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Subparacompactness in Cartesian products of generalized
ordered topological spaces ()

by
K. Alster (Warszawa)

Abstract. By a G0;-space we understand a space with a G;-diagonal which can
be embedded in a linearly ordered topological space. In this paper some results about
subparacompactness in Cartesian products of GOg-spaces are proved. Among others
it is shown that the product of two Lindelof GO,-spaces is hereditarily subparacompact

if and only if the Continuum Hypothesis holds. The Cartesian product of three GO;-
spaces, whose closed subsets are G;-sets, is hereditarily subparacompact but this theorem
js not true for products of four spaces. A necessary and sufficient condition for the
product of four GOs-spaces to be subparacompact is that each pair of disjoint closed
subsets of this product can be separated by Gs-sets.

0. Introduction. The aim of this paper is to give some results about
subparacompactness (2) in Oarbesian products of generalized ordered
topologieal spaces (abbreviated GO-spaces) (®).

Let us notice that many important examples connected with para-
compactness in Cartesian products were obtained in the class of gener-
alized topological spaces (see [12], [9], [10] and [11]). These examples
have an additional property, namely they have G,-diagonals.

Our paper is organized in the following way: In section 1 we give
basic definitions, section 2 contains technical lemmas and propositions
which are used later, and the most important section 3 is devoted to
a study of problem under what conditions the product P X, of GO-spaces

selS
with @,-diagonals (abbreviated GO,- gpaces) is subparacompact or heredi-

tarily subparacompact.

Tet us recall that in [1]an example of a generalized ordered topological
space X such that X x X is not subparacompact is constructed; if we
assume the Continuum Hypothesis then the space X can be defined in
such a way that the weight of X is &,. In both cases the space X has not

(*) This is a part of the authors doctoral dissertation written under the super-
vision of Professor R. Engelking.

(*) Subparacompactness has been extensively studied by D. Burke (in [3]).

() GO-spaces have been investigated by D. Lutzer (in 7).
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a @,-diagonal, so our restriction to generalized ordered topological spaces
with @,-diagonals is natural in this conbext.
We shall often use the following theorem proved by D. Lutzer in [7]
{Theorem 4.3):
(0.1) TeEOREM. Every GO,-space is hereditarily paracompact.
. We adopt the terminology and notation of [4].

1. Basic definitions.

(1.1) DEFINITION. A space X is subparacompact (finitely subpara-
compact or countably subparacompact) if every (finite or countable) open
covering has a o-diserete closed refinement (4).

(1.2) Remark. Let us notice that X is finitely (countably) sub-
paracompact if and only if every finite (countable) open covering has
a shrinking consisting of F,-sets.

(1.3) Remark, It is easy to see that finite subparacompactness is
a generalization of normality, namely a space X is finitely subparacompact
if and only if for each pair 4, B of disjoint closed sets there exist
disjoint G,-sets ¥ and U such that ACV and BCU.

(1.4) DepinrzioN. By GO(K, <) we denote the class of GO -spaces
of the form (K, 7, <), where (K, <) is a fixed linearly ordered set (see [7],
Definition 2.1). '

(1.5) DEFINTTION. We say that X is a GO,-space it X ig a GO-space
and has a G,-diagonal.

(1.6) DerFNITION, By GO,(K, <) we mean the class of GO,-spaces
of the form (K, 7, <), where (K, <) is.a fixed linearly ordered set.

(1.7) DEFINITION. By an dntervel in a generalized ordered space
(X,7, <) we mean sny subset U of the form:

U={reX: a<o<b}, U={#cX:a<w<b}
or U={peX: a<a<l}.

A one point subset of X which is not an interval will be called a degenerate
interval.

(1.8) DErFINITION. We say that Bo is a canonical base at & point

. aeX, where X iy a GO-fpace, if B, is a base ab the point & consisting

of intervals or degenerate intervals and satisfying the following con-
ditions:

(1) if a is an isolated point then Ba = {{a}},

(2) if o is an accumulation point and {» ¢ X: # > a}-is an open subsct
of X then UC {weX: » > a} for every U-eBq,

() We say that U = {U,(,};E < i8 a refinement of B = (V)¢ if for every s ¢ 8 there
exists a &« T such that U,CV; and | JU=J9D.
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(8) ifaisan accumulation point and {w « X: # < a} is an open subset
of X then UC{zeX: o< a} for every Ue B,.

2. Technical lemmas. We start with a theorem which is an unpublished
result of T, Przymusinski. The proof which we are going to present is
simpler than the original one and is based on the Bing metrization theorem
(see [2]): a regular space is metrizable if and only if it 8 collectionwise
normal and developable (%). :

(2.1) TueoreM. If X is a GO,-space from the class GO (K, <), where
K is a fized linearly ordered set, then there exists a meirizable space M which
belongs to GO(EK, <) such that the topology of M is weaker than the top-
ology of X.

Proof. Let {G,}7., be a sequence of open subsets of X x X such

o ;
that (N Gu = {(#, #): e X}. Let Uny be, for # ¢ X and n e N (N denotes

n=1

the se?; of natural numbers), an arbitrary open subset of X which satisfies
the following conditions:

(4) Uns € By, where B is a canonical base at the point =,

(5) Una X Una C G

(6) Uﬂ—i—l,m C Una: -

From (5) it follows that i

(1) M St(z, Up) = {&}, ‘where Wp= {Unalgex for n=1,2,..
n=1

Let us put for z e X and n=1,2..
z it infSt(e, W) =2,
#; = an arbitrary point of St(z, Un) N {zeX: 2< 2}
if  this set is not empty .
z it supSt(z, Un) =2,
@t =1an arbitrary point of St(z, Un) N {zeX: 2 >}
if  this set iz not empty .
(infA and supA for A C K are defined with respect to the linear order
of K).
Ag a base at any point.# e M = K we take the family
{y e M: oy <y<afyo (@il
(%) A space X is developable if there exists a sequence {UaYouy of open coverings

such that for every x ¢« X and its open neighhorhood U thers is a natural namber »
satisfying St (xz, Us) C U.
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Let us pub $Hu= {IntyrU}y.y, where Inty U denotes the interior
of U relatively to M.

From the Bing metrization theorem, Theorem 2.9 from [7] and the
fact that a linearly topological space is hereditarily collectionwise normal
(see [13]) it follows that the proof of Theorem (2.1) will be completed if
we show that
(8) MeGO(K, <),

(9) the topology of M is weaker than the topology of X,
(10) {$n} is a development of .

Ad (8). The base of M consists of intervals and degenerate intervals.
Let 2 ¢ U, where U is an arbitrary set of the form {zeK: a <2< b},
or {wxeK: a<a}, or else {veK: o< b} Let B= {wecK: o=infU if
infU exists or & = supU if supU exists}. There exists n(x) ¢ N such that
8t(z, Up) CENE (see (7) and (6)). It is easy to see that {weK: ag,
<< Ehy}CTU.

Ad (9). Let us notice that if the set

={xeK: a<a} (U= {zek: 5=a})
is open in M, then it is open in X and because M, X ¢ GO (K, <), the
topology of M is weaker than the topology of X.

Ad (10). From (4) it follows that if # ¢ | {{(IntxU)}yen, then Uns
= St(x, Uyn), therefore @ e IntyUns and $Hn is the covering of M for
n=1,2, ..

The proof of (10) will be finished if for

={ e M: vy < @ < 2} o {a},
we find a natural number m(x) such that St(x, W,y) C U. Let us put

n it o, =0,
miw,) = [an arbitrary natural number m such that
St(z, W) CE\{w;} i o #o.
n it ot=uw,
m(zyr) = (an arbitrary natural number m such that
St(z, Un) CEN{&f} ¥ of #0.
The number m (z) = max {m(z;}), m(2;)} has the required properties.
A metrizable GO,-space M which satisfies conditions of Theorem (2.1)
will be called a space associated with the GO,-space X.
The following lemmas will play a fundamental role in the sequel.

(2.2) Levmma, If M= (K,v,<) is o merizable GO-space and
W a family of intervals, then | J W is an T, -set in M.
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Proof. Let us put

V= U{ntyU: Uell} and Wp={UeW: diamT >1/a},

where diam is taken with respect to the fixed metric ¢ of M, and
n=1,2,.. It is easy to see that Z, = ({J Ux\V is closed in M, for
n=1,2,.., and that V is an F -set in M. The proof of Lemma (2.2)

follows from the equality U= {JZ, V.
n=1

(2.3) ComrOLLARY. If X s a GO;-space then X% (the derived set) is
perfect, i.e. every open subset of X% is an F,-set in X%

(2.4) LemMA. If U is an open family in X;X .. X Xn, where Xy is
a GO,-space for i=1,2,..,n, such that every Uell is of the form
U= U;X...X Un, where one of the sets Uy, ..., Un is an initerval in the
corresponding X; and others are open in M; associated with X; for j # 4
then U has a o-discrete refinement.

Proof. Let ;= {U; X ... X Upe U: U; is an open subset of M; for
j # 4}. The proof will be finished if we define a o-discrete refinement €
of W; for §=1,2,...,n We can assume without loss of generality that
4=1. Let B be a ¢-discrete base of M,x M;X... X M, and B an open
refinement of 1, such that if ¥V ¢ B then V= V,;XV,, where ¥V, is an
interval in X and V, e B. Let us put B’ = {V,: V;xXV, ¢ B} and J(B)
= {V;: Vo X B <8} for BeB'. From Lemma (2.2) and Theorem (0.1) it
follows that there exists a o- discrete refinement §(B) of 3 (B). The family

= {Fx B: Fe¥(B),BeB'} has the required properties.

3. Subparacompactness in the Cartesian product of GO,-spaces. In the
present section we shall investigate the following problem: under what

conditions the product P X, of GO,-spaces is subparacompact or he-
seS
reditarily subparacompact?.

Let us recall that the Cartesian product of two GO,-spaces need
not be paracompact (see [12], [9], [10] and [11]).

We shall consider three cases: |8] >, 8] =158, and |S|<® (IS
denotes cardinality of §).

Case 1. |8] >%,.

TEEOREM 3.1. If the Cartesian product PX is subparacompact,

where X, are GO,-spaces then the family {X}s s contams at most countably
MANY NON-COMPACE SPaAces.
Theorem 3.1 is equivalent to the result obtained by the author and
R. Engelking (see [1], Theorem 2), which states that the Cartesian product
of &, copies of the discrete space of cardinality ¥, is not subparacompact.
Case 2. |8 =
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The author does not know of any sct of reagonably weak conditions

which imply subpmweompactnws of len, where X, is a GO,-space.
=1
For hereditary subparacompactness we have
(3.2) THEOREM. If X, is o GOy space forn=1,2, ...
conditions are equivalent:

, then the following

o
(a) the Cartesian product P X, is hereditarily countably subpara-
=]
compact, ' . '

o0
(b) the Cartesian product P X, is hereditarily subparacompact.
=l

The proof of Theorem 3.2 will be preceded by a lemma.

(3.3) LuvmA. If the Cartesian product P Xy, where Xy is a GO,-space

i1
for i=1,2,..,n, is hereditarily is countadbly subparacompact then it is

hereditarily subparacompoct.

Proof. We shall prove Lemma (3.3) by induction on ». If n=1
then Lemma (3.3) is obvious (see Theorem (0.1)). Let us assume that
Lemma (3.3) holds for n=F%—1. Lét G be an arbitrary open subset
of the hereditarily countably subparacompact Cartesian product X, X
. XX, and U its open covering. We can assume without loss of
generality that if U ¢ ¥ then U= U; X ... X Uy, where Uy is an interval
or a degenerate interval in X;. :

Let us notice that

(1) |ON{Intar, Uy) X Uy X e X Uil © [Ty X (Tnitar, Us) X UgX oo X Uil

G W [T X e X Uy X Intar T} <1

where U el and U= U, X

. X Uy, M; is a space associated with X,
for i=1,2,..

, k3 U is a covering of ¢ hence the set

0= G\(U{[(IntMlUl) X UZX .
v.vu [Upx

X U] w [Uy X (Intar, Uy) X Uy X
o X Uy X (Intar, Up)l: Uy X oo X U e 20)

X U]

is closed and discrete in @,
We shall show that € is a @,-set. To do this let us denote by V™(),

for_m: 1,2,.. and < O, an arbitrary open neighborhood of 2 which
satisfies the following conditions:

(12)  V™&)=V™z)X ... x V{x), where V() is an interval or a deg-
enerate interval in X; for i=1,2, .., k.

icm°®
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(13) diamV7(e) < 1/m (diam is defined with respect to a metric in M;)
for i=1,2,..,k
(14)  8{V™@): m=1,2, .., 3¢ O} < 5U ().

We shall show that €=/ (J{V™(@): z<O});
m=1

contrary that there exist a point y and a sequence of sets {V™(2™)}5-1,

suppose on the

where #™ ¢ C, such that
(15) ye XX .. xXk\C',
(16) yeV™a™) for m=1,2,..

We can assume without loss of generality that if m # m' then a™ # ™
(see (15) and (16)). Let p be the lfuffest integer such that there are in-
finitely many points in the set {#™};_, which have p coordinates in com-
mon with the point ¥ = (¥4, -.-; Y&)- We can assume, passing if necessary
to a subsequence of (™), that

yi=al for i=1,2,..,p, m=1,2,..
and
Ty # g for i=ptl, .k m=1,2,..,
where 2™ = (2™, ..., #7"). Let us notice that if z= (%, voey ) € ¢ then

{@} = V7 (e)\Inta,V (), hence the number a = inf (oi(yi, XnVi{ah)
i=p+1,...,k

is positive. Let m' be a natural number such ttht 1/m’ << a. From the
definition of a, (13) zmd (16) it follows that V7(a™ VC Vi) for i = p+

41, ..., k, 80 we get a™ ¢ V}(2'); the contradiction Wlth (11) proves that
Cis a G(,-set. Let
Bi = {UsX oo X Uy X (b, Us) X Uypy X oo X Ut Uy X... X Upe U}

and let B = \Q Bix be a base in Mj, for i=1,2,..,k where Bu is

=1
discrete in _Mi Denote by By an arbitrary open refinement of ®;

such that if Ve B, then ¥ = VyX ... X Vi, where Vie By and ¥; is an
interval or a degenerate interval in Xl for j # 4. Let

3uB) = {Vy X XV XV X X Vi ViX.o
XV, X BXV XX Ve B}

and

By = (Vi VyX oo X VX e XV € B}
for ¢ =1, 2 , k. From the inductive assumption it follows that the
set | 3¢(B) is subpamcompact hence there exists a refinement Fi(B)

(®) We shall write 6l < 6B, where 1 and B are families of subsets of X, if for
every U el there exists ¥ 8 such that U cvV.
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of 34(B), which is o-discrete in | ) 3:(B) for B e B;andi=1,2, ..,k Let

Yon= J{ViX . X Ve e Bi: Vie B}, where By, = B;n B,
for i=1,2,..,k and n=1,2, .. The set G is hereditary countably
subparacompact, G\C is an F,-set and {¥m}e .2, is open, hence there

exists a shrinking {Dm}e ;2 of {¥in}ieyney (this means that D C Yia
k o0 (e}
and | | D = G\O) which consists of I',-sets in . Thus Din = () Dium,

i=1 n=1 M=l

where Dinm is closed in @. Let us put

k oo o0

D=1 U UfDW;m v {{m}}meo ’

i=1n=1m=1
where .
Dinm = {—Dm(Fs -B): r E?ji(—B)! Be %}n}
and

D(Fy B) = {(#1y oy ¥k) € Dinm: (@, ory Byoyy Bgpgy -y @) € I, w;¢ B}
It is easy to verify that ® is a o-diserete in @ refinement of 1f, hence
our lemma is proved.

Proof of Theorem (3.2). The implication (b)=-(a) is obvious.
Let us show that (a) = (b). Let [ be an arbitrary open covering of an
open subset @ of P X,. We can assume without loss of generality tha:t u

n=1
consists of sets of the form U = P B,, where B, is ¢pen in X, and the

n=1
set {n: By # X,} is finite. Let
Wy ={UeW: U=P B;, where B,= X, for n> i}.
. i=1

Fro_m Pemmsfu (3.3) it follows that there exists a refinement i of Uy
which is o-diserete in | J Wi. From the agsumption that G is countably

subparacompact it follows that {{J U,}32, has a shrinking {D;}%,, such
th — 0 . . . . . o o
at Dy nL=Jle and Dy is closed in . The family & = | U Kin,

il fml
Whe‘re Rm.= {K: E=DiuF,F e} is a refinement of U, which is
¢-diserete in @, thus the proof is finished.

(3.4) OOROLLAI?Y (D. Lutzer [8)). The Cartesian product of N, copies
of the Sorgenfrey line is hereditarily subparacompact.

Proof. In [5] 'it ig proved that the Cartesian product of N, copies
of the Scrgenfrey line is perfect. To prove our Corollary it is sufficient

icm
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to notice that every perfect space is hereditarily countably subpara-
compact (see Remark (1.2)).

Case 3. |8] < .

“(3.8) TEEOREM. If X; is a GO,-space such that X; = Y;« Zi, where
Y, is perfect, Zi C XX and |Z: <&, for i = 1,2, then X, X X, is he-
reditarily subparacompact.

From Theorem (3.5) it follows that the Cartesian produet X;x X,,
where X, and X, are perfect GO,-spaces, is hereditarily subparacompact.
As Theorem (3.6) shows it is sufficient that one of the factors is perfect.

(3.6) TeEOREM. If X, is a GO,-space for i =1,2 and X, is perfect
then X,x X, is hereditarily subparacompact.

Theorems (3.5) and (3.6) will be proved simultaneously; the proof
will be preceded by a lemma.

(3.7) Lmvvea. If X, and X, satisfy asswmptions of one of the above
theorems, then the set A = [(INXT)x Xp] v [X; X (XX is hereditarily
subparacompact.

Proof. If X, is perfect then 4 = A, v 4,, where 4, = (XX x X,
and A, = ANA, are hereditarily subparacompact (Theorem 0.1) F,-sets,
hence A is hereditarily subparacompact.

Suppose now that X, and X, satisfy assumptions of Theorem 3.5.
We can assume without loss of generality that |Z,] = [Z,] = ¥ and Z; is
disjoint to ¥ for 4 = 1, 2 (if the set Z; is of cardinality 8, then X is per-
fect (see Corollary (2.3)). Let Zi= {#l},c,, for i=1,2.

To finish the proof it is enough to show that the closed subset
F = AN(U, u T,) of A, where Uy = (Y\XJ) x X, and U, = X, X (TANXD),
is hereditarily subparaccmpact. To do this we shall define disjoint @,-sets
@, and G, such that G;D B, for i= 1,2, where B, = X¢x Z, and B,
= Z,x X%. Let us put

K= (@ x XN U Xox gy and To= (K {h U ({os} X Xs)
p<a <a
for a << wy . It is easy to verify that the sets
G=(UL)F

o<wy

and Gy=(JE)nF
a<wy
have the required properties.

The sets F;—= F\G; are hereditarily subparacompact F -sets for
i=1,2, therefore F is hereditarily subparacompaet and this completes
the proof.

Proof of Theorems (3.5) and (3.6). Let U be an arbitrary open
covering of an open subset ¢ of X, X X,. Let U, be an open family con-
sisting of sets of the form U = U;X U,, where U; is an interval in X;
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such that
@an UMW DGn(XIxXE and 8, <8N,

(18) if UyxU,eU then UiIntyU:iC{z}CX? for i=1,2

From Lemma (2.4) it follows that there exists a ¢-discrete covering
of H, v H,, where

H,= U {(Ints,Uy) X Uy TyX Uy e U}
and }
H,= | {U % (IntuU,): Uy X Uye Wy},

such that €< 6.

The argument used in the proof of Lemma (3.3) shows that the set
C= {JU\(H, v H,) is discrete in U U,. From tho properties of U, it
follows that 0 C G ~ (X¢x X&) C {1y, therefore C is diserete and closed
in @ The family & = € u iz} .o is a o-discrete in G refinement of U
(to obtain this we used only the fact that X; are GO,-spaces). The set
F = G\\J G, is closed in G and I C 4, hence from Lemma (3.7) it follows
_ that there exists a o-discrete closed refinement § of U|F; therefore ¢ v §
is a o-discrete refinement of U in'G.

(3.8) COROLLARY. If X; 48 a GO,-space such that | X \XJ| < ¥, for
i=1,2, then X, X X, is hereditarily subparacompact. .

Corollary 3.8 follows from Corollary (2.3).

(3.9) COROLLARY. The space X XY defined by H. Michael in [9] is
hereditarily subparacompact.

(3.10) CororLARY. The Continuum ffypothesis is equivalent to the
following statement: if X, and X, are GOj;-spaces and Xy = ¥y o Z;, where
Y is perfect, Z; C X X% and |Z;| < 2% for 4 =1, 2, then the space X; X
X X, is hereditarily subparacompact.

Corollary (3.10) follows from Theorem (3.5) and the following

(8.11) LEMMA. Under the assumption that s, < 2% there exist Linde-
16f GO4-spaces X,, X, such that the space X, X X, is not hereditarily sub-
paracompact,

Proof. Let X be a subset of the interval I = [0, 1] such that |X|
= [INX| = 2% and both X and I\X considered as subspaces of I do
not contain uncountable compact subsets (see [6], Theorem 1, p. 514).
Let L be an arbitrary subset of I such that |[INI| = ¥,.

Let us put X = Iy and X, = I (see [4], Example 5.1.2). It is casy
to verify that X, and X, are Lindelof GO,-spaces.

We shall show that 4 = (IAX)XIru Ixx(IN\L) is not sub-
paracompact. To do this, it is enough to prove that B, = X x (I\L)
and B, = (Ix\X)x I cannot be separated by G;-sets (see Remark (1.3)).
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Suppose that B;C U;, for ¢=1,2, and U; are disjoint G,-sets. From
the properties of X and the inequality 2% >, it follows that

(19) [Tz X {EIN\TL]] <8 for wel\L
and

(20) ({2} x IINT,]l <§,  for @elnX.
Let us put

B= [ p[(Izx{z}) ~ U],
- ze(IND)

where p is the projection from X, x X, onto the first factor. From (19)
and the inequality 2% > x, it follows that B\X # @. Let = be an arbitrary
point of BN\X. It is easy to verify that {#} X (I:\L) C U; but this con-
tradicts (20), because U; ~ U,= @ (7). ]

(8.12) CororLARY. The Continuum Hypothesis is equivalent o the
following statement: if X; and X, are Lindelof GO;-spaces then the space
X, x X, is hereditarily subparacompact.

To prove this fact it is enough to notice that | M| < 2%, where My is
agsociated with X; for i =1, 2.

In Example (3.3) below we show that Theorem (3.5) does not hold
for the Cartesian product of three spaces.

(3.3) ExAMPLE. We shall define perfect GOj,-spaces X, X, ¢ GO4(I)
such that the subspace 4 = {(z, ): zeI of X, x X, will be homeomorphic
to Ix (see Lemma (3.11)). :

Let x be an arbitrary point of I. If # € X then the base at « in X;
and in X, is the same as in I, if # ¢ X then the base at # in X, consists
of sets of the form U = {y ¢ I: # < ¥y < a} and the base at z in X, of sets
of the form U = {y e I: a <<y < #}. The space X,x X, has the required
properties (see Lemma (2.3)).

If we assume that 2% > then X, X X,X Iz is not hereditarily
subparacompact because X;x X, X 11D IxX Ir.

In the case of three spaces we have the following

(3.4) TurorEM: If X; is a perfect GO,-space for i=1,2,3, then the
space Xy X X, x Xy is hereditarily subparacompact.

Proof. Let G be an arbitrary open subset of the Cartesian product
X, x X,x X, and U its open covering. Let U, be an open family con-
sisting of sets of the form U = U, x U,X U;, where Uy is an interval
in X;, for ¢=1,2, 3, such that

(21) UM DG (Xex XixXH and U< OU,
(22) i UyxU,x Uselly, then  UTpn(Inta,T:)C {m}CX¢,
where M; is associated with X; for 1=1,2,3. :

() R. Pol proved that the space'%is subparacompact.
2 — Fundamenta Mathematicae LXXXVII / - :
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Trom Lemma (2.4) it follows that there exists a ¢-discrete covering €
of H, where
H = U {{UyX (Tntar, U)X (Intar, Us)] < [(Tntar, Uy) X Us X (Inbar, Us)] v
O [(Tntpr, U)X (Inbag,Up) X Usl: Uix UpX Up e Uy}
such that 6€ << 6U;.
Let us notice that the set
0= U WU {[(Intar, Ty) X Tpx U] © [Ty x (Inta Un) X U] v
U [UX Uy (Intar, Uy)}: UyX Uy X Uy e m,H
is discrete and closed in |J 1, similarily as the set ¢ from the proof of
Lemmsa (3.3). From the properties of U, it follows that 0 C @G n
A (XIx XEx X§C (J Uy, therefore O is discrete and closed in G
Let us put
Dy = {Vi(U)X Dy(T)x DYUNH: U e Uy},
Dy = {Dy(T) X Vo(U) X D(UNH: U < W0},
and.

Dy = {Dy U)X Dy U)X Vo(UNH: U e s},

. where Vi(U) = Inta, U and Dy(U) = UNInta,(Ts) for Uy X U,x Uy= U.
Notice that

8
DT <1 and Uyx Uyx U0 vH)CJ UD,
il
therefore

. .
UuNC v H)=J) UDs.
i=1
Let R, be the equivalence relation in D, defined by the conditions
(DyX DyX D) Ry(D;x Dy Dy) it Dy= D, and Dy= Dy.

Relations R, in D, and B, in D, are defined in analogous way.
Let us put

Fi= {F1(D). D EDIL} 9 where F1(D) = LJ{D' .D/.Ri.l)} for
‘ i=1,2,3.
Let
Ft= {FHD)pypyesy for ¢=1,2,3 andn=1,2,..,
where FD) = {(@,, @, 4;) ¢ Fy(D) there exists U,x UyX Uzel; such
that diam U; >1/n, {&} = UN\Inty,U; for j # ¢, and @i e Intar, Ui

Subparacompactness in Cariesian products 19

We shall show that the family §7, for i=1,2,8 and n=1,2, ...
has the following properties:
(23) FYD) is an F,-set in G.
(24) §7? is diserete in | J@:.

8

(25) % is diserete in ) -
=1

(26) UTT is an F,-set in (J ;.

(27) I FYD)eF: then there exists a o-discrete covering UHD) of
FHD) such that SUYD) < 5.

Ad (23). Any set FHD) «F7 is an F,-set In & because it is an inter-
section of the F,-set P = | J{P, X P,x P; there exists Uyx Uy x Ug e U,
such that diamU; >1/n, P;= D;= UNIntay(U;) = {#;} for j #i and
Py = Intay, Ui, where D= D;XDyx Dg}, and the set G\H, which is
closed in G.

Ad (24). It is easy to verify that we do not changea set D eD; if we
put in its definition Dj(T) = U; instead of UpN\Intar,(T;) for j # 4, there-

3
fore Fi(D) e is open in [ |/ Ds. The family §: consists of pairwise

=1
disjoint sets and 6% << 6F:, hence F7 is discrete in [J§F.

Ad (25). From (24) it follows that it is sufficient to show that for
an arbitrary point # e | §; and j # ¢ there exists an open neighbour-
hood of # which intersects at most one element of F;. We can assume
without loss of generality that ¢=1 and j= 2. Let us notice that the

3

family §, is open in {J UFs and if P (D) e, then |ps{F (D)) =1, for
n=1

k=1, 3, where py is the projection of X;x X,x X; onto Xy; therefore
it is sufficient to show that the set {@}Xx X, X {#5} n @& ~ (| JFT), where
o= (@, %, %), is closed in @ and this can easily be verified.

Ad (26). From (23) and (25) it follows, that |7 is an F,-seb in
3
U U It is easy to see that

(28) C{ U= Q UDi= U UNC U )

and ¢ v H is a Gs-set, hence | JF? is an F -set in {J 2.
Ad (27). This is an obvious consequence of the definition of {7 and
metrizability of M;.
From (25), (26), ( the equality

27),
(2) U us=U U us,
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(28), and the properties of € and C it follows that there e)lcists 2 o - discrete
in |, refinement G of ;. Notice that to obtain this refinement we
used only the assumption that X; is a GO,-space for i=1, 2, 3.
Let us put 3= G|(XEx X{x X§) ~ ¢ TFrom (21) it follows thab
3 is a o-discrete, in G, covering of @ N (X{x XFx XJ) and 63 < olL.
We shall show that T'= G\(XIx XIx XF) is a subparacompact
F,-set in G. To do this let us pub

Ay = [(Xl\-de) XX x X n &,

4, =[X;X (Xz\Xg) X X]n @
and
Ay = [X X XX (XNXH] N G .

" The space X; is perfect, hence 4; is an F -set in G and from Theorem (3.5)
and the equality T = 4, v 4, v 4, it follows that T is a subparacompact
F,-set in G.
Let T be a o-discrete in & covering of T such that 6T < 6. The
family T u 3 is a o-discrete refinement of U and the proof ig finished.
By using Corollary (2.3) we infer

(3.5) CororLARY. If X is a GO,-space without dsolated points, for
t=1,2,3, then the space X,X X, X Xy is hereditarily subparacompact.

Applying the method from Example (3.3), we easily notice that
Theorem 3.4 does not hold for four spaces. ,

(3.16) TreorEM. If X; is a GO4-space, for i =1,2,3, 4, then the
following conditions are equivalent:

(a) the Cartesian product Xy X X, X Xyx X, is finitely subparacompact
(hereditarily finitely subparacompact),

(b) the Cartesian product X, x X,x Xyx X, is subparacompact (here-
ditarily subparacompact).

The proof of Theorem (3.6) will be preceded by two lemmas.

(3.17) LEMmMA. If X; is a GO,-space, for i =1, 2, and the Cariesian
product X, x X, is finitely subparacompact, then X, X X, is subparacompact.

Proof. Let U be an arbitrary open covering of X, X X,. We obtain,
in the same way as in the proof of Theorem (3.5) and Theorem (3.6),
a o-discrete family € such that 0&, < 60, | J& D X¥x X¢ and the sob
U@, is open in X;x X,. From the assumption that X, x X, is finitely
subparacompact it follows that there exist F,-sets I, F, and F, satisfying
the following conditions

(80)
(31)

F,UuF,UF, =X, xX,, ’
FIC(XSL\X;Z)X-XM

e ©

icm
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(32) F,C X x (XNXE),
(33) F,C UG,

The sets F'; and F, are subparacompact and the family & |F, is o-discrete,
hence X;x X, is subparacompact. :

(3.18) LmmwmA. If X; is a GO,-space, for i = 1,2, 3, and the Cartesian
product Xy X X, X X, is finitely subparacompact then Xy x X, X X, is sub-
paracompact.

Proof. Let U be an arbitrary open covering of X;x X,x X;. In
the same way as in the proof of Theorem (3.4) we obtain a family &
which is o-diserete in {_ G such that 66, < oW, UG, D X¥x X¢x X¢ and
the set {J @, is open in X, X X,x X,;. From the assumption that X;x
X X, X X, is finitely subparacompact it follows that there exists F,-sets
¥, F,, Fy and F, which satisfy the following conditions:

(34) FLuRuF,UF,= X, x X, x X;,
(35) F,C (X X x X, x X,

(36) F,C X, % (XaXHx X, ,

(87) F,C X, x X, X (XNXF) .

(38) P,CUG.

The sets B, F,, F; are subparacompact (see Lemma (3.7)) and the family
. oo

G,|F,,, where F,, are closed subsets of X; X X,x X, such that F,, = F,,
n=1

is discrete, hence X, X X, X X, i3 subparacompact.

Proof of Theorem (3.6). The implication (b)=>(a) is obvious;
to prove Theorem (3.6) it is sufficient to show (a) = (D).

Let W be an arbitrary open covering of X = X;xX X, X X;x X,.
Let U; be an open family consisting of sets of the form U = U;x U, X
X Uyx U,, where U; is an interval in Xy, for ¢=1, 2,3, 4, such that

o, < 81,
Ui\IIltMiUi @ {wi} g de

(39)
(40) it

UL D XIx Xex XEx X8
U x UXUsx Uyelly, then

and

Let X ={TCT;: |T| =i}, wherei=1,2,3,4and T,= {1, 2, 3, 4}-
Let us put for T T,

S4(T) = {D X DyX DyX Dz D;= U, for t ¢ T and Dy = Inta, Unm
for m e TN\T, where U, X Up,X UsX Uge U} .

Suppose we have already defined K;(7) for j<< ¢ and T e Iy; let us put
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for TeT;

K(T) = {D; X Dyx Dyx DX\ UJ U Si(T = UN\Inty, Us for teT
j<i T’eTy

and Dy = Inta, Un for m e TN\T, where Uy X Up X Uy X Uy e Uy}

The argument as in the proof of Lemma (3.3) shows that &, (T,) is
diserete in | 1. From (39) and (40) it follows that | Ky(T,) C X¥x X x
X X¢x XEC | J Uy, hence &, (T,) is diserete in Xy x X, x Xyx X,.

Applying Lemma (2.4) we find a covering € of L J U ST

o-diserete in X, x X, x Xyx X, and such that 6(6< (Slt
We define the equivalence relation R(¢, T) in Ku(T
and 1 =2, 3, assuming

ER(, T)E'

) ‘which is
) where 7' €3,

i p(K)=pyK) for
where p; is the projection of X,x X,x X;x X, onto X;. Let §(i, T)
= {F(K): KefQ(T)} for T ey, where F(K)= J{K': K'R(¢, T)K}.

We shall show that the family (i, T), for T ¢Z; and ¢ =2, 3, has
the following properties:

jef,

(41)  elements of ¥ (4, T) are open inTL% Uge, m,
(42) & @@, T) is discrete in the (JF (4, ET;,
43) UFEB, I is a Gy-set in X, X X, X X% X,
(44) iLJz U§@E,T) is an F,-set in 1.
(45) ifel;’(K) (i, T) then there exists a o-discrete covering W(F(K))

of F(K) such that SU(F(K))< 62;.

Ad (41). It is easy to see that we do not change a set F'(K) ¢ § (4, T)
if we put in its definition D;= U; instead of U;}\Iﬂtn{t( U;) for teT,
hence F(K) e§ (i, T') is open in U U® (@, T) as the union of open sub-

sets of |J U&(,T).
TeX

Ad (42). The elements of § (¢, T) are pairwise dlSJ oint hence from (41
it follows that (¢, T) is discrete in {J§F (i, T).

Ad (43). From (39) and (40), the definition of §(3, T'), and Lemma (2.2)
it follows that the elements of (3, T') are of the form

(46) F(K)= P;XP,xP;xXP,, where |P;j=1 for te T and P, is
a Gy-set in My, for me TNT.

We can assume without logs of generality that T =

1,2,38} and
m= TNT — {4}. 1,2, }

icm°
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Let V() be an arbitrary neighborhood of z = (m,, @, 2, %)
e U3, T) satistying the following conditions for n=1,2, 3, ...

(47) VM=) = Vi(@) X Vi{z) x Vi(z) X Vi(z), where Vi(z) is an interval
in X; for ¢ =1,2,3 and V(=) is an open subset of M,

(48) diamVi(z)< 1/n ,

(49) d{V™x): we UF(B,T), n=1,2,..}< 8y,

(80) if e F(K)= Py X P,XxP,xX P, eF(3,T), then V¥z)C G, where

Gy is open subset of M, such that (M) Gp = P,.
=1

Let us assume that the equality

n (U (@) ze UG, T)))

does not hold. Then there exist a point y and a sequence of sets (V™{a"))2.,,
where 2™ e [ J§(3, T), such that

F3, )=

(51) ye XX Lx X x NUFB, T,
(52) yeV™a"y for n=1,2,..
From (51), (52), (46) and from the properties of the sets V() it

follows that there exists an infinite subset of {#"};_,, such that its inter-
section with each element of §(3, T') is of cardinality <1. We can assume
without loss of generality that

(53) |F(K) ~ {2t 22, 0} <1 F(E)eF(3,T) and 2™ # o™ if
' n#Em.
Let & be the maximal integer such that there exist infinitely many
points in {a"}?, which have %k coordinates among the first three co-
ordinates in common with the point ¥ = (¥1, ¥z, ¥, ¥.)- We can assume,
passing if necessary to a subsequence of (a™5_,, that for n=1,2,
gi=ot if i<kand ys £} f k<i<4. .
Lot us notice that if @ = (,, %,, %5, 2,) ¢ UF (3, T), where T = {1,2, 3},
then {m} = V}(@\Inta,Vi(») for ¢ =1,2,3, 50 a —I:ilf g,(yt,Xi\Vl(m )

for

> 0. Let » be a natural number such that 1/n < a. From the definition
of a, (48) and (52) it follows that Vi(z™) C Vi(s') for k<1 < 4; as 47 = m‘
for i<k, hence a" ¢ Vi(s'), but it is impossible because

Vigh) ~{a™: n=2,8,..}=0
therefore | JF(3,T) is a Gs-set.
Ad (44). It is easy to verify that
TLEJ Uge, ) ={UM) (U1UR(17T) UTLEJ%U%(E*,T)U UR(4, To),
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and
U UsE, = Uul\(U UURKE, T) v USH, Tw).
TeXg i=1Tey
Let us notice that the sets U UK@,T) and U U UK, T) are open,

i=1 T ey
and [JE(3, T) and K(4; T) are @,-sets; therefore (44) holds
Ad (45). This is an obvious consequence of metrizability of M; and
the definition of F(K). '
The Cartesian product X, X X, X Xy x X, is finitely subparacompact,
therefore there exist F,-sets Ty, F,, Iy, Iy, and Ty such that

(54) Ulln—“xngXaxX“
(55) FC(INXHx X, x Xy x Xy
(56) F,C X, x (IpXHx Tyx X,
(57) . F,C X, X X, % (X X)X X, ,
(58) F,C XX X% X, x (XNXY),
(59) FCUN,.

From the fact that finite subparacompactness is hereditary with
respect to F -gets and from (44), (41), (42) and (45) it follows that there
exists a o-discrete family €(¢, T') for T ¢I; such thab

U UGET)=F~(U UFE, T) and 66, T)< 8, for
Te¥;

TeXi
i=2,3.
Let
C=UE€E2,T)v UEB, T vy {olerumy -
TeXa Tely

It is easy to see that B, iy a o-discrete refinement of |7y and this com-
pletes the proof because F; for i < 4 is subparacompact and an F,-seb
(see Lemma 3.18).

The proof of the part in brackets is similar; it is sufficient to replace
the produet X, x X, x X;x X, by its arbitrary open subsot.

The author does not know whether Theorem (3.16) holds for the
product of five spaces.

(3.19) THEOREM. If the Oartesian product X, X ... X Xn of GO,-spaces
is collectionwise normal then it is subparacompact, and a fortiori paracompack,

Proof. Let U be an arbitrary open covering of X = X; X ... X Xn.
We can assume without loss of generality that 1 consists of sets of the

form U= U;X ... X Un, where U; is an interval or a degencrate interval
in' Xy, for i=1,2,..,n

icm®
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Let Ty = {T CTh: |T| =14}, where i=1,2,..,n, Tn={1,2, .., n}
and T,= {0}. ]

Let 8,(9) = {(IntMlUﬂ (IﬂthUg) X X IIltMn( Up): Uy X oo XUy € N

Suppose we have already defined R;(T) for j << ¢ and put for TeT;
(7)) = {DyX . X D[ 1J U U K(T")): Dy

j<i ey

Dj = Inta,U; for j e T,\T, where U;X ..

= Ui\IntMtUt for tET,

X Unell}.

We define a relation R(¢, T)in K(T), where T eTgandi=1,2, ..., n,
assuming KR( TYK' if py(K') = py(K) for je T, where p; is the pro-
jection from P X; onto Xj.

=1

LetF (2, T) = {F(K): K ¢ R(T)}, whereF (K)= ( J{K': K'R(i,T)K}.

It is easy to verify that (i, T') for T eT; and ¢ =1, 2, ..., n has the
following properties:

(80)  §(n, Tn) is discrete,

(61) §(¢, T) is diserete in |JF(, T)
: U UgeE, ),

Te%i

62) U UF@E,T) is a closed subset of U J ugy, T

Ts‘It j=1Te%;
(63) U U USE, T) v UK(D) =

i=1Te%y
(64) if F(K)e§F(i,T), then there exists a o-diserete open family
U(F(K)) such that UYU(FE)D F(K) and SU(F(K)) < 61
The family &,(@) consists of open subsets of M;X...X My, hence
the proof will be finished if we define for i=1,2,..,% a o-discrete

open family B; such that 68;< 6 and JBiD \J U%(@ T).

From (60) and collectionwise normality of X 113 follows that there
exists B, which satisfies both required properties.
Suppose we have already defined B; for j<Ci. Let

= ( U U6, IHINU K@) v UBa v oo v U Bya) -

It is eagy to vcrlfy that Z is elosed (see (63) and (62)), therefore from the
normality of X and (61) it follows that there exists & family 3= {Z(T
TeX,} of closed sets such that

(65) Z(T) C UF (i, TN Rol@) v

and

(66) U3=2%.

and cOnsists of sets open in

(UBnw.v U Biyy)
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From (61), (64), collectionwise normality of X, and (65) it follows
that there exists an open o-discrete family B(T) for T €Ly such that
6B(T) < o and | B(T)D Z(T).

Applying (66) we see that Bi= Bpu v By (D) uTL;)I%(T)
has the required properties, and the proof is finished. '

Let us notice that using similar arguments we can prove that if X is
hereditarily collectionwise normal, then X is hereditarily paracompact.

(3.20) COROLLARY. Let us assume that 2% < 28, If X is a hereditarily
Lindelsf GO,-space for i=1,2,..,n then the following conditions are
equivalent:

(a) the Cartesian product Xy X ... X Xqis normal (hereditarily normal),

(b) the COartesian product XX ... X Xn has the Lindeldf property (is
hereditarily Lindeldf).

Proof. The implication (b) = (a) is obvious; to prove Corollary (3.20)
it is sufficient to show that (a)= (b). .

Let us notice that if U is an open subset of X; and U~ X? # @
then Inty,U; # @, hence from the inequalities w(Ms) < %y, where w{M)
denotes the weight of M;, and |MNME| < &, it follows that Xy X ... X Xn
is separable as a finite product of separable spaces. By the standard
arguments (see [4], Example 1.52 or 2.1.2) we can prove that X is col-
lectionwise normal.

(8.21) ComroLLARY. If X; is a hereditarily Lindeldf GO,-space for
i=1,2,..,n then the equivalence of the conditions (a) and (b) of Corol-
lary (3.20) s independent of the usual axioms of set theory.

The proof follows from Corollary (3.20) and from the fact that it is -

consistent with the usual axioms of set theory to assume that there exists
a hereditarily Lindelof GO,-space X such that the Cartesian product
X x X is hereditarily normal but not paracompact (see [11]).

(8.22) COROLLARY. Let us assume that 2% < 28, If X, is a Lindelof
GO,-space for i=1,2, .., n then following conditions are equivalent:

(a) the Cartesian product Xy X ... X Xy is normal (hereditarily normal),

(b) the Cartesian product X, X ... X Xy is paracompact (hereditarily
paracompact). '

Proof. The implication (b) = (a) is obvious; to prove Corollary (3.22)
it is sufficient to show that (a)=- (b).

‘We shall prove the implication (a) = (b) by induction on n. For n =1
the implication is trivial. Let us assume that the implication (a)=> (b) holds
if n=k—1. Let U be an arbitrary open covering of X = X, X .. X Xj.
From Corollaries (2.3) and (3.20) it follows that there exists a countable
open family $B such that 68 < 6 and |JBD X¥x...x X2

Let H be an open set such that X?x .. x X¢CHCHC D and
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let Z = X\H. From normality of X it follows that there exist open sub-

sets Py, ..., Px of Z such that P;C @, where Gy = {eZ: m; e I X%,
k

and | JP;= Z. From the inductive assumption it follows that there

=1 _
exists a o-discrete open covering U; of P; such that 6W; << oW for

k
j=1,2,..,k The family $=V v J{UAP;~(X\H): Uelly} is an
j=1

open, o-diserete refinement of U. The proof of the part in brackets is
similar.

. Michael showed that if 2% = &, then for n =1, 2, ..., theye exists
a GO,-space X (n) such that the Cartesian product (X (n))" is Lindelof,
while (X (n))*+* is paracompact but not Lindelof (see [10], Example 1.4).
Hence we cannot replace (b) of Corollary (3.22) by (b) of Corollary (3.20).

S. Willard proved that if a space X of the form X = ¥ X Z is para-
compact, where Y is separable and Z has the Lindelof property, then
X is a Lindel6f space (see [14]).

From this fact and Corollary (3.22) it follows that in the part of
Corollaries (3.20) and (3.21) out of the brackets it is sufficient to assume
that X,, X3, .., Xy, ave hereditarily Lindelof spaces and X, is a Linde-
16f space.

(3.23) COROLLARY. If X is @ GO,-space for i=1,2, .., n then the
equivalence of (a) and (b) from Corollary (8.22) s independent of the usual
axioms of set theory.

T am thankful to Professor R. Engelking for his help and suggestions
in the preparation of this paper.

Added in proof. The notion of finite subparacompact Bspaces was introduced by
T. R. Kramer under the name of subnormal spaces (see T, R. Kramer, A note on
countably subparacompact spaces, Pacific J. Math. (1973), pp. 209-213.
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An insertion theorem for real functions
by
J. M. Boyte and E. P. Lane (Boone, North Carolina)

Abstract. Charactorizations of countably paracompact spaces and of normal count-
ably paracompact spaces in terms of insertion of extended real-valued semi-continuous
and confinuous functions are given.

Dowker [L] and Katstov [2] proved that a topological space X is
normal and countably paracompact if and only if for real-valued fune-
tions fand g defined on X such that fis lower semi-continuous and g is upper
semi-continuous and g(z) < f(2) for each there exists a continuous real-
valued function 7 on X such that g(z) << h(z) < f () for each x. Mack [3]
proved that a space is countably paracompact if and only if for each lower
semi-continuous function g on X such that g(@) > 0 for each x there exist
a lower semi-continuous function 7 and an upper semi-continuous funetion
w such that 0 < I(z) < u(#) < g(@) for each 2. This note generalizes these
results by using extended real-valued functions.

The abbreviations lsc (resp. usc) for lower semi-continuous (resp.
upper semi-continuous) are uged, and we write g < f (resp. g < f) in case
g(@) < f(w) (vesp. g(w)< f(=)) for each z. Denote by L (vesp. U) the set
of extended real-valued Isc (resp. use) functions defined on X. If f and ¢
are extended real-valued functions defined on X, we write g < f in case
g<fand if either g(») or f(z) is a real number, then g(z) < f(2)-

Tumorum. The following are equivalent:

(@) The space X 1is normal and countably paracompact.

(B) If feL, ge U, and g <f, then there emist functions f e L and
g e U such that g < <g <f

(y) The space X is normal, and if feL, ge U and g < f, then there
exists o function h e L such that ¢ < h < f.

() If feL, ge U, and g < f, then there emists an extended real-valued
continuous fumction b on X such that g < b <f.

Proof. Observe that (3) implies (B) trivially, The proof that (®)
implies (o) is established as in the proof of Theorem 4 of [1]. In order to
see that (y) implies (3), let feL, g< U, and g < f. By (y) there is a func-


GUEST




