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On generalizations of Borsuk’s
homotopy extension theorem

by
Kiiti Morita (Tokyo)

Abstract. As generalizations of Borsuk’s theorem C. H. Dowker established two
theorems concerning the homotopy extension property for closed subsets of a normal
or collectionwise normal space X for which X x I is also normal. In this note it will
be shown that his theorems are true without assuming the normality of X'x I.

1. Introduction.~Let X be a topologieal space. A subspace A of X is
said to have the homotopy extension property (abbreviated to HEP) in X
with respect to a topological space Y if every partial homotopy

by A-Y  (0<t<1)
of an arbitrary continuous map f: X—Y has an extension
fr XY (0<i<1)

such that fo=f.

The original homotopy extension theorem of Borsuk (cf. [2] and [5])
has been generalized as follows by C. H. Dowker [4].

TamorEM 1. Let ¥ be an ANR for melric spaces which is separable
and Cech complete. Then every closed subspace A of a countably paracompact
normal space X has the HEP in X with respect to Y.

TarorEM 2. Let Y be an ANR for metric spaces. Then every closed
subspace A of a countably paracompact, collectionwise normal space X has
the HEP in X with respect to ¥, if either A is a Gy set or X is Cech complete.

" The purpose of this note is to give a further generalization to each
of these theorems.

Let m be an infinite cardinal number.

A subset A of a topological space X is said to be P™-embedded (resp.
P-embedded) it for every locally finite cozero-set cover Q of A of cardin-
ality <'m (rvesp. of any cardinality) there exists a locally finite cozero-set
cover U of X of cardinality < m (resp. of some cardinality) such that
Qr i refined by U ~ A4, where U 4= {UnAl UeW}

Then the following results are known.

1 — Fundamenta Mathematicae T, LXXXVIIT

Sy Fom


GUEST


K. Morita

Lo

TororeEM 3 (Dowker [3]). Bwery closed subset A of a collectionwise
normal space is P -embedded.

TeeorREM 4 (Shapiro [9]). If a subset A of a topological space X is
O-embedded in X, then A is P%-embedded in X.

The notion “P™-embedded” in our sense is the same as “P™-em-

bedded” in the sense of H. L. Shapiro [9] which was introduced by.

R. Arens [1] under the name “m-normally embedded”. This fact which
is proved in [9], however, is not needed in the present paper.

Our main theorems are now stated as follows.

TamoreM 5. Let T be an ANR for metric spaces which is Cech complete
and has weight < m. If a subspace A of a topological space X is P™-em-
bedded in X, then A has the HEP in X with respect to Y.

THEROREM 6. Let ¥ be an ANR for metric spaces which has weight <m.
If A is a zero-set of o topological space X such that A is P™-embedded in X,
then A has the HEP in X with respect to X.

In view of Theorems 3 and 4, Theorems 1 and 2 are improved as
follows by virtue of our Theorems 5 and 6. It is to be noted that there is
a collectionwise normal Hausdorff space which is not countably para-
compaet (Rudin [8]).

THEOREM 7. Let Y be a separable ANR for metric spaces. Then every
closed subspace A. of a normal space X has the HEP in X with respect to Y,
if either A is a @4 set or Y is Cech complete.

TaeoREM 8. Let ¥ be an ANR for metric spaces. Then every closed
set A of a collectionwise normal space X has the HEP in X with respect
to X, if either A is a G, set or Y is Cech complete.

2. Proof of Theorem 5. Let N be the set of positive integers. By as-
sumption on ¥ there is a normal sequence {W;| 7 e N} of locally finite
open covers of ¥ such that {St(y, W:)| ¢ <N} is a local base at each
point y of ¥, the cardinality of W; does not exceed m, and such that ¥ is
complete with respect to {Wil.

Let us put

C=(Xx0)v(4dxI)
where I = [0,1]. Let
‘ fi C—Y

be a continuous map.
Then for each i there is a locally finite cozero-set cover £; = {L;;| 1 € 4}
of A with eard A; < m such that f~*(W;) ~ (4 x I) is refined by

{LaX B| BeXoy, Leds}
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for suitable finite open covers K, of I. This is
paper [T].

By assumption on A there is a locally finite cozero-set cover
of X of cardinality < m such that #6; ~ 4 is a refinement of £:. Here
we may assume that Moi= {M;] 1e4;} and My~ ACL, for each A

Now, by induction on ¢ we shall eonstruct locally finite cozero-set
covers Ui ={U,;| aes} of X with card Q; < m, ieN, and families
{%:] a € i}, i e N, of finite open covers of I such that the following con-
ditions (1) to (3) are satisfied where U; = {UwuxH| aei, Heky)
(1) %, consists of sets of diameter < 1/i.

(2) V¢ is a star-refinement of RV

B8)  Vin(AXI)and Vs~ (X X 0) refine f~1{W,) ~ (4 X I) and f~%Ws) ~
~ (X % 0) respectively.

proved in our previous

Indeed, suppose that W, , and B 0L, ;, are constructed.
Then U;_, is a normal open cover of X X I of eardinality < m. Hence
by [7, Theorem 2.5] there exist a locally finite cozero-set cover
§={P,| yel} of X with card I"<< m and a family {Q] v eI} of finite
open covers of I such that the cover

P, xQ1 QeQ,,yel}

of XXI is a star-refinement of VU, ,. Let U= {U,] « €2} with
cardQ: < m be a locally finite cozero-set cover of X which refines Ty A
and »7f (W), where x is a map from X to X x I defined by %#(2) = (@, 0)
for z e X.

For each a e Q; let us choose A ¢ A; and y « I' so that U,CMynP,
and define %, to be a finite cover of I by open sets of diameter <1fi
which is a refinement of X, and Q,. Then it is easy to see that conditions
(1) to (3) are satisfied.

Since SH(Upx H, V) D STy X 1, Vi) D St(Uy, W) Xt for te H
€ ¥, the following holds by (3).

(4) U is a star-refinement of AU,_,.

Therefore @ = {U| ¢ e N} is a normal sequence of open covers of X.

Let (X,®) be a topological space obtained from X by taking
{St(@, Ux)| i ¢ N} as a local base at each point # of X, and X/@ the
quotient space obtained from (X, ®) by identifying two points # and y
such that y e 8t(z, Usx) for each 7 ¢ N. Let us denote by ¢ the composite
of the identity map from X onto (X,®) and the quotient map from
(X, @) onto X/@. Then ¢: X—X/P is a continuous map and the space
X|® is metrizable. This fact is proved in [6]. As is seen from the arguments
in [6], by replacing each U by a suitable refinement we can assume that
(3) ¢7'9(U,)=U,, is open in (X, ®) for aeQ;, iecN.
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Let us put ¥ = {Vi| ie N} Since ¥ is also a normal sequence of
open , covers of X x I, gimilarly as above we can construct the spaces
(XXI,¥), (XxI)¥ and the map p: X x I (XX I)¥.

Let (#,1t) be any point of X X I. For 6 >0, let us pub

Nty 8)= {t' e I| [t—¥'| << 8}

Then by (1)

8t((x, 1), ;) C 8t (@, Un) X N (3 1/3) .
Let {ay, ..., on} e the set of all a e Q; such that » ¢ Uy,. Then there is
a positive number d such thab it teH for Hel, with 1<j<n then
N(t; 6)C H. Hence we have

St(z, U)X N (t; 8) C St((w, 1), V) .
Therefore, we can conclude that

(XxD¥=XP)xI,

Tet us put § = X/®. Then by the construction above there is a single-
valued map

p=¢X1.

g: (§X0)v ((p(A)XI)——»Y
such that f is the composite of ¢ x 1|0 and g.
By (3) each of the maps
g = glp(4)x I

is uniformly continuous when we regard §x0 and ¢(4)x I as uniform
subspaces of the space §x I with the uniformity {y(V:)| ¢ « N} and ¥ as
a uniform space with the uniformity {Wi ie N} Since ¥ is complete
with respect to {Ws}, g; is extended uniquely o a continuous map

T Olsp(4)xXI—Y.

go=gI8x0,

Since . ‘
(8% 0) ~ (Clsg(A4) X I) = Olg, fp(4) X 0) ,
a map §: (8%0) v (Olsp(4)x I)—Y defined by
g\0Lsp(4) x I =17,
is single-valued and hence continuous.
Sinee SxI is metrizable and (8x0) v (Olsp(4)x I) is closed in

8 x I, by the original homotopy extension theorem of Borsulk (ef. [2, p- 947)
there is a continuous map

lexo:gny

h: SXI—-Y

which coincides with § over (§x0)u (Clsp(4)xI). Since ho(px1):
X x I— Y is an extension of f: ¢— ¥, the proof of Theorem 5 iy completed.

icm°®

On gemrulizations of Borsuk’s homotopy extension theorem

ot

3. Proof of Theorem 6. Let A be a zero-set of X. Then there is a con-
tinuous map a: X—I such that 4 = {r ¢ X| a(x)= 0}. Let us put G
= {Gy, G}, where Gy={ze¢X| a(x) >0}, Gi={meX| alx)<1ji} for
i e N. For a normal sequence {Ux} i ¢ N} of locally finite cozero-set covers
of X which was eonstructed in the proof of Theorem 5, we further require
that Us; is a refinement of §; for each 7. Then it is easy to see that
o7 lp(4) =-4 and A4 is closed in (X, ®). This shows that ¢(4) is closed
also in 8.

Therefore, by pursuing the proof of Theorem 5, we have Theorem 6.

4. Remarks. A slight modification of our proof deseribed above yields
the following theorem.

THEOREM 9. Let ¥ be an AR for metric spaces which has weight <m.
Let A be a subset of a topological space X which is P™-embedded in X and C
a closed subset of a compact metric space Z. Then every continuous map
fi (IxO)yw(AXZ)->Y is evtended to a continuous map g: XX Z—Y
if either A is a zero-set or ¥ is Cech complete.

COROLLARY 10. Let A be a subset of a topological space X. Then A is
Pm-embedded in X iff for an AR Y with weight < m every continuous map
f: A=Y is extended to a continuous map g: X—Y, where Y is further
assumed to be Cech complete unless A is a zero-set.

Proof. The “only if” part is a direct consequence of Theorem 9.
To prove the “if” part, assume that the condition of the theorem is
satisfied. Let U be any locally finite cozero-set cover of A of cardinality
< m. Then there exist a complete bounded metric space T of weight < m,
a continuous map f: A—T and a locally finite cozero-set cover W of T
of cardinality << m such that (‘W) refines W. By a theorem of Kura-
towski-Wojdyslawsky [5, p. 81] there is & Banach space L containing T
such that the convex hull Z, of T has weight << m and T is closed in L.
Then the closure Z of Z, in Z is convex (and hence an AR) and has
weight < m. Hence by assumption the map f: A— T is extended to & con-
tinuous map g: X—Z. Since T is closed in Z, there is a locally finite
cozero-set cover VU of Z of cardinality < m sueh that U ~ I refines W.
Then g~}(V) ~ A refines U. Thus, 4 is P™embedded in X.

As another application of our method we have the following theorem.

TarorEM 11. Let A and B be zero-sets of a topological space X. If A
and B are P™ embedded in X, so is A v B.

Proof. Let ¥ be an AR which has weight < m. Let f: 4 v B—Y
be any continnous map. Then by the method described in § 3 we can
find a metric space S, a continuous map ¢: X—S and a map g: p(d v B)
—Y such that

(6) @(4) and @(B) are closed in S,
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(1) f=ge°(pldvB),
(8) gle(4) and glp(B) are continuous.

Thus, ¢ is continuous and hence it is extended to a continuous map
#: §— Y. Then hog: X—Y is an extension of f.
Theorem 11 does mnot hold in general if we drop the assumption

that A and B are zero-sets of X.
Exampre. Let us pub

X = W(w+1) x W{o+1)— (05, @),
A= W)X w, B=woXW(w).
Then 4 and B are (-embedded in X but 4 v B is not.

Added in proof. In case ¥ = [0, 1] or (0,1) Theorem 7 has been proved also by
M. Starbird (The normality of products with a compact or a metric factor, Ph. D. Thesis
Univ. of Wisconsin, 1974).

The converse of Theorem 5 holds. Cf. K. Morita and T. Hoshina, O-embedding
and the homotopy estension property, to appear in Gen. Topology and Appl.
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Conservative extensions and the two cardinal theorem
for stable theories

by

John T. Baldwin (Chicago, IlL)

Abstract. DEFINITION. 3 is a conservative extension of 4 if B & A and if for every
set X definable in B3 X N |#| is definable in £. We use this definition to give a short
proof of Lachlan’s result: If £ is a proper elementary submodel of B and £, $ are models
of a stable theory 7' but D(#) = D(B) then there exists a proper elementary extension
G of $ with D(C) = D ().

Let L be a countable first order language and D a unary L-formula.
In [3] Lachlan proved that if T' is stable, £ and B are models of T with
|#| # |B, # < B and D(#) = D(B) then there exists a proper elementary
extension C of B with D(C)= D(#). We give a simpler proof of this
result. In addition, if & is countable we can weaken the hypothesis “T is
stable” to “3$ is a conservative extension of #£”. We define the notion
of conservative extension below and remark that T is stable if and only
if every elementary extension of every model of T is conservative. Oux
proof of the main theorem is evidence for taking this as the definition
of a stable theory.

In general our notation follows [9]. We vary however by letting Fyn(L)
denote the set of L-formulas with » free variables and F,(X) the formulas
with n free variables in the expansion of I which names each member
of X. We write || for the universe of the structure - and | | for eardin-
ality. Thus ||| denotes the cardinality of the universe of £. If 4 is an
L-gtructure and X C £, A e F,(X) then

A(£) = {(%7 weey By | A ‘:_-A(“oa cey & —1)} .

We particularly want to acknowledge our debt to Andreas Blass
for many stimulating conversations on the notion of conservative ex-
tension and for suggesting some simplifications in the proofs here.

The following definition came to our attention because of its appli-
cation to Peano arithmetic in [6, 7].

DEFINITION. B is a conservative ewlension of £ (B >o4) if B > 4
and for every formula B ¢ F,(B) there is an A e Fyn() such that B(B) »
N |4 = A ().
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