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Hence we get by (13), (14), (15) and (18)

¥ —
logh > 4 (o) 7L(20)‘
Yo— %

hlag—hez) _ By —h(z) | 1
Yo— % u

3

Ly— 2o

This contradicts the convexity of k().
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Extensions of metrization theorems to
higher cardinality

by
R. E. Hodel (Durham, North Carclina)

Abstract. Several wellknown metrization theorems, stated in terms of the
cardmal N, are extended to higher cardinals.

1. Introduction. In recent years significant progress has been made
in the area of cardinal functions. (A particularly notable achievement
is Arhangel’skil's solution [2] to Alexandroff’s problem. See Comfort’s
paper [8] for an excellent survey of this and other results on cardinal
invariants. The fundamental tract on cardinal functions is Jusész [13].)
And, in spite of the brilliance of the Nagata—Smirnov—Bing solution of
the “general metrization problem” in the early 1950’s, metrization theory
continues to be an active area of research. (See [12] for a survey of metriz-
ation theorems from 1950 to 1972.) In this paper we explore the connection
between these two exciting areas of general topology. Specifically, we:
consider the problem of generalizing metrization theorems so that they
can be stated in terms of cardinal functions. (For a result of this type,
see [11].)

In § 2 we introduce a cardinal function, called the metrizability degree,
which reflects in some sense how metrizable a space is. The definition.
is based on a metrization theorem due to Bing [5]. We then give several
characterizations of the metrizability degree for the class of regular spaces.
These characterizations are based on other well-known metrization
theorems. In § 3 we note the relationship between metrizability degree,.
uniform weight, and w,-metrizability. Tinally, in § 4 we extend a recent.
metrization theorem of Nagata [25] to higher cardinality.

Throughout this paper m and n denote cardinal numbers, o, 8, 0, 7,
and g denote ordinal numbers, and |4| denotes the cardinality of a set A.
The set of positive integers is denoted by N, and j and & denote glemegts.
of N. The reader is referred to p. 49 of Nagata’s book [27] for & discussion.
of the various operations with covers used in this paper. (Note, however,
that we use “st” instead of “§” when discussing the star of a set with
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respect to a cover.) We let w, L, d, ¢, x, and y denote the following cardinal
functions: weight, Lindelof degree, density, cellularity, character, and
pseudo-character. (For definitions, see Juhész [13].) Unless otherwise
stated, no separation axioms are assumed. However, paracompact and
compact spaces are always Hausdorff and p-spaces are always Tycho-
noff spaces.

2. Metrizability degree. The metrizability degree of a space X, denoted
m(X), is 8, -m, where m is the smallest cardinal such that there is a base
for X which is the union of m discrete collections. It is clear that m(X)
< w(X) for any space X, and that a regular 7 space X is metrizable if
and only if m(X)=¥,. (See [5].) Moreover, the following basie result
is easily proved.

TEEOREM 2.1. For any space X, w(X)=m(X)-d(X) = m(X)-¢(X)
= m(X)-L{X).

Next we give several characterizations of the metrizability degree
for the class of regular spaces. These characterizations are based on well-
known metrization theorems. First we establish the following result.

THEOREM 2.2. Let X be a regular space, let m be an infinite cm’cliqmi.
The following sixz conditions are equivalent.

B(m): X has a base which is the union of < m discrete collections;
i.e. m(X)<<m.
NS(m): X has a base which is the union of < m locally finite col-

lections. (See [26], [31].)

AS(m): X has a collection {Si: t in A} of open covers with |A| <m
such that for each point p in X and each neighborhood R of p, there is a
neighborhood V of p and some ¢ in A such that st(V, G;) CR. (See [4], [33].)

MM(m): X has a collection {S;: t in A} of open covers with |A| < m
such that for each point p in X, {st¥(p, §:): t in A} is o fundamental system
of neighborhoods of p. (See [19], [20].)

M(m): X has a collection {F:): tin A} of locally finite closed covers
with |A| < m such that for each point p in X, {st(p,T:): tin A} is a “base”
for p in the sense that given any neighborhood R of p, there is some t in A
such that st(p, ;) CR. (See [21].)

N(m): X has a collection {Fy: ¢ in A} of closure preserving closed
covers with |A] <m such that for each point p in X, {st(p, Fe): t in A}
8 a “base” for p. (See [24].)

Proof. We shall show that B(m)= NS(m)= AS (m) = MM(m)
= P:(m) = M(m) = N(m) = AS(m). Note that the implications B(mt)
= N8(m) and M(m) = N(m) are obvious.

NS(Tm) = AS(m): The technique used here is a combination of ideas
due to Nagata (see p. 195 of [27]) and Morita (see p. 35 of [23]). Let $ be
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a base for X such that $ = J {B:: ¢ in A}, where each H; is a locally
finite collection and |4| < m. We may assume that X ¢ $; for all ¢ in 4.
For p in X, t in A4 let

Vi(p)= (N {B: peBeB}) ~(X— J{B: BeBs,p¢ B}).
Clearly Vi{p) is an open set and p e Vy(p). For s,% in 4 let
Gy = {Vs(2) nV(p): p e X}.

Then {8s: §,% in A} is the desired collection of open covers of X. For,
let pe X, let B be a neighborhood of p. Choose ¢ in 4 and B in $; such
that p e BC R, and then choose s in A and U in $; such that pe U
C UCB. Then st(Vs(p),Ss) CR. For, let Vi(p) ~ [Vs(g) ~ Ve(g)] # O,
and let us show that [Vs(g) ~ Vi(g)] C K. First note that ge B. (If ¢¢ B,
then q¢ U so Vi) CX—U. But Vip)C U, so Vi(p) ~Vilg)=0,
a contradiction.) Sinee g« B, Vi) C B and so [Vi(q) ~ Vi(g)]1C R.
AS(m) = MM (m): Let {S;: ¢ in A} be a collection of open covers
of X with |A|<m satisfying the condition stated for AS(m). For s,1?
in A let 365 = GsAS:. Then {Js: s,t in 4} is a collection of open covers
of X such that for any p in X, {st¥(p, %s): 5,7 in A} is a fundamental
system of neighborhoods of p. Indeed, given p in X and a neighborhood R
of p, choose ¢ in 4 and a neighborhood V of p such that s6(V, S) CR,
and then choose s in A such that st(p,Ss) CV. Then st*(p, L) C .
MM (m) = B(m): Let {S;: ¢ in A} be a collection of open covers of X
with | 4| < m such that for each p in X, {st%(p,%:): t in 4} is a funda-
mental system of neighborhoods of p. We may assume thab for each p
in X, {st*(p, Ss): ¢ in A} is » fundamental system of neighborhoods of p.
(If necessary, one could replace the covers {8;: t in A} with the covers
{8sAS:: 5,1 in A}.) To prove that X satisfies B(m), it suffices to show that
every open cover of X has an open refinement which is the union of <m
discrete collections. (One then obtains a base for X which is the union
of < m discrete collections in the same way that Bing [5] shows that
every strongly sereenable developable space has a o-discrete base.) So let
U= {U,: 0 < a<<n} be an arbitrary open cover of X. For a<< 1 and 1
in A let Fy={p in X: p¢J Uy st¥p,8) C U, let Wy={{¢ in
<a
Gi: @ NI, # @), let Wy = {W,i: 0 < a< u}, and let W= {Ws: t.in A},
Tt is elear that W is an open refinement of Us. To see that W; is discrete,
let p ¢ X. Choose & in §; such that p e @. Then @ is a neighborhood of p
which intersects at most one element of W:. .
B (m) = M(m): Let B be a base for X such that $ = | {$s: t in 4},
where each $; is discrete and |4| <m. For eaeh' t. in A let ¥y
= {B: B in %} v {(X— U $:)}. Clearly 7, is a locally finite closed cover
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of X, and it is easy to check that for each p in X, {st(p, Fs): tin 4} is
a “base” for p. ‘

N(m) = AS(m): Let {F:: tin A} be a collection of closure preserving
closed covers of X with |4! < m such that for each p in X, {st(p, F¢): ¢
in 4} is a “base” for p. For each p in X, ¢in A let

Vip)=X— U {FeFp p¢F}.

Note that Vi(p) is an open set containing p. Moreover, the following
three facts are easy to verify: .

(1) if Vdp) ~Velg) # O, then g est(p, Fr);

(2) Vi(p) C st(p, Fo);

(3) if geViyp), then Vi(g) CVi(p).
‘ For s,tin A let S = {Vs(p) » Vi(p): p in X}. Then {Ss: §,¢ in 4}
is the desired collection of open covers of X. For, let p ¢ X and let B be
a neighborhood of p. Choose t in A such that st(p, ) CR, and then
choose s in A such that st(p, Fs) C Vi(p). Then Str(Vs(p),—ggt) C R. For,
let Ve(p) ~ [Vs(g) n V()] # 9, and let us show that [Vs(g) » V_,(g)j CR.
Now Vi(p) ~ Vs(q) # @, and 50 by (1) ¢ est(p, Fs). Hence g e Vi(p), and
s0 by (3) Vs(g) CVe(p). By (2), Vi(p) Cst(p, F1), and so Vi(q) Cst(p, F).
Hence [Vi(g) ~ Vi{g)]C R. o

As a consequence of Theorem 2.2 we have the following characteri-
zations of the metrizability degree.

TasoreM 2.3. Let X be a regular space. Then
m(X) = Ny-min{m: X satisfies NS(m)}
= No-min{m: X satisfies AS(m)}
= #-min{m: X satisfies MM (m)}
= Ny-min{m: X satisfies M(m)}
= N&-min{m: X satisfies N(m)}.

?. Un.iform weight and ,-metrizabilify, In this section we note the
rel.a,tlonshlp between metrizability degree, uniform weight, and w,- metriz-
ability. (Recall that the uniform weight of a completely ;*egular gpa.ee X
denoted .u (X), is 8¢-m, where m is the smallest cardinal which arises "IJS’
the cardinality of a base for a uniformity which is compatible wighhtltle
topology of X.) In [22] (see also [30]), Mréwka essentially proves the
following two results for a completely regular space X: (1) if u(X)<m
ﬂle].l X pas a base which is the union of < m locally finite collec’c;)ns3
(2) if X is normal and has a base which is the union of < m locally finit(;

collections, then % (X) < §N,'m. As a con
< . sequence of Th
two results can be restated as follows. corem 2.2, these
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THEOREM 3.1 (Mréwka). If X is completely regular, then m(X) < u(X).
If X s completely regular and normal, then m(X)= u(X).

Remark. H. M. Shaerf [29] has proved that w(X) < u(X)-¢(X) for
any completely regular space X. This theorem can be obtained from
Theorem 3.1 as follows: w(X) < m(X)-¢(X) < u(X)-e(X).

Tn [30] Shu-tang proves that a regular T, space X is o, -metrizable
it and only if it is w,-additive and has a base which is the union of <%,
locally finite collections. In light of Theorem 2.2, this result can be restated
as follows.

TeEoREM 3.2 (Shu-tang). Let X be a regular T, space. Then X 1is
w,-metrizable if and only if X is w,-additive and m(X) <N,

4. Nagata’s theorem. In 1970 Nagata [25] proved .that every para-
compact p-space with a point-countable separating open cover is metriz-
able. (Relevant definitions will be stated below.) This theorem has an
interesting history. In 1962 Mikdenko [18] proved that every compact
space with a point-countable base has a countable base, and in 1968
Filippov [91 generalized this result by proving thab every paracompact
p-space with a point-countable base is metrizable. Parallel to these
regults, Sneider [32], in 1945, proved that every compact space with
a G,-diagonal has a countable base, and around 1965 Borges [6] and
Okuyama [28] independently generalized this result by proving that
every paracompact p-space with a @,-diagonal is metrizable. Nagata’s
theorem generalizes the results of Filippov and Borges-Okuyama. In
summary, Nagata’s theorem, together with the results by Sneider, Mi-
s8enko, Borges-Okuyama, and Filippov which proceed it, represent a high-
light in metrization theory.

In this section we extend Nagata’s theorem to higher cardinality.
We begin with some definitions.

Let X Dbe a set and let G be & cover of X. The cover § is said to be
separating it given distinct points p and ¢ in X, there is sorme ¢ in G such
that p « @, ¢ ¢ G. For p in X, the order of p with respect 10 G, denoted
ord(p, §), is the cardinality of the set {¢ in §: p in G}. Now suppose X is
a T, topological space. Let m be the smallest cardinal such that X has
a separating open cover § with ord(p,8) <m for all p in X. (Since X
is T, it is easy to see that m exists and m < m(X).) The point separating
weight of X, denoted psw(X), i ¥ 1. Note that for a T, space X, psw(X)
=¥, if and only if X has a point-countable separating open cover.

Next we introduce a cardinal function which extends the notion
of paracompactness to higher cardinality. Of the numerous characteri-
zations of paracompactness upon which the definition could be based
(see, e.g., [15], [16], [17]), the following seerns most natural. The para-
compactness degree of a space X, denoted pa(X), ig 8-, Where m is the
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smallest cardinal such that every open cover of X has an open refinement
which is the union of < m locally finite collections. Note that pa(X)
< L(X), pa(X) < m(X), and that a regular T, space X is paracompact
if and only if pa(X)= ;. (See (15].)

In [11] the concept of a p-space [3] was extended to higher eardinals
as follows. A collection {G;: t in A} of open covers of a space X is a pluming
for X if the following holds: if p e Gz e @ for all ¢ in A, then (a) C(p)
= G is compact; (b) { N G: F a finite subset of A} is a “base” for

€ leF -
c (t p/; in the sense that given any open set B containing C(p), there is

a finite subset P of A such that () & C R. See [11] for a proof that every
teF

regular space has a pluming. For a regular space X, the pluming degree

of X, denoted p(X), is #-m, where m is the smallest cardinal such that X

has a pluming {8: ¢ in 4} with |4| = m. It follows from Theorem 2.2

that p(X) < m(X) for any regular T space X. (Use AS(m).) )

; The definition of a pluming for X is based on an internal characteri-
zation of p-spaces given by Burke [7]. From Burke’s theorem it follows
that a Tychonoff space X is a p-space if and only if p (X) =x,. Moreover,
Burke's technique can be used to prove the following result. (Note that (2) is
Arhangel’ski’s original definition of a p-space extended to higher cardinals.)

THEOREM 4.1. The following are equivalent for a Tychonoff space X
and an infinite cardinal m.

(1) X has a pluming {Ss: t in A} with |A] < m; d.e., p(X) <m.

(2) In the Sione-Cech compactification §(X) of X there is a collection
{G:: t in A} of open covers of X with |A| <m such that for each p in X,
trlst(p,gt)gX. '

The following fact about plumings will be used in the proof of the
main theorem. :

Prorosrrion 4.2, Let X be o topological space, let {Ss: ¢ in A} be
@ pluming for X, let p « X, for each t in A let p e H; C G4 ¢ S;,y and let 0*(p)

=iq H;. Then C*(p) is compact and {(\ H;: F a finite subset of A} is
€ tel

a “base” for C*(p). '
Proof. Let ¢(p) = (M G;. Recall that ((p) is compact and {(N) Gs: I
ted

a finite subset of 4} is a “base” for ¢(p). Since 0*(p) is closed aalledp 0*(p)
C C(p), it follows that C*(p) is compact. Let R be an open seb such that
C*(p) C R. Now 7% = ((p)—R is compact and {X— H;: t in A} covers Z
50 there is a finite subset F, of A such that {X— A t ¢ F,} covers Z.
Let W= R.v ({J(X—H,)). Then W is open and C(p)C W so there is

L. teFy _ )
a finite subset F, of 4 such that N G:CW. Let ¥ =FyuF,. Then

mEtCR teF,
ieF -
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COROLLARY 4.3. Let X be a regular Ty space. Then y(X) < »(X)-p(X).
Proof. Let »(X) p(X) = m. Let {S,: 0 < a << m} be a pluming for X.
(Repeatedly count a cover if necessary.) Fix p in X, and leb
(W 0<<ea< nl} be a collection of open sets such that p e W, for all
a<m and M W, = {p}. For each o< m choose &, in §, such that p e &,

a<m

and let H, = &, ~ W,. By Proposition 4.2, ((p)= " H,= {p} is com-

pact and { N H,: F Cm, F finite} is a “base” for p. E;;us {NH;:FCm,
aell aeF -

F finite} is a fundamental system of neighborhoods of p of cardinality <m.
Finally, we need a set-theoretic result due to Mi¥éenko [18]. This

result was abstracted by Filippov [9] from Migéenko’s proof that every

compact space with a point-countable base has'a countable bhase. It plays

an important role in the proofs of the above mentioned metrization

theorems of Filippov and Nagata.

Mii¢enkro’s LEMMA. Let X be a set, let m be an infinite cardinal,
et § be a collection of subsets of X such that ord(p, 8) < m for all p in X,
and let H be a subset of X. Then the cardinality of the set of all finite minimal
covers of H by elements of 8 does not exceed m. :

TEEOREM 4.4. Let X be a regular T, space. Then m(X)=p(X)-pa(X)-
“psw(X). ‘

Prootf. COlearly p(X)-pa(X) psw(X)< m(X). Suppose, then, that
p(X)-pa(X) psw(X) =m, and let us construct a base B for X which
is the union of < m locally finite collections. Let & (m) be all finite sub-
sets of m. Let $ be a separating open cover of X such that ord(p,8) <m
for all p in X. We may assume that X 8, and hence for any subset H
of X there is at least one finite minimal cover of H.by elements of §,
namely {X}. .

Let {§,: 0 < a< m} be a pluming for X (repeatedly eount a cover
if necessary), and for each a < let J€, be an open refinement of §, such
that J6, = U {(a, f): 0 < f < m}, where each %(a, f) is a locally finite
collection. Let I be all finite subsets of m x m, and for each y in I' let
*,= A {%(a, p): (a, ) ey} Note that K, is a locally finite open col-
lection in X. :

Observation. Let p e X. For each a<<m choose f, < mt %nd H,
in J(a, B,) such that p « H,. By Proposition 4.2, J(p) =aDm H, is com-
pact and {() H,: F in F(m)} is a “base” for C(p).

aEI" . . -
The construction of the required base for X is accomplished in

four steps. .
Step 1. X has a separating closed . cover which is the union of <m
locally finite collections. Fix p in I. For each K in X, let {8(y, K, 0):
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0 < o< m} be all finite minimal covers of K by ele_ments of 8 (use Mi-
$tenko’s lemma), and for each o< m let £(y, o) = {E—8: KeX,,8=0
or 8 e S(y, K, o)} Clearly £(y, o) is a locally finite closed collection in X.

Now let L= J{L(y,0): yel), 0<o<m} Then £ is the union
of < m locally finite closed collections, and so to complete the proof it
remaing to show £ separating. Let p and ¢ be distinct points of X. For
each a< m choose f,<<mt and H, in #(a, f,) such that p e H,, and let
O(p)= (N H,. Choose 8, in § such that qe Sy, ¢ 8, and then let §,

a<<m
= {8, 81, --., Sk} be a finite subcollection of § which covers 0(p) such
k

that g¢ U S;. Choose F in F(m) such that () H,CUS§, let y

F=1 aell .

= {(a, B,): ain F}, and let K = (") H,. Note that K ¢ X,. Now §, covers K,
. ael .

so some finite minimal subeollection of §, covers K, say S(y, K,o). If

¢¢ K, then K is an element of £ which contains p and not ¢. Assume,
then, that ge K. Then §,¢8(y, K, o), and so K— 4§, is an element of
£(y, o) which contains » and not g.

Step 2. Every open subset of X is the unton of << m closed sets. Clearly
it suffices to show that X has a net N° which is the union of < m locally
finite closed collections. (Recall that N is a net for X if given any point p
in X and any neighborhood R of p, there is some N in N such that

-p e NCR. See [1].) Let £ be a separating closed cover of X such that
L= 1J{L,: 0 <o<m}, where each £, is a locally finite collection. We
may assume that each £, iz closed under finite intersections. For each F
in F(m) let We= A {£,: ¢ in P}, Note that Wy is a locally finite closed
collection in X. For y in I', ¥ in F(m) let N(y,F)={K ~ W: EeX,,
W =X or We W}, and let N’ = | {N(y, F): y in I, F in F (m)}. Clearly
N is the union of < m loeally finite closed collections. To see that N is
a net, let p be a point in X, let B be an open neighborhood of p. For each
a<m choose f,<<m and H, in #(a, p,) such that p « H,, and let C(p)
=) H,. Let Z= ((p)—R, and assume that Z # @. (The case Z =@

a<m
is eany.) Now Z is compact, £ is a separating closed cover, and each €, is
closed under finite intersections, so there exists F in & (m) and L, in £,
for each o in F such that pe (L, and ZC |J (X—I,) = V. Note that

gel ol
C,ﬁpl’,c,: W belongs to Wgy. Now O(p)CR UV, so there exists F* in
F(m) such that M H,CROUV. Let y = {(a,f,): « in F*} and let K
aek*

=() H,. Then KeX, and so N =K~ W is an element of Ny, F)

aeF™*

such that p e NCR.

Ste-p.3. There is an open cover W of X which is the union of <m
locally finite open collection such that if p and q are any two distinct points
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of X, then there ewists W im W such that p ¢ W, g¢ W. Fix y in I'. For each K
in %, let {8(v, K,o0): 0 <o<m}be all finite minimal eovers of K by
clements of 8 (use Mi¥denko’s lemma). For each o< m let C(y, o)
={KEn8: Kk, Se8(y, K,0)}, and note that £(y, o) is a point finite
open. collection in X. For each k in N let W(y, o, k) = {U: U is the inter-
gection of exactly k distinct elements of L(y, o)}, and let V(y,o,%)
= W(y, o, k). Now V{(y, 0, k) is an open set so by Step 2, V(y, o, k)
= U {D(y, o, k,1): 0< v<m}, where each D(y, 0, k, 1) is a closed set.
Let VU(y,o,k,7)=W(y,0,k) v {X—D(y,o,k, 1)}, Now VU(y,o,k,7)
is an open cover of X, so there is an open cover W(y, g, k, ) of X such
that the closure of each element of W(y,o, %, ) is contained in some
element of V(y,o,%,7) and W(y,o,k,v)= U {W(y,0,k,7,0): 0< g
< m}, where each W(y, o, %, 7, ¢) is a locally finite collection.

Now let W= J{W(y,o,k,7,0): yel',o,7,0em, keN}. Clearly

9 is an open collection in X which is the union of < m locally finite col-

lections. Let p and g be distinet points of X. For each a < mt pick g, <m
and H, in J(a, p,) such that p < H,, and let 0(p)=1) H,. Choose §,

a<m
in 8 such that p € 8y, g¢ Sy, and let Sy= {8, 8;, ..., Sx} be a finite subeollec-
: %
tion of § which covers O such that p ¢ |J §;. Choose F in & (m) such that
i =1
N H,CUS8;. Let y = {(a, f): « in F}, let K= Q‘H‘,, and note that

=0 ag, .
aléFe %, . yLet $, be a finite minimal subcollection of 8, which covers K,

and note that S, ¢ §;. Now 8, = 8(y, K, o) for some o< m, and so KnS§,
is an element of £(y, ) which contains p and not g. Now let Ly ey L

k
be the distinet elements of £(y, o) which contain p, and let U= ple.

Then p € U, g¢ U, and U is the only element of WU(y, o, k) which con-
tains p. Now p e V(y, 0, k), s0p e D(y,0,F, 7) for some 7 << m. Thus U is
the only element of VU (y, ¢, %, 7) which contains p. Finally, there emsi?s
e<mand Win W(y,o,¥k,7,e) such that p e W.Now WC U, so W is
an element of W such that pe W, ¢¢ W.

Step 4. X has a base which is the union of < m locally finite gollectioazs.
Let W be an open cover of X having the properties stated in Step 3.

Thus, W= {J {W,: 0 << o< m), where each W, is a locally finite open

collection. We may assume each W, is closed under ‘finite in'tersections.
Tor each I in & (m) let Vp = A {W,: o in F}. For y in I, F in F (m) let
Bly, )= (K ~V: Kek,, V=21 or VeUg} and let

P={{By,F): yeI’,Fs.T‘(m)}.

Clearly  is the union of < m locally finite collections. ,TO see that B is
a basé, let p be a point of X and let R be an open neighborhood of p.
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For each a << 1it choose B, <mi and H, in &(a, f,) such that p e H,, and
let 0(p)= " H,. Let Z= O(p)— R,and assume Z #@. (The case Z = ¢

is easy.) Tfe?l there exists F in & (m), W, in W, for each o in 7, and an
open set U such that pe N\ W,=V, ZCU, and U~V =@. Choose

aeF

F* in F(m) such that N\ H,CRU U, let »= {(a, f,): e F*}, and let
aek* .

K=\ H, Then B= K ~7V is an element of $(y, I') such that p ¢ B CR.

aeF*

COROLLARY 4.5 (Hodel [11]). Let X be a regular T, space. Then w(X)
= L(X) p(X) psw(X).

CoROLLARY 4.6 (Nagata [25]). Let X be a regular T, space. Then X is
metrizable if and only if it is o paracompact p-space with & point-countable
separating open cover.

CororLLARY 4.7 (Filippov [9]). Let m be an infinite cardinal, let X be

a paracompact p-space having a base B such that ord(p, B) < m Sor all p
in X. Then m(X) < m.
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