Note on the existence of convex iteration groups
by
A. Smajdor (Katowice)

Abstract. Let f be a real funetion fulfilling the following conditions:
(H) f(w) is convex, differentiable and strictly increasing in an interval (a, b),
—0Ka<b< +oo, a<flzx)<2 in (@, ), f(z)> 0 and lim f'(z) = & 5 0.

Za+
If a function f fulfis the hypothesis (H), then there exists the fanction
3’3
h(z) = lim f@)—-a
) u->0 u
where {f*} is the principal iteration group of I
TuworeM. Let a function f fulfil hypothesis (H). Then I has a convex iteration group

if and only if the function h is conves in (a, b).

In this paper we give a certain condition for the existence of the
convex iteration group of a function f. (The definition of a convex itexr-
ation group may be found in [9].) :

Let f be a real funetion fulfilling the following conditions:

(H) f() is gonvex, differentiable and strictly increasing in an interval
(a,b),—co<a<b<\:—}-oo,a<f(w)<min(a,b), g

(1) fl@) >0

and

(2) lim f'(@) =8 #0.
T4

Let us note that the differentiability condition is not restrictive,
for, as has been proved in [9], if a function f fulfils the remaining con-
‘ditions of (H) and has a convex iteration group, then it must be differ-
entiable in (a, b).

Conditions (H) imply that, in the case 0 < s< 1, there exists:the
-prineipal solution o of the Schroder equation

(3) o[f(z)] = so ().
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This solution is given by the formula

fra—a

o (®) =iir£1°fn(mo)_a 4> —o,
or
ol =iy 0=

where @, ¢ (a, b) is fixed, and o(x) is a strietly increasing and convex
function in (@, b) for a >—co and strictly decreasing and concave in
(a, D) for a = —oo (cf. [6] and [71).

Similarly, if s = 1 (then necessarily a = — o), there exists the prinei-
pal solution « of the Abel equation

(4) a[f()] = a(®)+1.
This solution is given by the formula

i @) — ")
= lm ——T

alo) = I g — ey

where w, € (a, b) is fixed, and a(z) is a strictly decreasing and concave
function (cf. [5]).

We shall prove that o resp. a is differentiable in (a, b). We carry out
the proof for o; the proof for a is quite analogous.

The left derivative oj(@) and the right derivative o (®) of o(x) are
monotonie solutions of the functional equation

s
(6) y[f(@)]= f'—(Tx:SW(m)
in (&, b), where we have in view of (2)
lim s/f'(@)=1.
z->at+

Therefore (cf. [4]) there is a constant % such that

(a, B},

and, since o is differentiable almost everywhere in (a, b), the constant
must be 1. This proves the differentiability of ¢. Moreover, since o i8
strictly monotonic and the sign of ¢’ is constant, and o’ is monotonic
in {a,b), we must have

(8)

oy(®) = koy{w) in

@)+ 0 in (a,b);
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and a similar argument shows also that

(7) ad@#0 in (a,b).

The principal solution of the Schrider equation (3) resp. Abel equa-

tion (4) generates the principal iteration group {f* of f:
(8) F4@) = o7Ys*o(m)),
Tesp.

(9) @) = a™u+a(w)) .

It follows from the differentiability of o« resp. a and from condition (6)
resp. (7) that there exists the function (ef. [3])

(10)

17} Up)—
h(a) = — (@) y = lim D

’
u->0 %

where f* is given by (8) resp. (9).
The purpose of the present note is to prove the following

. {L"HEOREM. :Let @ function f fulfil lypothesis (H). Then f has a convex
iteration group if and only if the function h given by (10) is convex in (a, b).

Proi?f. 1. Necessity. Let the function f have a convex iteration
group {f*“#)}. As has been proved in [8], {f*(#)} must be then the prineipal
iteration group of f, ie., it must be given by formula (8) (if 0 < s < 1),

or (9) (if s =1). Hence, in view of (10),

h‘(m) = lim W ,
1/n

N—>00

and h as the limit of a sequence of convex functions, is eonvex.

2. Suﬂ::iaioney. We shall show that the principal iteration group
{ @)} of f is convex. For an indirect proof suppose that this is not true,
i.e., there exists a w > 0 such that f*(#) is not convex in (e, b). Then there

exist a constant k >1 and points @, 3., ze(a,b), o, <y # 2 # @y,
such that .

T(@)—F(2) - Ty —1(=2)

&— 2y Y—2

(1)

(ef. [2]). Since

FHa@)— 1) _ fULS @)= )] )= )

B—2 F(@)—(2) -z
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we obtain by (11)

fulz(mz)_fuﬂ(zz) - kuzfulz(y?)—fu/z(zz)
Yo%

)
Ly

where either @,= 1, Yy=11, o==%, O &= F(my), Ys= f"yy),

— 2
2y = [*(z). )
Continuing this procedure we arrive at a sequence

n
Uy = U 2 2~ %,
i=1
where ¢;= 0 or 1 (in particular, ¢, = 0), such that

R 2 T 1 e i )

2
(12) L 2n Yn—=2n

wn=fu"(m1) s Yn :fu’n(f'/l) ) ‘

The sequenee u, converges to the limif

o0
UYp = U 2 27%; ,
i=1

and since f%) is a continuous and strietly increasing function of u ([1], [9];
of. also formulae (8) and (9)), there exist the limits ‘

#n = f'™(%) .

2= lim on = (=)

N—>00

(13) @ = lim @, = f*(z,) ,
N0

Yo = lim yn = f“(yy) ,

Moreover, f*(z) is a strictly increasing function of », whence

(14) @y = f(2) < f(%) = %o
and-
(15), By=fm;) # f2) =2, Yo=F"(y) # f2) =2 .

Now we must distinguish two cases according to the wvalue of s.
If 0 <s <1, the iteration group f%=») is given by (8), whence

) —s

]
P Yn () o ()

e 9™y !

where

o0 (2)]— 070 (w)]

[T Tr |

- ©
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Since .0_1(00) is a concave funetion, o(s) >0 and 0 < s < 1, the sequence
(@) is decreasing. This sequence converges to the continuoms function

(0o (@)] = —r— == =D 2

1 h(m). 1
o'(®)  o(x) Ins’

The function % is continuous, since it is convex. Also all the functions y,(z)
are continuous. By Dini’s theorem the convergence of the sequence y, is
uniform on every compact subset of (a, b). Since the sequence (8™ —1)/27 ™
tends to a negative limit, we infer by (16) that the sequence

£

17) T

ig uniformly convergent on every compact subset of (a,b).
If s=1, then f*x) is given by (9), whence

F™Mo)—s o724 o (9)]— o Ya(a))
2=my 2~y )

Since «™* is concave, the above sequence is an increasing sequence of
continuous functions. This sequence tends to the continuous limit kh(z).
Therefore sequence (17) is uniformly convergent on every compact sub-
set of (a, D).

We have established the uniform convergence of sequence (17) on
compact subsets of (a,d), independently of the value of s. This implies that

2~y
. (@n)—
im L,
2-fy,
. (Yn)—
(18) C ),
N~+00 <
!11'.m Ji__z(ﬁ%biﬁ‘ = h(z) .
-0

Inequality (12) may be written as

/ 2“”'“("1)%)"‘“ [ f 2-ﬂu(z’n Y—2n
27y

Py 2
T (Yn)— Yn _ ")~
27 27 ™y

Yn—="n

B —1

2k

< k*

L\.f
3
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Hence we get by (13), (14), (15) and (18)

¥ —
logh > 4 (o) 7L(20)‘
Yo— %

hlag—hez) _ By —h(z) | 1
Yo— % u

3

Ly— 2o

This contradicts the convexity of k().
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Extensions of metrization theorems to
higher cardinality

by
R. E. Hodel (Durham, North Carclina)

Abstract. Several wellknown metrization theorems, stated in terms of the
cardmal N, are extended to higher cardinals.

1. Introduction. In recent years significant progress has been made
in the area of cardinal functions. (A particularly notable achievement
is Arhangel’skil's solution [2] to Alexandroff’s problem. See Comfort’s
paper [8] for an excellent survey of this and other results on cardinal
invariants. The fundamental tract on cardinal functions is Jusész [13].)
And, in spite of the brilliance of the Nagata—Smirnov—Bing solution of
the “general metrization problem” in the early 1950’s, metrization theory
continues to be an active area of research. (See [12] for a survey of metriz-
ation theorems from 1950 to 1972.) In this paper we explore the connection
between these two exciting areas of general topology. Specifically, we:
consider the problem of generalizing metrization theorems so that they
can be stated in terms of cardinal functions. (For a result of this type,
see [11].)

In § 2 we introduce a cardinal function, called the metrizability degree,
which reflects in some sense how metrizable a space is. The definition.
is based on a metrization theorem due to Bing [5]. We then give several
characterizations of the metrizability degree for the class of regular spaces.
These characterizations are based on other well-known metrization
theorems. In § 3 we note the relationship between metrizability degree,.
uniform weight, and w,-metrizability. Tinally, in § 4 we extend a recent.
metrization theorem of Nagata [25] to higher cardinality.

Throughout this paper m and n denote cardinal numbers, o, 8, 0, 7,
and g denote ordinal numbers, and |4| denotes the cardinality of a set A.
The set of positive integers is denoted by N, and j and & denote glemegts.
of N. The reader is referred to p. 49 of Nagata’s book [27] for & discussion.
of the various operations with covers used in this paper. (Note, however,
that we use “st” instead of “§” when discussing the star of a set with
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