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On the descriptive set theory
of the lexicographic square
by
A. J. Ostaszewski (London)

Abstract. Analytic and deseriptive Borel subsets of the le:
characterized. A sigma-compact subset is found not to
subsets are seen to be images under a three-valued
the set 7 of irrationals and some are not two-valued such images. A first-countable
separable compact subset is seen to be a two-valued such image of I but not single-
valued. Two Borelian hierarchies in § (one derived from compact sets, the other from

descriptive Borel sols) are studied. An absolutely closed space which is noj gigma-
deseriptive Bovel is construected.

xicographic Bquare § are
be descriptive Borel. All analytie
semi-continuous mapping from

Introduction and definitions. Let § be the unit square [0, 17 ordered
lexicographically (so that <m,, @,y < <@y, wyy it and only if either <
or both @ = @} and @, < #}) and endowed with the topology generated
by this ordering. § iy compact and first-countable (compare [4, pp. 52-53]).
Our investigations below of the analytic and deseriptive Borel subsets
of 8 (shortly to be defined) uncover an interesting (perhaps “exemplary”)
divergence of descriptive set theory in & from the classical sitnation in
Polish gpaces. For example, the compact subset [0, 1]x {0, 1}, which is
first-countable and separable (it contains @x{0,1} as a dense subset,
where ¢ denotes the rationals of [0,1]), is the image of the set I of ir-
rationals under a two-valued semi-continuous mapping, as indeed is any
compact, separable, ordered space, however it is not the image of I under
a single-valued, semi-continuous mapping. The eompact set [0,1]x
x{0,%,1} is the image of I mnder a three-valued, semi-continuous
mapping but not under o two-valued guch mapping. The set S\[0, 1] x
X {3 is a “paturally oceurring” example of a sigma-compapgt subset
whieh is not deseriptive Borel (compare the example given by Z. Frolik
in [2, p. 166]). ‘ ‘

Let % be a family of sets in a space X, We denote by Borelian-J8
the smallest family of sets of X to include % and closed under countable
unions and countable intersoctions. We characterize wo hierarchies of
Borelian- 3¢ sots (seo § 3 for definitions), onefor % consisting of the compact
sets 5 of 8, the other for Je congsisting of the descriptive Borel sets, finding

them cofinal in one another with respect to inclusion. These considerations
o
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enable us to make two contributions to the “absolutenees problem”.
We find a X, subspace T of § and a topology 8 on' the square, larger
than 8 but agreeing on T, which is not Borelian — descriptive Borel in §*,
Thus the property of being Borelian — descriptive Borel is not preserved
under topological re-embedding. We discover that §* is absolutely closed
i.e. it is a closed subspace of any Hausdorff space containing it. S* however
is not a countable union of its deseriptive Borel subspaces.

For convenience we introduce the following definitions. As usual
we identify I with the set of infinite sequence i= (i, %5, ..., in, ...) of
positive integers and i|n denotes the initial segment (iy, ..., 4n). I(i|n) is
the set of sequences j in I with j|n = iln. We shall say that a multivalued
mapping K from I to a Hausdorff space X is analytic if, for each i in
I, K(i) is compact in X and the mapping is semi-continuous, i.ec. if G is
open in X and K (i) C @ for some i in I, then there is an integer n so that
K (j)C @ for all j in I with jln = i|n. If JCI, then K[J] denotes the set
U E(j). The analytic mapping will be termed descriptive, if K (i)~
eJ

~ K (j)=©O whenever i,j are distinct elements of I. Thus a set in X is
analytic (deseriptive Borel) if for some analytic (descriptive) mapping K
the set may be represented as K[I]. (Compare C. A. Rogers [7]). K will
be called single-valued if, for each i in I, K (i) consists of at most one point.

A subset T' of 8 will be called vertical, if for some x in fo, 1],

T C{z}x[0,1]. For any subset 4 of S and for #in [0, 1] we put A= 4 ~

~ ({} x [0, 1]).
{a, b) ambiguously denotes the open interval in & or [0, 1] (depend-
ing on context) with end-points a, b.

1. Fundamental characterization theorems. As a first step towards our
characterization we establish:

1.1. ProrosrrioN. If A 4s analytic in 8, then there is an analytic
mapping A such that 4 = Z[I] and each set A (Z) 48 vertical. Moreover
if 4 is desoriptive Borel, A 4s descriptive.

Proof. Let 4= K[I] with X analytic. Also write [0,1]=D[I],
where D is deseriptive and each D (i) consists of at most one point. Now
define a compact-valued mapping H by

H(i)= D(i)x [0,1].

We claim that H is deseriptive. Clearly H @ nH(j)=0, if i #j. Now
suppose ¢ iz open in § and thas

H({E)CE.

It VH.(i) =.@, then D(i) CQ and so, for some ny, D[I{E[n)] CA (since D is
semi-continuous). For this # we have of course H (in)]CACE So

icm®
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suppose that D(i) = {x} for some # in (0,1).
a basic open interval of § say ((a,r), (w, 8>
in G Ana,logously‘ there is an interval about
deduce that there are numbers a,

e

Since <z, 0) e @, there is
) about <z, 0> contained
' <@, 1) contained in ¢ We
b in [0,1] such that a<<z<b and

H(3)C(a,b)x[0,1]C&.

Now sinee D is semi-continuous, there is n so that DI[I(i|n)] C (@ , b). Thus

H[I(i|n)] C (a, b) x [0,11C@.
If D(i) = {w} and @ is 0 or 1, a slight modification to the above

establishes also semi-continuity at i,
Now define 4 by

argument

-Z(l) == H (i, g, ..., Tapy g oer) N K (i, 1y,

ey gy )
A standard argument will show that 4 is analytie. Moreover, if 4 is
desoriptive Borel, we may assume that K (i) ~ K j) =@, whenever i # j.
Since H enjoys a similar property, 4 is descriptive.

Remark. The argument above also shows that if z€[0,1], then
8\{w} x[0, 1] is descriptive Borel in §.

We wish to reduce the study of analytic subsets of & to those of. the
real line. This reduction will be achieved partly by the following two
propositions.

Durmvrrions. Let A: I—8 be a semi-conbinuous mapping. By an

ewceptional point of the representation & we mean a real number # %o which
there corresponds a vector i in I such that 4 (i) meets {#}x[0,1], and

IA() ~ {2} x 0,1} < 1.

By an emceptional point of a subset Z of § we shall mean any real number %
such that Z meots {«} x[0, 1], and

1%~ {o}x {0, 1} < 1.

1.2, ProvosieioN. Let A: I—8 be a vertical semi-continuous compact-
valued mapping. Then theve are ab most countably many emceptional points
of the representation A and so any analytic set in 8 has at most a countable
number of exceplional poinis.

Proof, (Bee Skula [9] for a different proof.) Write A = A[1]. Let

J==lie I A() C SN0, 11% {0,1}},
then J is open in 1. Tor if JjeJ, then sinee S\[0,1]x {0, 1} is open and
. A(j)C N0, 1]x {0, 1},
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there is an. integer n so that
A[I(jlm)] C 8N[0, 11X {0, 1}

and so the Baire interval I(jln) lies wholly in J. Thug Z[J] is analytic
in.8, hence by a theorem of M. Sion ([8]) is a Lindelof set. Now A is
covered by the collection of open sets {@}x(0,1) for 0 <2 <1. So it
is covered. by a countable subeollection; that is, for countably many
reals # at most, do we have @ % 4 (i) C {#}x (0,1) for some { in I. But
the set A[J] covers all the sets A® for which 4® C{#}x (0,1) (for if Yed®,
then, for some i in I,y e A(i)C 4% since each A(i) is vertical). Thus
a fortiori there are countably many points # at most for which 4% C {z} x
X (0, 1).
To complete the proof we consider the set

o={jel: <,0) ¢ A(j) and (w,1y¢ A(j) tor some & < [0, 13}

F(E Jjin Jy we define %(j) to be the number # in [0, 1] such that {z, 0)
€ A(j). We claim that « is continucus on J, and has a local maximum at
each point of J;. For let j* e J, and let § >0 be given, then

A(j*) C (<=3, 0y, (@, 1)),

where we suppose that 0 < 2 and 4 is so small that 0 < — 4. Then, for
some 7,

A mIC (@3, 0, (@, 1) .
Hence, if j e I(j*|n) A J,, then
=< u(j) <w=u(j).
If =0, W‘e may deduce instead that for some #

b=u(j)<u(*) =0,
for all jin I(j*n) ~ J,.

Now J, is a separable metric Space 50 by what we have just shown
and in view of a lemma we shall shortly prove w[J,] is at most countable.
It followi that the set of points # such that for some i (necessarily in J,)
(@, 0y ¢ A(d) and e, 1y ¢ A(3) is countable at most. A fortiori the (smaller)

set of points # such that {z,0> ¢4 and {#,1>¢ A is at most countable.

An analogous proof demonstrates that the remaining exceptional points
of the representation I and

exceptional points of 4 form at most count-
able sets. So to establish our broposition we must prove:

1.3. LemMMA. Tet B be g separable metric space and w a real-valued

function defined on E, having o local mazimum at all points of E. Then
u[E] is af most countable. .

icm®
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Proof. I am indebted to Mr H. Kestelman for the following proof,

Suppose that «[I] is uncountable. Since B has a countable base
for its topology, F has at most a countable number of points which are
not points of condensation. We may assume that every point of F is
a point of condensation (otherwise replace B throughout by the set of
ity points of condensation). For each % in # choose a ball B(x) of radius
less than 1 such that, for all y in B(%), u(y) < u(x) and write, for # a posi-
tive integer,

By = {w ¢ II: radius B(x) >1/n},
then " -
BBy and w[B]=\Ju[B,].
sl =1

Consequently for some integer N, u[Ey] is uncountable. Now choose
a subset F of Zy so that

w[F] = u[By]

and u is one-to-one on F. I iy uncountable hence (since F is separable,
metrie) has & point of condensation, & say. So theré is a point 5 in F' dis-
tinet from & at a distance less than 1/2N. Of course, by definition of F,
(&) # u(n). On tho other hand ¢ is in Hy, so that the radius of B(&) %s
at least 1/V and hence 7 e B(£) with the result that u(y) < u(£). But 4 is
also in By and wo deduce that & B(n) from which it follows that (&)
< (7). We are thus led to the contradictory conclusion that (&) = u(y).
u[H] is accordingly countable.

1.4. ProrosirioN. Let A be analytic (descriptive Borel) in §. .

(i) If Ayx {0} == ([0, 11X {0}) ~ A, then A, is analytic (Borel) in the
usual topology of [0,1]. .

' (ii)szf )‘E]ﬁl} foL ’—-— AP, then Ay is analytic (Borel) in [0, 1].

Proof. Write A = A[I], where 4 is vertical, semi-continuous, com-
pact-valued (descriptive, if 4 is assumed descriptive Borgl). Let {@a}
enumerate the exceptional points of the representation A. For each
integer #, lot

Hy = §ie I & (i) ~ ({ma} X [0, 1]) # ) .
The latter set in closed by the semi-contimgty of A (since INHy
={iel: (i) C O\{ua} X [0, 1D} Write J= I\ny1 H,, which is §, in I
Let U be open in [0, 1] and let j < J. Suppose that
A(j) ([0, 11x {0) C UX {0} -

Two cases avise. It 4 (j) = @, then, for some integer =, A1) =0
(by the semi-continuity of A). If, however, Z(j) # @, we can ¢hooss = 50
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that A(j) C {8} X [0, 1]. Then, # is not an exceptional point for the re.
presentation 4 (since j ¢ J). Hencci {@}x{0,1}C A(j)and » ¢ U. We deduce
that A(j) C Ux [0,1] and since 4 is semi-continuous, there is an integer
so that A[I(jln)]C Ux[0,1]. Thus the mapping ;

J—A(j) ~ ([0, 1] x {0})

for jeJ is semi-continuous from-J to the set [0, 1]x {0} endowed with
the usual (order) topology. The mapping is disjoint-valued if 4 was.
Since J is Borel in I, the set A[J]~ ([0,1]x {0}) is analytic (Borel) in
the usual topology of [0, 1] {0} and differs from 4, {0} by a set which
is at most countable and consists of exceptional points of the represen-
tation 4.

The assertion (ii) is clear because the subspace topology of {x}x [0, 1]
in § is homeomorphic to the usual topology of [0, 1].

We are now in a position to characterize the analytic subsets of S.

TemOREM 1. 4 necessary and sufficient condition that a subset A of 8
be analytic in 8 is that it may be expressed in the form

U} xds v U {2} x 4a,
zel xeP
where (1) B is at most countable and all the sets Ay for x in E are analytic;
(i) P is analytic in [0, 1], disjoint from B and for each x in P the set 4,
s analytic in [0,1] and contains both 0 and 1.
Proof. We begin by establishing the necessity of such conditions.
Suppose then that A is analytic. By Proposition 1.2 the set B of ex-
ceptional points of 4 is at most countable. We have already remarked

at the end of Proposition 1.1 that the sets S\({#} x [0, 1]) are analytic.
Hence the set :

An ﬂES\({m}x [0,1]),

which we denote by 47, is analytic (E being at most countable). By
Proposition 1.4, it P satisfies P x {0} = 4"~ ([0,1]% {0}), then P is
analytic in [0, 1] and disjoint from E. Now it <z, y)> ¢ A%, then, since & is
not an exeeptional point of 4, both points (x, 0> and {z, 1) belong to A
and also to 4. Further by Proposition 1.4 for each @ the set A, is analytic.
If z¢P, then both 0,1 are in 4,.

Now we establish the sufficiency of the condition

in [0, 1], We may write P = K[I], where K is a single-valued semi-continu-
ous mapping (each K (i) consistin

¢ 1 g of at most one point). Now, for given i

In I, (K(i)x[0,1]) ~ 4 is congruent to an analytic set in [0, 1] which

contains 0 and 1 (by (ii)). We may express this set in [0, 1] as | K'(i, ),
jel

8. Since P is analytic
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where for each i the map j— K’(i, J) is semi-continuous and compact-
valued. Put . o
K (i,j) = {0, LK @, .

Then j— K (i,j) is also a semi-continnous compact-valued mapping. For
given i,j write A*(f,j) = K (i) x K (i, j). We claim that the mapping A* is
semi-continuous from Ix I to S (and is of course compact-valued). Sup-
pose then that & is open in § and for some #,j in I

A%, ) C 6
Two cases arise. If (i) = @, then, for some #, K [I(iin)] C @, whence
A*[I(|m) % 1(i| )] C @ ca.

So we may suppose that (sinee K i§ single-valued), for some 2, K (i) = {x}.
Now {0,1} C K{(i,j), consequently <, 0} and (v, 1) are elements of &.
Bjr the argument of Proposition 1.1 there isaset U open in[0,1] contain-
ing » such that

AX(i,j) C (UNf} X [0, 11w (6 ~ @} X [0, 1) C & .

From the relation K (i) = {z}C U follows that, for some integer n
KEI(ijn)]C U. Let G satisfy {z} X Gz = G%, thex'l Gy is open in [0_,1}
and K(i,j)C Gy. But then we have, for some integer m,kle(lem)K (i, k)
C 6. We conclude that
i j i X K (i, k)
AT ) x 1(jlm)] C (KL n)N{w}) X [0, 1] w {u} ksIL(ijlm) {,

C(UN{@})x[0,1] v G*C & .

Finally, if we put Ay, b6y, ...) = Ay, Gay ooey fon_ys werj gy Gy wovy ameec)y
then 4! is an analytie mapping and A'Y[I] is an analytic subset of S. To
obtain 4 we must add to this set a countable number of sets {z}x Azd,
for # in 7, which are analytic in {o}x [0, 1].bo13h in the,‘ usual sensfe ;n
in the sense of §. We diseover thus that A is an analytic subset of § as
required. ) -

The deseriptive Borel subsets of § have a finer characterization.

TenoruM 2. A necessary and sufficient condition for a subset A of 8 to
be descriptive Bovel in 8 is that it may be empressed in the form
(1) U} x dg v U {2} X 4a,

weld xeB
L ; P ; 1 :

where (1) B is at most countable and for @ in B, Ag is Boufl %17; [t(;, q]e}A

(i) B is Borel in [0, 1], disjoint from B and, for each @ in B, the set 4y
is compact and contains both 0 and 1.
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Proof. We first establish the necessity of the conditions; Let A be
descriptive Borel in 8. By Proposition 1.1 we may write A = A[I], where
1 is vertical and descriptive. Let B be the set of exceptional points of the
Tepresentation Z. Then E is at most countable. Put

A=A n ﬂES\({w} x[0,1]),

then A is descriptive Borel (see remark after Proposition 1.1). For each %
in B we put
J(o)= {ieI: A(i)CS\({#}x [0, 1]},

then J(z) is open (by the semi-continuity of A). Let

J=U/J(=).
zell

Then J is §,-in 7 and A = A[N. Let <w,yyeA’. We shall show Eha,t
there is a unique vector i (necessarily in J) such that {=} x {0, ¥, 1} C 4 ().
Since 4 is disjoint-valued, there is a unique vector i such that <(z,y)
€ A(i). By assumption  is not an exceptional point of A, 50 {m x{0,1}
C A3). .

" Now suppose je I and A(j) ~ {&} X [0,1] % @, then, since @ is not
an exceptional point for the representation 4 we have {z}x {0,1}C A(j),
50 by the disjointness of A we have j = i. Hence A ~ {w}x [0, 1] = A(i).
Ay is aceordingly compact and contains both 0 and 1. By Proposition 1.4
it BXx {0} = A'~ ([0,1]x {0}), then B is Borel in [0, 1] and iz digjoint
from E. The condition is thus shown to be necessary.

‘We turn to the sufficiency of the conditions. Let A be a subset of §
satisfying the stated conditions. Since B is Borel in [0, 1] we may write
B = K[I, where K is deseriptive and each set K (i) consists at most of
one point. Let H (i) denote the compact set in [0, 1] which is congruent
to (K(#)x[0,1]) n U {8} X Az. H(i) is cither empty or contains inter

B

alia both 0 and 1. Write
Ay =K@GHxH3),

then ‘we may argue much as with A* in Theorem 1 to show that A is
semi-continuous and compact-valued. Moreover, since X is descriptive,
A also is. Thus A[I] is a descriptive Borel subset of §. For each z in H,
{#} X A5 is descriptive Borel in {#}x [0,1] and is disjoint from A[I].
So 4 is a disjoint countable union of descriptive Borel sets of § and
hence is deseriptive Borel as required.

1.5. CororLARY. The set S\([0,11x {3}) is sigma-compact but not
descriptive Borel,

icm
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Proof. Put Kn=S\[0,1]><<__l_+%’§+ 1

73 ) Then K, is

nt3
compact and

S\([Oy 1] X {12’}) = U Kn .
n=1
It S\([0,1]x {}}) were descriptive Borel, lot (1) be a representation
subject to the conditions of Theorem 2. Let  « [0, 1]\E. Then by Theo-
rem 2 the set
{@} % [0,1] ~ 8\([0, 1] x {3})
viz.

{3 x ([0, IN{3})

should be compact, but this is a contradiction. The claim of the corollary
holds good.

2. Small-analytic sets. By a small-analytic subset of a space X we
mean a seb 4 which may be represented in the form K [I] with K analytic
and K (i) finite for each i in I (this widens Definition 4.12 in 7%. Frolik [3D)-
We shall be interested in the cases where K is single-valued, two-valued
or three-valued, that is, when each set K (i) consists at most of one, two
or three points respectively. :

2.1. PROPOSITION. Every analytic subset of § ds the image of I by
a three-valued semi-continuous mapping.

Proof. The argument resembles the one of Proposition 1.1. We
write (0,1)= E[I], where B is a single-valued descriptive mapping.
‘We put for each i in I

F(i) =10,1]x ({0,1} v B() .

Then F(i) is compact. We claim that F is a semi-continuous mapping.
So suppose that & is open in § and, for some i in I, F (i) C G If B(i) = @,
then, for some n, B[I(i{n)]C @ and so F[I(i|n)] = F(i)C G- So we may
suppose that (i) = {e}, with 0 < e < 1. We are going to show that there
are numbers «, v with

[0, 11 {¢} C [0, 1] (4, v) C &.

‘We rely on the compactness of F(i). For each number @ in [0, 1] we choose
intervals Iy(») and I (%) open in § and numbers (%), »(v) so that

&y (w, 0> e Iy(w) C & @, 1> ¢ I(@),
2) <, 1y e L) CG {, 0) ¢ Iy(w),
(3) (@, ey (o} X (u(@), v(®) CG.

and

and
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We require moreover Io(@) to have its left-hand end-point on [0 ,.1] X {0}
and I () to have its right-hand end-point on [0,1]x{1}. Thus if y % »
and <; e) is in Iy(@) (or in I,(#)), then {y} x[0,1]C L) (ox {y}x (0,1
’ 3 » .
C I,(x)). This is possible, since F(i) C G Write
 Ig) = L) v (&) X [u(0), 0 (@) v Tu(@) -

Then

: {m}x{O,e,l}gI(m)gG.

'm ¢ sn cover of the compact

Now the sets I(z) for 0 <@ <1 fqm an 01)§11.u9v11 0 “
set F{i), so for some POINGS &y, ...y ¥n 10 [0, 1], F'(i) is covered by I(m) v
o oo I{my). Put
y % (n)}

p = min{o(@), .., 2@},

== max {u (%), -

then

(o, &) e @y x (u,0) CG  (i= 1,2,..,n).

Now if @ is a number different from all the number #, ..., %, we shall

show that
(o, ey e {wy X (u,0) CG.

Certainly for some 2; Wwe have (&, €> eI{m). If @ >wz,.1;hen it must‘be
that <z, €y « Li(w;). By the requirements on the end-points we have im-
mediately that {#}X (u, v) C Lie) C G It o <ay, then. (&, €)> € Io(m? and
again by the requirement on end-points {w} % (u,») C I(z) C G Finally
a8 B(i) C (u, ), there is an integer n guch that B (I(i|n)] C (%, v); from
this we deduce that
FLI(Em)]C L0, 11X BU(in)] v F (i)
Clo,1]x (w,0) v @A CE.

Now let A be any analytic subset of §. We may express 4 as A1, where
Z is analytic and each seb A (i) is vertical. Now write
Aty iy, ) = Z(@.l: gy vy Gagey o) O F (Bay gy oo Gy )y

then A* is analytic and each set A™(Z) consisti of at mogt threo points.

2.9. ProPoSITION. The set [0,1]1%{0,1} ds the image of I under
a two-valued but not under o single-valued semi-continuous mapping.

Proof. It we use the representation from Proposition 1.1 we obtain
a two-valued mapping since each vertical subset of [0, 1]x {0, 1} consists
of two points at most. Suppose that [0, 1]x {0, 1} = K [I] with K single-
valued. Put

Jo={jeI: (Tw)lx, 0> e K(j)}.
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Notice that if jeJ,, then <@, 1) ¢ K( Jj) whenever <z, 0> « K(j). Writing
{u(j)} = K(j), for j e Jy, we see that « has a local maximum at each point
of J, (a8 in Proposition 1.2). Hence by Lemma 1.3 K[L] (= u[k]) is
countable. Analogously K [INJ,] is countable, so K[I] is countable and
this is a contradiction.

As a matter of fact this last proposition has a generalization to
compact, separable, order topologies.

2.3. PROPOSITION. Let (X ,<} be an ordered set whose order topology
is compact and separable. Then X is the image of I under a two-valued semi-
continuous mapping but is not a single-valued such image when and only
when X has wncountably many pairs of consecutive points.

Proof. In [B] it is shown that (X, <) is order-isomorphic to a set
Y C[0,1]x{0,1}, ¥ ordered lexicographically, such that ¥ ~[0,1]x {0}
is congruent to a closed set in [0, 1] and <z, 0> ¢ ¥ whenever <z, 1> ¢ Y.
‘We write

¥ ~ ([0, 1]x {0}) = E[I]x {0},

with K a single-valued, semi-continuous mapping into [0,1]. Endow
Y with the topology T determined by the (restricted) ordering of ¥
(not to be confused with the subspace topology of the lexicographic-
order topology of [0,1]x {0, 1}). Put

H{i)=Y ~ (K (i)x {0, 1}),
then H is seen to be semi-continuous and two-valued. B is homeomorphic
to the topology of X and we have our result.
If X has uncountably many pairs of points @, w, such that there

are no points # in X strictly between », and x,, then ¥ is uncountable,
where .

Y= {¢t,05e¥: (£, 1> e ¥},
Now argue as in the last proposition, this time taking
I={jel: (H)<t, 0 ¢ E(j) n X}
If X has countably many pairs of sueh “consecutive” points @,, #,, put
Yo={{, 00 X: &t 1)¢ ¥}y

then Y, is congruent to a Borel subset B of [0, 1] and sinee the G-sub-
space topology on ¥, is homeomorphic to that of the set B, ¥, is seen
to be the image of I under a single-valued mapping. It is routine to extend
this conclusion t0 Y, since the missing points are countable in number.
We cloge this discussion of § with the following observation.
2.4. ProrosItioN. The set [0,1]x {0,%,1} ds not the image of I
under a two-valued semi-continuous mapping.
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Proof. Suppose otherwise and write
[O,l]X{O,%,l} = K[I],
where K is two-valued semi-continuous. By Proposition 1.1 (or rather

its proof) we see that no loss of generality is incurred if we assume that
each set K (i) is vertical. Put
o={jel: (A0)E(j) = {<z, 03, <@, 1},
L={jel (An)E(j)= {<z, $, <z, 1D} .
Define u,, %, on J, and J; respectively by:
E(j) = {<uld), 0, <ualf), £}, if
E(j) = {Cu(j)y 3>y ulj), D}, i
Then, as in Proposition 1.2, u, has a local maximum at each point of J,
and %, has a local minimum at each point of Ji.. Hence u[Jy] v wu,[J,] is
at most countable.

Now by Proposition 1.2 there are countably many exceptional points
of the representation K and so countably many points @ at most for
which K (i)= {¢z, $)} for some i. Hence for uncountably many « there
are vectors i(x) in I such that K (i(w)) contains <@, 4> together with
another point (w, k(x)y, where %(»)e{0,1}. It follows that w[J,]v
v 4[J;] is uncountable. This contradiction shows that no such K exists
and our claim is justified.

3. The D and the X hierarchies. We recall that for any subset A
of the unit square and for # in [0, 1], 4, denotes the (unique) set such
that {#} X 4z = A ~ ({w} x [0, 1]). We recall also that an ordinal number
is said to be odd if it may be written as A< (2n—1) with » a positive in-
teger and 7 zero or a limit ordinal, otherwise it is said to be even.

DerFinrrions. Let J be a family of sets in a space X. We define
for a< w; sets %@ by transtinite induction by the scheme:

Jedo,
jedy.

®O = g,
(U %P, it ais odd,

Je(a) - P<a

: (U, if ais even and 0< a.
f<a

We define (X) to be the family of compact subsets of X and D(X) to
be the family of descriptive Borel subsets of X. F(X) denotes the
closed sets.

In this section we shall study the hierarchy (D@: a< w,> where
D = D(8)®. We give a characterization of these gets in the manner

©
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of § 1 and deduce a hierarchy fheorem (which generalizes the result of
Corollary 1.5). We remark that, of course, if X is any space, then Ko(X)e>
C D(X)® for all a and that if X is deseriptive Borel, then F (A,? YO Co(x)@
Moreover the D(X)® hierarchy is absolute in the sense that, if X be
embedded topologically in a space ¥, then D(X)@ C D(T)@, ’It i
fortunate that the F© hierarchy has no absoluteness property (X need
not be Borelian-F (Y)). ’

In the following lemma we collect together some results which we
shall need in this section. The inductive arguments which establish them.
are routine and accordingly are omitted.

3.1, LeMMA.

(1) Let 3 be a family of subsets of 8. If A belongs to B, then A, is
a member of {Ha: H ¢ 36},

2)If HeD and H' e DD are disjoint, then H w H'

(3) If 4 is in
that A is in 3@,

(4) If K belongs to J(X) and K' belongs to %(X)®, then both K ~ K"
and K v K’ belong to 3 (X)@,

(8) If H belongs to K(X)™ (i.e. is sigma-compact) and K’
K(X)@ with a = 1, then H ~ K’ belongs to % (X).

(6) If K is compact in X and H C K, then H belongs to (X)), when.
and only when H belongs to 5 (K)®.

3.2. PROPOSITION. Let A ¢ D with a < w,, then apart from at most
a countable set of numbers @ in [0,1] we have that

(1) of <@, y> e A for some y then boih &, 0> and {&, 1> are poinis of A;

(i) Az e FK ([0, 1))@,

Proof. Choose a countable family JCD so that A 3@, By
Proposition 1.2, if H e Je, then there is an af most countable set & (HY:
in [0, 1] consisting of exceptional points of H. Thus if x¢ E(H) and for
some y in [0, 1] the point <z, y) lies in H, then both points <z, 0
and (z,1> lie in H and Hy is compact. Write B for the union of the
sets I/ (H) for H in J. We shall show that if #¢ B and e, y>ed for
some y, then {<z, 0>, (@, 1>} C 4. We prove the following by induetion
o y (<aw): t

(¥) If JC is a family of sets in §, A ¢ 89, (z,y>e M and {(x, 0).
@, 1>} ¢ M, then for some set H in Je {@,y> e Hand {<&, 05, <z, 1)} & H

If y = 0, the assertion (x) is trivial. Buppose that () is true for all
sets M and all ordinals y less than p. We prove (x) for y = # and given M.

If B is odd, then there arve sets H,, H,, wey Hy, ... belonging to | 5@
S0 that ¥<B

belongs to D@
D, then there is a countable subfamily 3& of D such

belongs to-

M=UH,.

M=l
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Then for some integer n* we have <&, y> ¢ H,, and moreover we cannot
have {¢z, 0%, <z, 15} C H,.. Now for some y*less than f, H,. e 1", g0
applying (+) with H, for M and »* for y we obtain the required con-
clusion by virtue of the inductive hypothesis. If § is even, then there
are sets Hy, H,, ..., Hn, ... belonging to UﬁJ(’,‘V) such that
< .
M= H;.
n=1

If it were the case that {(z, 0>, <z, 1)} C Hy for each n, we would deduce
that {¢@, 0>, <z, 1>} C M. Consequently there ig an integer »* such that
{¢@,0), (@, 1)} & H,.. But {, y> ¢ H,o and it H, e 897 (where y* < p)
we may apply (x) with H,. for M and o for y to obtain the desired con-
clusion (again by virtue of the inductive hypothesis).

We have thus established (x). From it we deduce immediately that
it <@, y> e 4 and {{, 0, <&, 1>} & A, then, for some H in 8, {o,y> < H
and {{z, 0>, <z, 1)} & H. It follows that » belongs to E(H) and so to E.
This proves part (i) of the proposition.

By Lemma 2.1 we have that Ag ¢ {Hy: H ¢ 8}, However if ¢ B
and H ¢ &, then « ¢ B(H) so that H, is compact in [0, 1]. Thus part (i)
of the proposition is also proved.

THEOREM 3. A necessary and sufficient condition for o subset B of §
to belong to DD (for a < w,) is that '
) B=J{@}xBsu U {a}x By,

xel xeD

where (1) B is at most countable in [0, 1] and each set By for » in B is Borel
in [0,1];

(i) D is Borel in [0, 1] and. is disjoint from I,

(i) By is o member of J([0,1])*® and {0,1} C B, for each » in D.

Proof. We show first the necessity of this condition. Let B ¢ D®.
Choose E as in the proof of the last proposition and put B!
= {#: <=, 07 < B}. By a routine induetion on « we may show that B! is
Borel in [0,1] (the non-trivial case a = 0 is given by Proposition 1.4).
Let D = B\E, then D is Borel in [0 , 1] and is disjoint from . By choice
of ¥ all the sets B, for # in .D are members of 3 ([0, 1)) and satisty
{0,1}C B;. If on the other hand # is in B then By e {Dy: D e D} is
readily shown to be Borel in [0, 1].

We now prove the sufficiency of our condition. Let B be a subset
o% 8 répresented in (1) subject to the conditions (i), (ii), (iii) on B and D.
Since E is at most countable and each seb {m} X By is in D go is their

union. The two summands in (1) are disjoint (by (ii)) henee by Lemma 3.1
{2) it will suffice to show that

U {#} x B,

xeD
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is a member of D@. This we do by induction on a. The case a = 0 is given

to us by Theorem 2 since D is Borel and {0, 1} C B; for each # in D. Sup-

pose then, that our assertion is true for all ordinals less than 8; we prove

it also for f. For each & in D there are sets B} in Uﬁ ([0, 11 such that
a<|

UBr, if pis odd,
n=1
By = :

o0
N By, if g is even.
n=1

Since {0,1} CB; and {0, 1} is compact, we may by Lemma 3.1 (4) as-
sume that {0,1} C B% for each n. Now we make use of the identities

Ux(Um =0 U @xa,

ne=1 xeD
Udelx (A By =N U {akx Bs,
xzeD fn=1 n=1 xeD

and of the inductive hypothesis applied to the various sets U {#}x Bj
zeD

to deduce the required result. .

A close look at the last part of the above proof shows that the
following is true:

3.3. ProrosITION. If K is a compact subset of [0,1] and for each ©
in K the set B(x) is a member of % ([0, 1) and {0, 1} C B(@), then

U {#} x B(2)
zeK
is a member of I (8)®.

Proof. The ecase ¢ = 0 is easy. Argue thereafter as above.

We move on to the promised hierarchy theorem.

THEOREM 4. For each o << w, there is a member of 3 (8)® and so of D
which is not in DD (and o fortiori FK(8)®) for f < a.

Proof. Fix «. Let 7% be a subset of [, %] which is in X([4, e
but not in K([%, 1)@ for any B less than a. By a,pplyil}g Lemma f(’»;)l (5)
and (6) we see at once that the set I'= ™u{0,1} isin JC(['O, 11)® but
not in 3 ([0, 1])® for any f < a. By Proposition 3.3, [0, 1] X T is a member
% (9)@. Call this set B. We claim B is not a member Qf DB for any f< a.
Suppose, if possible, that our set B belongs to DB with g < a. Let (1) be
a representation of B subject to (i), (ii), (iii) of Theorem 3. Le1f @ e [o, 1]\‘E’.
Then the set B, that is T, is » member of % ([0, 1])® and this is & contra-

dietion. . o
Tt is natural to seek a characterization of the 5 (8) sets. However

6 — Fundamenta Mathematicae LXXXVIL
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we face an obstacle in that the decomposition used so far “raigag the
index” at the first two levels. We offer a characterization of the (8@
sets for a > 2. . )
3.4. PrOPOSITION. Suppose that K is a compact subset of
! 8 and th
Ox {0} =K ~ ([0,1]x {0}). Then C is Ky in [0, 1]. 1
Proof. Let K; be defined by the relation

Hix (i} = K n([0,1]x {}) (i=0,1).

We claim that K, v K, is compaect in [0, 1]. For if {@a} is a strictly mono-
ton.e ge(l.uenee of points of K, v K; we show that the sequence hag
a limit in K, v K,. We may assume without loss of genérality th:nlt
the sequence is strictly increasing. For each = there is ‘thus a oi;ru
Yn € {0, 1} such that {@a, > ¢ K. Moreover the sequence is incremiﬁ i
8, hence for some number z in [0,1] we have (&, 0> = sup (gcﬂ g?/::

4 3 IR,

and so supa, = 2 e K,. Thus K, u K, is compacht. B 1
1.2 the set K\K, or ’ ! pact. But by Proposition

{w: (@,0)¢ K and <{z,1) ¢ K}

is at most countable. Hence K, differs from a compact
a countable set,. hence is itself %, in [0, 1).

If in the above proposition K is re i
placed by a sigma-
then the corresponding set ¢ will diffe Y e oo

r from a sigma-compact se
a countable set of points, i.e. will also be Hogs In [Og, 1]. pach st by

A routine induction will now show the following:

3.5. PROPOSITION. If B is in X% (8)® then '
» . I en the set B’ such that B’
=B~ ([0,1]x {0}) is in XK([0, 1D provided o > 2. x 0
' 8.6. PrROPOSITION. If B 4s in K([0, 1)) and
in K([0, 1D, and contains both 0 and 1, then

U {#} % B()

xeB

set by at most

, Jor each @ < K, B(s) is

is in J(8)©.

Proof. The case a =0 is trivi i
) = rivial. The induetive argument at i
: Y a me 2 odd
;);":I;n;ls a is mode¥ed gfter the method of Proposition, 23 but we must
; ecompose B into a countable union. For even ordinals a we argue

0
thus. Say B=N B
m@1 m and the sets By, ..., By, ... are in U 5&([0, 1)@,
f<ea

while B(x) =\ B%z) for 2¢B with  BY(x), ..., BY

et ”B;f n %), ... also in
Y , . me sets Bp(z) as follows

B'@), i aeB,

- Brla) =
0,1}, it we B,\B .

o
-3
-1
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Now
U@xB@) =N U@xB@ =0 N U oxBia).

2eB n=1 reB n=1 m=1 xeBm
Applying Lemma 3.1 (4) and the inductive hypothesis we settle the even-
ordinal case.

THEEOREM 5. Let 2 < a << w,. A necessary and sufficient condition that
a set B in S be in K (S)® is that

(2) B=J{#}xBzv {8} X Bz,
zeE zeD

where (i) B is countable and for x ¢ B, By is in 35([0, 1)®;

(ii) D is in X([0,1])” and D ~ E = @;

(iii) for each © e D the set By is in K([0, 11)* and {0,1} C Bs.

Proof. We demonstrate the necessity of this condition. Suppose
Bisin %(8)®. Since B is thus also in D®, we discover by Proposition 3.2
that for # outside an at most countable set E, if B; # @, then {0, 1} C Bs.
Hence by Proposition 3.5 the set D = {#: {0, 1} C B}\F is in ([0, 1@
sinee [0, 1\F is a G, set in [0,1] and a > 2. By Lemma 3.1 (1) all the
sets By are in J([0,1])® and the representation is established.

Tor the converse: let B satisfy (2) subject to (i), (ii) and (iii); routine
argument shows that if « > 1 and all the sets Bz are in %([0, 1))@, then
U {#} x B is in %(S)®. By the last proposition the set J {s}x Bz is

i zeD
EFJG(S )@ (by virtue of (iii)) and so the union of these two is also in ¥ (8,
This completes the proof.
We return now to the subject of the absolutemess of the D(X)®
hierarchy touched on at the beginning of this section.

TEEOREM 6. There is a Ko,y set T in S and an analytic, Hausdorff space
S* such that T as a subspace of 8 is also a subspace of 8%, but T does not
belong to any of the families D(S™)@ for a < w;.

Proof. Let I denote the set of irrationals in (0,1) and put
T =10,1]x (I v {0,1}), then, by Theorem 5, T' is o, in 8. We now
enlarge the topology § to give a space §* whose subspace {#} X [%, 3] is
homeomorphic to the space ¥ constructed in Proposition. 3.7 of [6]. By
referring to ¥ we shall be able to show that {&}x (I ~[%,%]) is not
Souslin-% in the subspace {#}x[%,%]. We then find that this faet is
contradicted, if we assume that T’ is 2 member of D(F*)® for some a< w;.

To define §* we re-topologize [0, 1]* by specifying basic neighbour-
hoods. If <&, y)e[0,11\T, we take a basie neighbourhood of <z, ¥>
in the form

) e,y (T A1),
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with U vertical, open in the sense of 8§ and containing (z, y>. For {z, y>
in [0, 1]x I we take its neighbourhoods in the form T' ~ U with U open
in the sense of § and containing <, ¥>. It <z,9>[0,1]x {0, 1}, we
take basie neighbourhoods of <z, ¥> to be its neighbourhoods in the
sense of §. It is readily seen that the criterion for introducing a topology
by neighbourhood bases (Bngelking [1, p. 347]) is satisfied. The topology
of 8* is Hausdorff, since any set open in the sense of § is open in the sense
of §*. The set 7' is analytic in & and the topologies of S and 8* agree on 7,
so T is analytic in §*. The set [0, 1INI i8 countable and, if ¥ belongs to
this set, the topologies- of § and §* agree on the set [0,1]x {0, y, 1},
which is thus eompaect. But from the relation

[0:1]2=TU U [Oil:lx{()?:yil}
e, 1IN\ :
we see that S is analytic.
Having defined 8%, we show next that much of the descriptive theory
of § studied in § 1 may be transferred to §*. To begin with, notice tha,
singe [0, 1] is descriptive Borel in its usual topology, we may write

[0,1]= U,F(i)’

where F(i) = () F(i|n) with all the F(i|n) closed in [0, 1] and F(@) ~
T on=1 Tl

~P(j)= 0O whenever i #j. The set F(i|ln)x[0,1] is closed in § and

hence also in §*. Using the Souslin-F (8*) representation

(=]
[0,1F =U N Pln)x[0,1],
iel n=1
we can argue as in Proposition 1.1 to prove that any descriptive Borel
set D in 8* may be represented in the form \J K (i), where each set K (i)
iel
is vertical and X is descriptive. Further in S* the open set A x (0,1) is
certainly not Lindeldf, whenever A is an uncountable subset of [0, 1],
hence there are at most countably many # in [0, 1] for which there is i
in I with K (i) C {#} x (0, 1). Since the topologies of § and 8* agree on
[0,1]x {0,1} we may deduce (a) that as in Proposition 1.2 there are
at most countably many # in [0, 1] for which there iy 7 in I such that K (i)
contains exactly one of the points {w, 0, <w, 1>; (b) that as in Proposi-
tion 1.4, if D*x {0} = D~ ([0, 1]x {0}), then D* is (deseriptive) Borel
in [0,1]. From this we may deduce as in Theorem 2 that D may be
represented in the form: ‘

(3) ‘ Uz} x Dpw | {#} X Dy,
Tl zeB
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where B is some set which is at most countable, while B is a Borel sub-
set of [0,1] such that, if # is in [0, 1], then {z} X D, is compact in the
subspace {#}x[0,1] of §*. The argument of Proposition 3.2 may now
e applied to show that, if D is a set in D(S)® for some « < w,, then
it may be represented in the form (3) subject to B being at most count-
able and B having the property that for every zin B {#}x D is a K- set
in the subspace {z}x[0,1] of 8*

We now notice that, if 7 is a closed subset of a Hausdorif space X
and K is compact in X then F n K is compact in the subspace F and
continuing this argument inductively, if B is in ¥ (X)®, then F A B is
n ().

Suppose that T is in D(8*)@. TUsing the representation established
above we may choose # so that {a} X Ts is a X subset of the subspace
{#} x [0, 1]. Now {#}x [}, 2] is closed in the subspace {z} X [0,1], so we
deduce that {#}X (T ~[}, §]) is a K@ subset of the subspace {&}Xx
% [%, 2]. Consider that the mapping ¢: (z,y>—3y—1 between {z}X
% [%, %] and [0,1] is & homeomorphism between {z}x[%, ] as a sub-
space of 8% und the space Y of [6, Prop. 3.7]. Moreover

el{m} X (To 3, $)] = p[l@} x T~ (&, D)= 1.

So I is in F(¥Y)@, hence is a Souslin-J(Y) set. Now the salient feature
of the space Y is that I is not a strongly convergent Souslin subset of ¥
and a fortiori is not a Souslin-J(Y) set. The reductio ad absurdum
establishes our theorem.

If a subspace B of a space X is descriptive Borel (or sigma-descriptive
Borel) in X, then B is deseriptive Borel (or sigma-descriptive-Borel) in
any Hausdorff space Z in which B may be topologically embedded. In
particular B is Borel in all such spaces Z. We have just seen that this
stronger kind of absoluteness property is not necessarily shared by sub-
spaces which are members of D(X)®. One might optimistically hope
that, if a space B is Borel in any Hausdorff space of which it is a sub-
space, then B is sigma-deseriptive Borel. This conjecture is false even
if B is analytic.

THEOREM 7. There in an analytic. Hausdorff space which is absolutely
closed with respect to Hausdorff spaces (i.e. is closed in any Hausdorff space
of which it is @ subspace), but is not sigma-descriptive Borel.

Proof. We claim that the space S* construeted in Theorem 6 has
just the required property. .

Tirst note that §* is not sigma-descriptive Borel, otherwise we may
argue as in Theorem 6 that for some ¢ m [0,1] the set {#}x[%, %] is
a sigma-compact subspace of 8%, but this is not the case (its homeomorph,
¥, referred to above certainly is not).
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We now consider any topological space 7 of which S* is a subspace
‘and show that [0, 11 is closed ii Z. We shall be making use of the three
topologies corresponding to 8, 8* and Z. It will be. as well to remark
that, if 5 is any point of [0, 17 and W is an open neighbourhood of % in
the sense of §*, then there is a seb &, open in 8, such that

neG‘ and {W}U(G‘“T)_C_W-

Suppose that { e cly([0, 1PN0, 1. Then there is a directed set
(A, <)y and a net t= (G2 ae A of points of [0, 1P converging to C.

Now & is a compact space, hence the net t contains a submet con-
verging in the topology of § to a point 7 in [0, 17° Since thiy subnet will
converge to  in the Hausdortt topology of Z, we may assume for con-
venience and without loss of generality that this subnet is identical with t.
Now £¢[0,1]%, so £ # n and we may choose disjoint sets U, V open in Z
with n e U and £ ¢ V. As the set U ~ [0, 17 is open in 8%, there is a set &
open in § with

ne@ and o (@nI)CU.

As t converges in Z to {, there is an element a, in 4 such that for
every a, with a, < a, t,¢ V. On the other hand t converges in § to n and
7 € @, so there is an element 4, in A such that for every a, with a, < a,
1, € G. We may choose an element b in A with a; <b and a, <b. The
point #, belongs to the set V ~ [0, 1P which is open in 8%, so there is
a set H, open in 8, with

e H and {Hyv (H ~AT)CV n[0, 1T

However f, e, s0 t,e @ ~H. We deduce that GnHA~AT#G, but
GAHATCUAV.So Uand V are not disjoint and this is a contra-
diction. Consequently §* is closed in Z.

Remark 1. An absolutely closed space need not be Lindeldf, so it
need not be amalytic. For example, let (X, <) be a totally ordered set
with dense ordering and compact order topology and suppose that the
weight at the point & = infX is o, in the order topology. Define another
topology on X as follows. Let (@, a<<wp) be a monotone decreasing
sequence with infimum £ which is continuous in the sense of the order
topology of X. Define basic neighbourhoods of points of X other than & to
be the same as thosé of the interval topology of X. Wiite T
= X\{#,; a< o} and let the basic neighbourhoods of & take the form

{mo<onT for a<ow.

The space X* so generated is Hausdorff (cdmpare Example 1 Engelking
[1, p. 48]), but is not Lindeldf, since the open cover

(T, {w: m,< @} a< oy}

icm®
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does not have a countable subcover. X* is absolutely closed
) ar, .
in Theorem 7). . ¥ (axgue as

Remark 2. It is well known (compare problem D in Engelking
[1, p. 161]) that a regular Hausdorff space is absolutely closed with respect
to Haunsdorff spaces if and only if it is compact.
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Added in proof. Professor Roy O. Davies has kindly drawn my attention to-
Skula’s article [9] where, by an argument different to ours, it is shown that.
[0,1]1% {0} is not analytic in [0,1]x{0,1}. In a forthcoming paper we ‘shall extend
the argument presented here to show that in various senses [0,1]x {0} is not even
a projective subset. This answers a question raised by Kurepa and reported in [9]..
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