e Py in the space B, henee also in B*. Pick a p ¢ P* such
that d(p, q) < 1/2n. There are an & > 0 and a neighborhood W of ¢ in B
such that S(p,e)xWCV.

Choose an 7 ¢ P, such that r ¢ W and d(g, 7)< 1/2n. Then S (r, 1/n) X
x {r} C U, hence (p,7)e U since d(p,r)< d(p, g)+d(g,r)<1/n. But
also (p,r) eV since (p,7)e8(p,s)XW. Consequently U~V # @, so
P*x B is not normal.

The space T can be embedded as & closed subspace in the irrationals.
It follows that B{Xn| X, = {irrationals}} is not normal.

ProsreM. For what kind of metrizable spaces X is the product

B{X,| X,= X} normal or paracompact? Are these problems the same,

cf. [9]%
In [10] ‘conditions are given under which & box produet is normal.

3. Stratifiable direct sums. A T,-space X is said to be stratifiable
if there is a function G: {closed subsets}Xx N ~ {open subsets} such that
(@) F= " GF,n)= " GF,n)” and (b) G(E,n)CG(F,n) whenever
ECE, SZZND], whereﬂ;Ndual formulation is used. The following useful
characterization and proof are due to Heath [3].

Levma. A Ty-space X is stratifiable iff there is a funciion g: X X N
— {open subsets} such that (a) @ < g(x, n) and (b) given any closed subset M
of X and any point g ¢ I\M, there is an n such that ¢ ¢ (U {g(#, n)| © € M)~

Proof. Given @, define g(z,n)= G({z},n), and given g, define
@@, m)= U {glz,n)| P}

TaROREM. If {X,| a ¢ A} is a family of metrizable spaces, 5y is stratifi-
able for each p « B, X,.

Proof. Let d be a metric on each X, (this will cause no confusion)
and let E be the set of all strictly positive real-valued functions on A.
Basic neighborhoods of = ¢ 5y are S(z,¢) for ¢ < H, where

S, &) = {y ¢ Bp| d(wy,Y,) < &(a) for aecd}.
For o e Zp and & ¢ I define
A@) = {ecd| 5, # 2},
A(w) = min({d(z,, p.)| aed(@)}v {1},
Aw; &) = min({e(a)| aed @)} {1},
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Define u <« B by u(a)= 1 for a e A. Then the function g: & X N — {open
subsets} of the lemma can be defined by

gz, n) = S(w, (4 (m)/n)-,u) .

Let M be a closed subset of £, and let g be a point of E,\M. There is
an c¢ B such that S(g, e) » M = @. Define § ¢ B by

d(a) = %e(a).

Fix n e N so that 1/n < 34(g, ¢) (then n > 2). We claim that S(g, d) »
~g(w,n)=@ for » e E,\S8(g, ¢). This shows that ¢ satisfies (b).
Let « be any point of E,\S (g, ¢). Then d(x,, ¢,) = &(a) for some a.
Case 1. ae A(g). If 2 8(g, 6) then

(s 2) < 3{e) = }2(a)
and if zeg(z,n) then
Al ) < 1jn < 3A(q, ) < fe(a) .

Therefore S(g, 8) ~g(x,n)= 0.
Case 2. a e ANA(g). Then ae A (). So if z¢8(g, §) then

0(ges 2) < 0() = $&(a) < 3d(m,, g,)
and if zeg(2,n) then
@ (2o %) < (1n) A(%) < 3024y Po) = $d(@,, ¢.) -
Therefore S{g, 6) ~ g(x, n) = @. ’

This can be used for an easy to describe nonmetrizable countable
stratifiable space without isolated points. If p, = 0 for ne N, the sub-
space Zyp of By {Q,| @ = {rationals} for » ¢ ¥} has all properties required.
Of course 5, is a topological group under coordinatewise addition.

QUESTION. Is the theorem valid if one merely assumes that the X8
are stratifiable?

4. Countable direct sums. If {X,| n ¢ NV} is a family of spaces, p € ByXy,
then let R, be the subspace {& ¢ By| xr = py for & >n} of By, Then R, is
a retract of £y, which is closed if the X, are T, (a retraction r,: Hy— Ry
can be naturally defined by (ru(@)e = @x it k < n, (ra(@))s = ps if & > n).
Obviously {Es| n ¢ N} is a countable cover of 5,. Therefore £y often has

n
a property if each finite subproduet []X; has, e.g. the properties

: - . - . =1
Lindelof, hereditarily Lindelsf and the property of being perfect (i.e. open
sets are F,) and T,. It is also easy to see that Ep is cosmic/a o-space if

each factor is (see [8] for definitions and references). The following theo-
rem is a bit less trivial,
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THEOREM. Zyp @8 a paracompact Hausdorff iff [] X: is paracompact
=1

Hausdorff for neN (we only consider countable direct sums).

Proof. Only the sufficiency requires proof. Bach X, is regular T,
henee 50 is Zp. Let WU be an open cover of Z,. For each n ¢ N there is
a locally finite open cover U, of the subspace R, which refines
{U ~Ry| UeW} For nelN the family {r;{(V)| V e Uy} is locally finite
in &Hyp: For # ¢ B, there is a neighborhood W of 1,.(#) in R, which inter-
sects only finitely many members of U,. Then 7;*(W) is a neighborhood
of @ in &, which intersects only finitely many members of {#; (V)| V € Uy}.
For V e U, choose 2 cx(V) e W such that V C ¢,(V). Then

U0 (7) n ea(7)| 7 e V)| m e N

i8 a o-locally finite refinement of AU. Consequently Z, is paracompact.

Remark. There are many topologies on the set 71, X, between the
usual topology and the box topology: If F is a collection of subsets of N |
such that { JF = N and I' v G ¢« § whenever F, G ¢ ¥, then

{1, Us| Un open in X, {neN| Up # Xo} € 5}

is a base for a topology (&) on II, X,. This topology is 7 iff each factor
is Ty for 1=0,1,2,3, 34 The subspace 5, is paracompact Hausdorff
if each finite subproduct is, for all these topologies =(F).

QUESTIONS. Is &, (hereditarily) normal if all finite subproduets are
(hereditarily) normal? Is 5, paracompact if {X | a ¢ A} iy an uncountable
family of spaces such that all finite subproducts (i.e. [[{X,| a ¥} for
finite subsets 7' of A) are paracompact Hausdorff?
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On the approximate Peano derivatives
by
S. N. Mukhopadhyay (Burdwan, West Bengal)

Abstract. It is known that a kth approximate Peano derivative belongs to Baire
class 1. In the present paper it is shown that the other properties of the ordinary kth
Peano derivative are also possessed by the kth approximate Peano derivative.

Introduction. Let a function f be defined in some neighbourhood
of the point @,. If there exist numbers 0, Uy ..., ar, depending on #, but
not on % such that

’

7! Lyt
(%) lmap 1 f (@ + k) —f () — —a;,]= 0,
k-0 h —
where limap denotes the approximate limit [13, p. 218], then a, is called
the appromimate Peano derivative of f at z, of order r and is denoted by
Sral®) (see [4]). The definition is such that if Jr,a(®) exists then all the
previous derivatives f; ,(#,) also exist and o = fralt), L<k<r Tt is
convenient to write a, = f, ,(#,) = f(,).
Let us now suppose that for a fixed r, Sral®) exigts. Writing

pr+1

r hk
(’r—|—1)!®f+1(f5 Ty; h) = f(@+h)— E 71 Jsa®o) 5
: = .

Umsup®@,.,(f; %, k) =_ﬁ+l(mo) ;  lminf®,  (f; @, &) = fra(®) ,
70 o0 J

limsupap®,,(f; @, h) = Jri1a(®), liminfap D, (5 @, ) = Ser1,a(%0)
0 B0 . =

where limsupap denotes the approximate upper limit [13; p. 218],
Frsa(o) and f. +1(%) Will be called the upper and the lower Peano derivates
of f at @, while f,,, (%) and f,,, (%) Will be called the upper and the
lower appromimate Peano derivates of f at @, of order »--1. (The upper
and the lower Peano derivates as defined in [14, 1, 2, 3] are different from
those defined here. For, in the former cases the existence of the Peano
derivatives f,(z,) was required. However, the upper and the lower Peano
derivates in the former sense are also the upper and the lower Peano
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