

Аппроксимация полиедрами и факторизационные теоремы для ANR-бикомпактов

С. Богатый и Ю. М. Смирнов (Москва)

Абстракт. На случай LCⁿ-бикомпактов в несколько ослабленном виде распространяется теорема Фрейденталя [15] о представлении компакта в виде предела обратного спектара из полиедров той же размерности. Для того же случая усиливаются две теоремы Мардешича [7]: о представлении бикомпакта в виде предела обратного спектра из компактов той же размерности и о факторизации отображения бикомпакта по весу и размерности. Для отображений бикомпактов дается аналог теоремы Смейля [10] о сохранении свойства ANR при некоторых отображения компактов. Приводится спектральная характеристика для локазльно связных бикомпактор

Доказывается, что всякий бикомпакт X є LCⁿ (соотв., Cⁿ \cap LCⁿ) является пределом обратного спектра из полиедров (соотв., кубов) размерности $\leq 2 \dim X + 1$ (теорема 7). Это следует из того, что всякий такой бикомпакт Х является пределом обратного спектра из ANR (соотв., AR)-компактов размерности $\leq \dim X \leq n$ (теорема 5). Для этого мы доказываем следующий аналог факторизационной теоремы Мардешича [7]: если n-мерный бикомпакт X є LCⁿ (соотв., $\mathbb{C}^n \cap \mathbb{L}\mathbb{C}^n$), то для любого отображения (1) f: $X \to Y$ на компакт Y найдутся такой ANR (соотв., AR)-компакт Z размерности $\leq n$ и такие отображения $g: X \to Z$ и $h: Z \to Y$, что Z = gX и $f = h \circ g$ (Теорема 4). Эта теорема в свою очередь вытекает из следующего аналога факторизационной теоремы Смейла [10]: если f: X o Y — такое отображение бикомпакта X на компакт Y, что $f^{-1}y \in AC_X^n$ для всех $y \in Y$, то Y $\in LC^n$; причем если X $\in C^n$, то и Y є Cⁿ (теорема 2). Мы говорим здесь, что множество A пространства X аппроксимационно связно в размерности n и пишем A є AC_xⁿ, если для любой окрестности OA найдется такая окрестность UA, $UA \subset OA$, что всякое отображение $f: S^k \rightarrow UA$ при всяком $k \leq n$ гомотопно постоянному отображению в ОА (2).

REVE CONTRANSA / S

⁽¹⁾ Под пространствами мы всюду понимаем липпь хаусдорфовы топологические пространства, а под отображениями — непрерывные отображения.

^{(&}lt;sup>a</sup>) Как и почти все основные понятия теории щейпов свойство AC_X^n , введенное здесь, не зависит от вложения в объемлющее пространство $X \in AR$. Здесь этот факт не потребуется.

Кроме того получен и ряд других результатов, как нам кажется, представляющих некоторый интерес. Например, оказывается, что локально связные бикомпакты характеризуются тем, что они (и только они) являются пределами обратных спектров из локально связных компактов с монотонными проекциями "на" (теорема 6). Заметим еще, что не всякий бикомпакт является пределом обратного спектра из ANR-компактов той же размерности, — это показывает один пример Пасынкова [6]. В этой же работе приведена подробная история вопроса об аппроксимации бикомпактов полиедрами (от Фрейденталя до Пасынкова).

Для доказательства факторизационных теорем нам потребуются некоторые понятия и техника теории шейпов, которые можно найти в [4] и [9]. Естественно, изложение будет идти в обратном порядке.

§ 1. Характеристика шейповых ретрактов и сохранение локальной связности при отображениях.

Теорема 1. Пусть A замкнуто в ANR-бикомпакте X; тогда следующие условия эквивалентны:

a) А — абсолютный шейповый ретракт (ASR) в смысле Мардешича [9],

б) для всякой окрестности OA существует такая окрестность UA, $UA \subset OA$, которая стягивается по OA в точку,

в) А стягивается в точку по всякой своей окрестности,

г) любое отображение бикомпакта А в любой ANR-бикомпакт гомотопно постоянному отображению.

Доказательство. Покажем эквивалентность б) \Leftrightarrow в). Импликация б) \Rightarrow в) — очевидна. Пусть OA — произвольная окрестность (³). Существует такая гомотопия $H: A \times I \rightarrow OA$, что $H(a, 0) \equiv a$ н $H(a, 1) \equiv p \in OA$ для всех a из A. Рассмотрим в произведении $OA \times I$ замкнутое в нём множество $B = OA \times \{0\} \cup A \times I \cup OA \times \{1\}$ и на нём такое отображение $G: B \rightarrow OA$, что $G(x, 0) \equiv x, G(x, 1) \equiv p$ для всех x из OA и $G(a, t) \equiv = H(a, t)$ на $A \times I$. Оно — непрерывно. Так как X есть ANE (⁴), то и OA есть ANE. Поэтому отображение G можно продолжить на некоторую окрестность OB множества B в отображение $\widetilde{H}: OB \rightarrow OA$. В силу компактности отрезка I найдется такая окрестность UA, что $UA \times I \subset OB$. Гомотопия $\widetilde{H} | UA \times I$ стягивает окрестность UA в точку p по окрестности OA, что и тр. док.

Докажем импликацию в) \Rightarrow г). Пусть $f: A \rightarrow Y$ — отображение в ANRбикомпакт Y. Так как Y есть ANE, то существует продолжение $F: OA \rightarrow Y$ отображения f на некоторую окрестность OA. Так как тождество Id_A гомотопно постоянному отображению в окрестности OA, то и отображение f == $F \circ Id_A$ гомотопно постоянному отображению, что и тр. док.

(*) Т. е. Х есть абсолютный окрестностный экстензор, причем не только для класса всех бикомпактов, но и для класса всех нормальных пространств. Докажем импликацию г) \Rightarrow а). Пусть $\underline{A} = \{A_a, \varrho_{a\beta}, \Xi\}$ — произвольный ANB - спектр [9] такой, что $A = \lim \underline{A}$ (он существует — см. [9]). Так как A_a есть ANE - компакт для любого индекса a, то предельная проекция $\varrho_a: A \rightarrow A_a$ гомотопна постоянному отображению при любом a. Это можно записать так: $\mathrm{Id}_{A_a} \circ \varrho_a \simeq p \circ \varrho_a$, где $p: A_a \rightarrow p \in A_a$ — постоянное отображение. Согласно лемме 4 из [9] найдется такой индекс $\beta \ge a$, что Id_{Aa} $\circ \varrho_{a\beta} \simeq p \circ \varrho_{a\beta}$. Другими словами, проекция $\varrho_{a\beta}$ гомотопна постоянному отображению. Итак, выполнено условие теоремы 5 из [8]. Но теорема 4 из [8] утверждает, что тогда $A \in ASR$, что и тр. док.

Докажем имплинацию а) \Rightarrow в). Пусть OA — произвольная окрестность. Поместим X в тихоновский куб I^* и возьмем там окрестность UX, ретрагирующуюся на X: r: $UX \rightarrow X$. Пусть $UA = r^{-1}(OA)$. Ясно, что $X \cap UA = OA$ и $UA \subset UX$. Существует такие полиэдр P и тихоновский куб I^a , что $A \subset P \times I^a \subset UA$. Произведение $B = P \times I^a$ сеть ANR. Ясно, что $A \subset rB \subset r(UA) = OA$. Теперь к бикомпакту B применим лемму 3 из [9]: найдутся такой индекс a и такое отображение $f: A_a \rightarrow B$, что включение $i: A \rightarrow B$ гомотопно композиции $f \circ \varrho_a$. По теореме 5 из [8] найдется такой индекс $\beta \geqslant a$, что проекция $\varrho_{a\beta}$ гомотопна постоянному отображению. Итак, включение i гомотопно композиции $f \circ \varrho_{a\beta} \circ \varrho_{\beta}$. Так как $\varrho_{a\beta}$ гомотопно постоянному отображению то i гомотопно постоянному отображению в $B \subset UA$. Так как $i = r \circ i$, то i гомотопно постоянному отображению в $rB \subset OA$, что и тр. док. Теорема доказана.

Замечание 1. При выводе импликаций б) \Rightarrow в) \Rightarrow г) \Rightarrow а) мы не пользовались условием $X \in ANR$ (не нужна была и бикомпактность пространства X). Поэтому б) \Rightarrow а) при любом нормальном пространстве X лишь бы A было бикомпактию.

TEOPEMA 2. Ecnu f: $X \to Y$ — такое отображение бикомпакта X на компакт Y, что $f^{-1}y \in \Lambda C^n_X$ ⁽⁵⁾ для всех $y \in Y$, то $Y \in LC^n$; причем, если $X \in C^n$, то и $Y \in C^n$.

Эта теорема получается из первых двух утверждений теоремы 4 из [2], если откинуть требование метризуемости бикомпакта X, которое, как легко проверить, в доказательстве нигде не применяется. Первая часть теоремы 2 в точности совпадает с первым утверждением цитируемой теоремы 4. Вторая — непосредственно следует из второго (⁶), если заметить, что условие $X \in \mathbb{O}^n$ эквивалентню тому, что множество $[S^k, X]$ всех гомотопических классов отображений $\varphi: S^k \to X$ — тривиально при всех $k \leq n$.

1*

⁽³⁾ Можно считать, что OA имеет тип F_{σ} и поэтому — бинормально.

⁽⁵⁾ Смотри введение.

^(*) Отображение $f_{\#}: [P, X] \to [P, Y]$, порожденное отображением $f(\varphi: P \to X) = f \circ \varphi: P \to X$, является изаимно-однозначным отображением "на" для всякого полиедра P размерности $\leq n$.

Следствие 1. Если в предположениях теоремы 2 dim $Y \leq n$, то $Y \in ANR$ и найдется такое отображение g: $Y \rightarrow X$, что $f \circ g \simeq Id_Y$.

Действительно, так как Y — компакт (метризуемый), то из условий $Y \in LO^n$ и dim $Y \leq n$ вытекает, что $Y \in ANR$ [3]. Значит, найдется такой полиедр P размерности $\leq n$, что $Y \leq P$ [3]. Поэтому вторая часть следствия 1 непосредственно вытекает из третьего утверждения (7) цитированной теоремы 4 из [2], если положить Z = Y и взять класс отображения Id_Y из [Y, Y].

Спедствие 2. Если в предположениях теоремы $2 f^{-1}y \in ASR$ (8) для всех y из Y, X $\in ANR$ (cooms., AR) $u \dim Y < \infty$, то Y $\in ANR$ (cooms., AR).

В самом деле, по теореме 1 бикомпакты $f^{-1}y$ удовлетворяют условию б), из которого легко следует, что $f^{-1}y \in AC_X^n$ для всех n. Поэтому в силу теоремы 2 $y \in LC^n$ (соотв., $C^n \cap LC^n$) для всех n, даже если $X \in LC^\infty$ (соотв., $C^\infty \cap LC^\infty$). Отсюда вытекает, что $Y \in ANR$ (соотв. AR), так как dim $Y < \infty$ [3].

§ 2. Факторизационные теоремы для локально связных бикомнактов.

ТЕОРЕМА 3. Для любого отображения $f: X \to Y$ локально стягиваемого бикомпакта X (cooms. $X \in LO^n$, $n = 0, 1, 2, ..., \infty$) в бикомпакт Y бесконечного веса wY существуют бикомпакт Z размерности $\leq \dim X$ и веса $\leq wY$ и такие отображения $g: X \to Z$ и $h: Z \to Y$, что gX = Z, $f = h \circ g$ и $g^{-1}z \in ASR$ (cooms., $\in AC_X^n$) для всех $z \in Z$.

Доказательство. Проведем его сначала для первого утверждения следуя доказательству известной факторизационной теоремы Мардешича [7], данному впоследствии Архангельским [1]. Поэтому будем краткими. Пусть \mathfrak{B} — база открытых множеств бикомпакта Y, имеющая мощность wY. Пусть \mathfrak{B} — система всех конечных открытых покрытий бикомпакта Y, состоящих из элементов базы \mathfrak{B} . Пусть $\mathbb{C}^0 = \{f^{-1}\gamma | \ \gamma \in \mathfrak{B}\}$, где $f^{-1}\gamma =$ $= \{f^{-1}\Gamma | \ \Gamma \in \gamma\}$.

Теперь, начиная с С⁰ приведем следующее индукционное построение. Пусть С — произвольная система конечных открытых покрытий бикомнакта X. Сначала поставим в соответствие каждому покрытию γ из С покрытие ω_{v} , удовлетворяющее условию

(*) для каждого U из ω_{γ} найдется такое Γ в γ , что U стягивается по Γ в некоторую точку .

Для этого для каждой точки x выберем такое множество $\Gamma_x \epsilon \gamma$, что $x \epsilon \Gamma_x$. Так как X — локально стягиваемо, то существует такая окрестность U_x

(8) Т. е. f⁻¹y суть абсолютные щейцовые ретракты в смысле Мардещича [9].

точки x, что $U_x \subset \Gamma_x$ и U_x стягивается по Γ_x в точку x. Из покрытия $\{U_x\}$ (в силу бикомпактности пространства X) выберем конечное подпокрытие ω_{γ} . Легко видеть, что оно будет искомым.

Далее, для каждого конечного набора $s = \{\gamma_i\}$ покрытий γ_i из С выберем конечное открытое покрытие ω_s , звёздно вписанное в каждое из покрытий ω_{γ_i} (что можно сделать, так как X — паракомпактно). Можно считать, что кратность Ord ω_s покрытия ω_s не больше чем dim X + 1 (согласно определению размерности dim). Систему всех таких покрытий ω_s , где *s* пробегает множество всех конечных подсистем системы С, обозначим через С'. Легко видеть, что мощность системы С' не больше чем мощность системы С (если последняя — бесконечна) (⁹).

Чтобы покончить с конструкцией, полсжим $C^1 = (C^0)', C^2 = (C^1)', ..., C^{n+1} = (C^n)', ... Получим счётную последовательность систем мощности <math>wY$ (так как вес wY — бесконечен). Система $C^{\infty} = \bigcup_{n=1}^{\infty} C^n$ также имеет мощность wY.

Введем следующую эквивалентность: $x' \sim x$, если $x' \in \operatorname{St}_{\omega} x$ для всех покрытий $\omega \in \mathbb{C}^{\infty}$, где $\operatorname{St}_{\omega} x = \bigcup U | x \in U \in \omega$. Так же как и в [1] проверяется, что отношение \sim и в самом деле является эквивалентностью. Искомым бикомпактом Z является фактор-пространство $X | \sim$. Искомое отображение hставит в соответствие каждой точке x класс эквивалентности A_x , содержащий точку x, а искомое отображение g определяется формулой: $g\{A_x\} = fx$. Всё доказывается точно также, как и в [1] за исключением отсутствующего там свойства: $g^{-1}z \in ASR$ для всех z из Z.

Докажем это последнее. Согласно замечанию 1 мы можем воспользоваться условием б) из теоремы 1. Пусть OA_x — произвольная окрестность полного прообраза $g^{-1}z = A_x$ произвольной точки $z = \{A_x\}$ бикомпакта $Z = X/\sim$. Существует такое покрытие $\gamma \in \mathbb{C}^{\infty}$, что $\operatorname{St}_{\gamma} \infty \subset OA_x$. Так как $\gamma \in \mathbb{C}^n$ при некотором n, то найдется и покрытие ω_{γ} , удовлетворяющее условию (\mathfrak{X}). Согласно построению системы \mathbb{C}^{n+1} найдется еще одно покрытие $\omega \in \mathbb{C}^{n+1}$, которое звёздно вписано в ω_{γ} . Поэтому существует такое $U \in \omega_{\gamma}$, что $\operatorname{St}_{\omega} x \subset U$. Так как $A_x \subset \operatorname{St}_{\omega} x$, то $A_x \subset U$. Покажем, что окрестность $UA_x = U$ стягивается по OA_x в точку. Действительно, согласно оперелению покрытия ω_{γ} существует такое $\Gamma \in \gamma$, что $U \subset \Gamma$ и U стягивается в некоторую точку по Γ . Но $x \in \operatorname{St}_{\omega} x \subset U \subset \Gamma$ и поэтому $\Gamma \subset \operatorname{St}_{\gamma} x \subset OA_x$. Значит, мы нашли окрестность $UA_x = U$, которая стягивается по OA_x в точку. Этим доказано, что для каждого множества $A_x = g^{-1}x, x \in Z$, выполнено условие б) теоремы 1. Значит, согласно замечанию 1, каждое такое множество $A_x \in \operatorname{ASR}$. Первая часть теоремы доказана.

⁽⁷⁾ Отображение $f_{\#}: [Z, X] \to [Z, Y]$ является отображением "на" для всякого такого компакта Z, который доминируется полиедром размерности $\leq n$.

⁽⁹⁾ Чтобы быть скрупулезно точным, надо из покрытия $\{Ux\}$ выбрать такое подпокрытие ω_{γ} , чтобы система $\operatorname{Int} w_{\gamma} = {\operatorname{Int} U \mid U \in \omega_{\gamma}}$ покрывала X, а затем надо звёздно вписать открытое покрытие ω_{s} в каждое из покрытий $\operatorname{Int} \omega_{\gamma}$.

Аппроксимация полиедрами и факторизационные теоремы для ANR-бикомпактов 201

С. Богатый и Ю. М. Смирнов

Вторая часть доказывается точно также, но только нужно условие (*) заменить на следующее условие

(\mathcal{X}^n) для каждого U из ω_{γ} найдется такое $\Gamma \in \gamma$, что всякое отображение $\varphi: S^k \rightarrow U$ при всяком $k \leq n$ гомотопно в Γ постоянному отображению.

Теорема доказана.

Замечание 2. На самом деле в утверждении теоремы 3 не только то, что $g^{-1}(z) \in ASR$, но и то что множество $g^{-1}(z)$ удовлетворяет условню б) из теоремы 1.

В самом деле, пусть $z = \{A_x\}$ и её окрестность Oz — произвольны. Положим $OA_x = g^{-1}Oz$ и, согласно последней части доказательства, подберем к OA_x множество $U \in \omega_y$, стягиваемое по OA_x в точку; подберем и покрытие ω из С[∞] так, что $x \in \operatorname{St}_{\omega} x \subset U \subset OA_x$. Можно показать (в [1] это не сделано), что образ $g(\operatorname{St}_{\omega} x)$ является окрестностью точки $z = \{A_x\}$. Но тогда образ gUбудет искомой окрестностью точки z, которая стягивается по Oz в некоторую точку.

Замечание 3. Если в теореме 3 потребовать, чтобы пространство Xбыло лишь локально связным, то будёт локально связным и фактор-пространство Z, а прообразы $g^{-1}z$ для всех $z \in Z$ будут лишь связными.

Проходит почти то же самое доказательство с заменой условия (*) на условие

(c) каждое U из w,-связно.

Если бы $g^{-1}z = A_x$ распалось на непустые непересекающиеся замкнутые множества A' и A'', то взяв непересекающиеся окрестности OA' и OA'' и подобрав к $OA_x = OA' \cup OA''$ множество $U(A_x \subset U \subset OA_x)$ согласно по-следней части доказательство теоремы, мы пришли бы к противоречию со связностью множества U (условие (с)).

Теорема 4. Для любого отображения $f: X \to Y$ бикомпакта $X \in LC^n$ (cooms., $C^n \cap LC^n$) размерности $\leq n$ в компакт Y существуют компакт $Z \in ANR$ (cooms., AR) размерности $\leq n$ и такие отображения $g: X \to Z$ и $h: Z \to Y$, что gX = Z и $f = h \circ g$.

Эта теорема сразу вытекает из теоремы 2, следствия 2 и теоремы 3, если компакт У — бесконечен. Случай, когда компакт У конечен — тривиальный.

Замечание 4. Если в теореме 4 откинуть требование $\dim X < n$, то можно лишь утверждать, что $Z \in \mathrm{LC}^n$ (соотв., $\mathbb{C}^n \cap \mathrm{LC}^n$), $n = 0, 1, 2, ..., \infty$.

§ 3. Анпроксимация локально связных бикомпактов локально связными компактами.

Теорема 5. Всякий бикомпакт $X \in LC^n$ (соотв., $C^n \cap LC^n$) размерности $\leq n$ является пределом некоторого обратного спектра <u>X</u> из ANR (соотв. AR)-компактов размерности $\leq n$.

Для доказательства напомним несколько простых фактов об обратных спектрах. Заметим сначала, что если мы имеем обратный спектр $X = \{X_a, \varrho_{a\beta}, \Xi\}$ и отображения $\varrho_a: X \to X_a$, коммутирующие с проекциями $\varrho_{a\beta}$, то правило $\varrho(x) = \{\varrho_a x\}$ для каждого $x \in X$ определяет отображение $\varrho: X \to \lim X$.

Лемма 1. Пусть даны бикомпакт X, обратные спектры $\underline{X} = \{X_a, \varrho_{ab}, \Xi\}$ и $\underline{P} = \{P_a, \pi_{ab}, \Xi\}$ и такие отображения $\varrho_a: X \to X_a$ и $\varphi_a: X_a \to P_a$, что

a) отображения ϱ_a коммутируют с проекциями ϱ_{ab} ,

б) отображения $\pi_a = \varphi_a \circ \varrho_a$ коммутируют с проекциями π_{ab} ,

в) ϱ_a являются отображениями "на";

тогда если отображение $\pi: X \to \lim P$ является гомеоморфизмом, то гомеоморфизмом будет и отображение $\varrho: X \to \lim X$.

Действительно, негко видеть, что правило $\varphi(\underline{x}) = \{\varphi_a x_a\}$, где $\underline{x} = \{x_a\}$ произвольный элемент предела $\lim \underline{X}$, определяет отображение $\varphi: \lim \underline{X} \to \lim \underline{P}$, так как в силу а) и б) диаграммы

 $\begin{array}{ccc} X_{\beta} \to P_{\beta} \\ \downarrow & \downarrow \\ X \to P \end{array}$

коммутативны (если $\alpha \leq \beta$).

Еще проще видеть, что $\pi = \varphi \circ \varrho$. Так как π — гомеоморфизм, то и взаимно-однозначно. Но тогда взаимно-однозначно и ϱ . Покажем, что $\varrho X = \lim \underline{X}$. Пусть $\underline{x} = \{x_a\} \in \lim \underline{X}$. В силу в) множества $\varrho_a^{-1}(x_a)$ непусты и составляют центрированную систему, так как $\varrho_{\beta}^{-1}(x_{\beta}) \subset \varrho_a^{-1}(x_a)$ если только $\beta \ge \alpha$. Так как X бикомпактно, то пересечение $\bigcap_{a \in S} \varrho_a^{-1}(x_a)$ непусто. Легко проверить, что для всякой точки x этого пересечения $\varrho(x) = x$. Итак, отображение $\varrho: X \to \lim \underline{X}$ взаимно-однозначно и "на". Так как \overline{X} — бикомпактно, то ρ — гомсоморфизм. Лемма доказана.

Доказательство теоремы. В силу одной теоремы Стинрода [11] бикомпакт X является пределом обратного спектра $\underline{P} = \{P_a \pi_{a\beta}, E\}$ из полиедров P_a . Это значит, что существуют такие отображения $\pi_a: X \to P_a$, коммутирующие с проекциями $\pi_{a\beta}$, что отображение $\pi: X \to \lim \underline{P}$ является гомеоморфизмом. Из доказательства теоремы Стинрода, данного Пасынковым [6] следует, что за направлению множество \overline{Z} можно принять систему всех конечных подмножеств a некоторого множества Λ , взятую с естественным порядком — по включению. Построим теперь (индукцией по числу элементов в каждом конечном множестве a) обратный спектр $\underline{X} = \{X_a, \varrho_{a\beta}, \overline{Z}\}$ и отображения $\varrho_a: X \to X_a$ и $\varphi_a: X_a \to P_a$, удовлетворяющие условияма) и в) леммы 1, притом такие, что $\pi_a = \varphi_a \circ \varrho_a$. Этим теорема будет доказана, если только элементы X_a спектра \underline{X} будут ANR (соотв. AR)-компактами размерности $\leq \eta_a$.

200

Начало индукции простое. Пусть мощность |a| индекса а равна 1. Тогда в силу теоремы 4 для отображения π_a : $X \to P_a$ найдутся ANR-компакт (10) X_a размерности $\leq n$ и такие отображения ϱ_a : $X \to X_a$ и φ_a : $X_a \to P_a$, что $\varrho_a(X) = X_a$ и $\pi_a = \varphi_a \circ \varrho_a$.

Далее индукционные предположения усложняются. Рассмотрим предварительно произведение $\prod_{a < \beta} X_a \times P_{\beta}$ и обозначим через $p_{\beta} \colon \prod_{a < \beta} X_a \times P_{\beta} \to P_{\beta}$ и $p_{a\beta} \colon \prod_{a < \beta} X_a \times P_{\beta} \to X_a$ естественные проекции. Предположим теперь, что для всех таких индексов β , что $|\beta| \le k$ нами построены ANR-компакты X_{β} размерности $\le n$ и отображения

удовлетворяющие следующим условиям:

в) $\varrho_{\beta}X = X_{\beta}$, г) $\varphi_{\beta} = p_{\beta} \circ h_{\beta}$, д) $\varrho_{\alpha\beta} = p_{\alpha\beta} \circ h_{\beta}$ при $a < \beta$, е) $h_{\beta} \circ \varrho_{\beta} = \delta_{\beta}$, где $\delta_{\beta}(x) = \{\varrho_{\alpha}(x), \pi_{\beta}(x) | a < \beta\}$ (¹¹), для каждого x из X, ж) $\varrho_{\alpha\gamma} = \varrho_{\alpha\beta} \circ \varrho_{\beta\gamma}$ при $a < \beta < \gamma$. Наконец, для каждого индекса β мощности $|\beta| = k+1$ для отображения δ_{β} : $X \to \prod_{a < \beta} X_a \times P_{\beta}$ существуют в силу теоремы 4 ANR-компакт X_{β} размерности $\leqslant n$ и отображения ϱ_{β} : $X \to X_{\beta}$ и h_{β} : $X_{\beta} \to \prod_{a < \beta} X_a \times P_{\beta}$, удовлетворякощие условиям в) и е). Определим отображения φ_{β} и $\varrho_{\alpha\beta}$ (для всех $a < \beta$) равенствами г) и п).

Очевидно, условия в), г), д) и е) выполнены всегда: если $|\beta| \leq k$, то по индукционному предположение, а если $|\beta| = k+1$, то по определению. Проверим выполнение условий а) и б) леммы 1 и условия ж).

Из определения диагонального отображения δ_{β} видим, что $\varrho_{a} = p_{a\beta} \circ \delta_{\beta}$. Применяя равенства д) и е) получим: $\varrho_{a} = p_{a\beta} \circ h_{\beta} \circ \varrho_{\beta} = \varrho_{a\beta} \circ \varrho_{\beta}$. Этим а) доказано.

Аналогично имеем: $\pi_{\beta} = p_{\beta} \circ \delta_{\beta}$. Применяя г) и е) получим: $\pi_{\beta} = p_{\beta} \circ h_{\beta} \circ \varrho_{\beta} = \varphi_{\beta} \circ \varrho_{\beta}$. Этим доказано условие б), так как в начале леммы мы условились, что отображения π_{β} коммутируют с проекциями $\pi_{a\beta}$.

Докажем условие ж), естественно считая, что $|\gamma| = k + 1$. Пусть $x_{\gamma} \in X_{\gamma}$. В силу в) найдется такое $x \in X$, что $\varrho_{\gamma}(x) = x_{\gamma}$. Пусть $x_{\beta} = \varrho_{\beta\gamma}(x_{\gamma})$ и $x_{\alpha} = \varrho_{\alpha\gamma}(x_{\gamma})$. В силу а) $x_{\beta} = \varrho_{\beta}(x)$ и $x_{\alpha} = \varrho_{\alpha}(x)$. Наконец, снова в силу а) $x_{\alpha} = \varrho_{\alpha\beta}(x_{\beta})$ этим условие ж) доказано. Итак, выполнены все условия в), г), д), е) и ж) индукционного построения. Значит его можно продолжить до бесконечности. В результате (в силу условия ж)) мы получим обратный спектр $\underline{X} = \{X_a, \varrho_{a\beta}, E\}$ из АNR-компактов X_a размерности $\leq n$, удовлетворяющий всем условиям леммы 1. В начале доказательства было предположено, что отображение $\pi: X \rightarrow \lim \underline{P}$ является гомеоморфизмом. Значит, по лемме 1 будет гомеоморфизмом и отображение $\varrho: X \rightarrow \lim X$. Теорема доказана.

Из замечания 4 получим

Замечание 5. Если в теореме 5 выбросить условие dim $X \leq n$, то можно лишь утверждать, что X является пределом обратного спектра из компактов $X_a \in LC^n$ (соотв. $C^n \cap LC^n$), $n = 0, 1, 2, ..., \infty$.

Замечание 6. Во всех получаемых представлениях бикомпактов X в виде пределов обратных спектров $\{X_a, \varrho_{a\beta}, E\}$ проекции $\varrho_{a\beta}$ являются отображениями "на".

В самом деле, ведь предельные проекции ϱ_a являются отображениями "на" и $\varrho_a = \varrho_{a\beta} \circ \varrho_{\beta}$ при $a < \beta$.

Замечание 7. Условие LC^n , накладываемое на бикомпакт X в теореме 5 существенно: можно построить *n*-мерные бикомпакты, которые не только не являются пределами обратных спектров из *n*-мерных ANR-компактов, но даже не являются пределами обратных спектров, составленных из подкомпактов *n*-мерных ANR-компактов. Таким является один змиевидный бикомпакт Пасынкова [6].

Теорема 6. Бикомпакт X локально связен тогда и только тогда, когда он является пределом обратного спектра из локально связных компактов (бикомпактов) X_a с монотонными проекциями $\varrho_{a\beta}$ "на" (причем всегда можно считать, что dim $X_a \leq \dim X$).

Цоказательство. Конструкция, примененная в доказательстве теоремы 5 вместе с замечанием 3 показывает, что всякий локально связный бикомпакт X является пределом обратного спектра $\{X_a, \varrho_{a\beta}, \mathcal{Z}\}$ из локально связных компактов X_a размерности $\leq \dim X$ с монотонными проекциями $\varrho_{a\beta}$, "на". Монотонность следует из монотонности проекций ϱ_a и равенств $\varrho_a = \varrho_{a\beta} \circ \varrho_\beta$ при $a < \beta$. Начиная с некоторого индекса a_0 все X_a должны иметь размерность dim X, так как $X = \lim \{X_a, \varrho_{a\beta}, \mathcal{Z}'\}$ для любого множества \mathcal{Z}' , конфинального к \mathcal{Z} , и dim $X \leq$ Sup dim $X_a|$ $a \in \mathcal{Z}'$ (см. например, [6]).

Итак, в одну сторону теорема доказана. Пусть теперь дан обратный спектр $\underline{X} = \{X_a, \varrho_{a\beta}, E\}$ из локально связных бикомпактов X_a с монотонными проекциями $\varrho_{a\beta}$ "на". Покажем, что бикомпакт $X = \lim X$ локально связен. Проверим сначала, что предельные проекции ϱ_a монотонны. Если бы проекция ϱ_a не была монотонной, то нашлась бы такая точка x_a , что прообраз $A = \varrho_a^{-1}(x_a)$ распадался бы на два непустых замкнутых непересскающихся множества A' и A''. По лемме 8 Пасынкова [6] найдется такое $\beta \ge a$, что $\varrho_{\beta}A' \frown \varrho_{\beta}A'' = \emptyset$. Но $\varrho_{\beta}A' \smile \varrho_{\beta}A'' = \varrho_a(A' \cup A'') = \varrho_a^{-1}(x_a)$, а это про-

⁽¹⁰⁾ Для краткости слова "(соотв., А.R)" мы опускаем.

 $^{^{(11)}}$ δ_β является так называемым диагональным произведением отображений ϱ_{α} , $\alpha < \beta,$ я π_β .

тиворечит связности прообраза $\varrho_{ab}^{-1}(x_a)$. Наконец, вспомним, что базу в $X = \lim X$ получают взяв множества вида $\varrho_a^{-1}H$, где множества H в каждом X_a составляют базу. В силу локальной связности бикомпактов X_a можно считать, что все H — связны. Так как все проекции ϱ_a монотонны, то $\varrho_a^{-1}H$ будут связными для всех a и всех H. Итак, в X существует база из связных множеств, что и тр. док. Теорема доказана.

Замечание 8. Существует пример бикомпакта, не являющегося пределом обратного спектра из локально связных компактов с проекциями "на" [6].

§ 4. Аппроксимация локально связных бикомпактов полиедрами.

ТЕОРЕМА 7. Всякий бикомпакт $X \in LC^n$ (coome. $C^n \cap LC^n$) размерности $\leqslant n$ является пределом обратного спектра из полиедров (соотв., кубов) размерности $\leqslant 2n+1$.

Доказательство. Согласно теореме 5 $X = \lim \{X_a, \varrho_{a\beta}, \Xi\}$, где X_a суть ANR-компакты (¹²) размерности $\leq \dim X \leq n$. Для каждого а по теореме Нёбелинга-Понтрягина существует вложение i_a : $X_a \rightarrow I^{2n+1}$ в 2n ++1-мерный куб I^{2n+1} . Для каждого а компакт $X_a \in$ ANR, поэтому имеется ретракция r_a : $P_a \rightarrow i_a X_a$, где P_a — такой полиедр (¹³), что $i_a X_a \subset P_a \subset I^{2n+1}$. Ясно, что $\dim P_a \leq 2n+1$ для всех n. Рассмотрим систему $\underline{P} = \{P_a, \pi_{a\beta}, \Xi\}$, где $\pi_{a\beta} = \varrho_{a\beta} \circ r_{\beta}$ — для простоты мы здесь и далее будем отожесствлять каждый компакт X_a с его образом $i_a X_a$.

Так как при $a < \beta < \gamma$ проекция $\varrho_{\beta\gamma}(r_{\gamma}p_{\gamma}) \in X_{\beta}$, то $\pi_{a\beta} \circ \pi_{\beta\gamma} = \varrho_{a\beta} \circ r_{\beta} \circ \varrho_{\beta\gamma} \circ r_{\gamma} = \varrho_{a\beta} \circ \varrho_{\beta\gamma} \circ r_{\gamma}$. Итак, <u>P</u> — обратный спектр.

Если $\underline{x} = \{x_a\} \in \lim \underline{X}$, то $x_a \in P_a$ для каждого а и $\pi_{a\beta}(x_{\beta}) = \varrho_{a\beta}(r_{\beta}x_{\beta}) =$ = $\varrho_{a\beta}(x_{\beta}) = x_a$, если $a < \beta$. Значит, $\underline{x} \in \lim \underline{P}$ и отсюда нетрудно заключить, что $\lim X \subset \lim P$.

Поэтому можно определить отображения $\pi_a: X \to P_a$ полагая $\pi_a(x) = \varrho_a(x)$ для каждого a. Легко проверить, что π_a коммутируют с проекциями $\pi_{a\beta}$. А тогда равенства $\pi(x) = {\pi_a(x)}$ для каждого x из X определяет отображение $\pi: X \to \lim P$. Очевидно, $\pi = \varrho$, где $\varrho: X \to \lim X$, определяется таким же образом с помощью предельных проекций ϱ_a . Итак, π — непрерывно и взаимно-однозначно (ведь ϱ — гомеоморфизм). Покажем, что $\pi(X) = \lim P$. Пусть $\underline{p} = {p_a} \in \lim P$. Тогда $p_a = \pi_{a\beta}(p_{\beta}) = \varrho_{a\beta}(r_{\beta}p_{\beta}) \in X_a$. Значит, $r_{\beta}p_{\beta} = p_{\beta} = p_a \in \varrho_{a\beta}(p_{\beta})$ для каждого $\alpha \in \beta > \alpha$. Итак, $\underline{p} \in \lim X$ и поэтому найдется такая точка $x \in X$, что $\pi(x) = p$. Так как X — бикомпакт, то π оказывается гомеоморфизмом. Следовательно, $X = \lim P$. Тосрсма доказана.

Замечание 9. Если бы проблема Борсука о вложении *n*-мерных AR-кемпактов в 2n-мерный куб решалась положительно, то мы получили бы указанным способом, что всякий *n*-мерный бикомпакт $X \in \mathbb{C}^n \cap \mathbb{LC}^n$

является пределом обратного спектра из 2n-мерных кубов. Обратим внимание, что при n = 1 это верно: всякий одномерный AR-компакт вкладывается в квадрат. Значит, всякий одномерный бикомпакт $X \in C^1 \cap LC^1$ является пределом обратного спектра из квадратов.

Замечание 10. Указанным способом нетрудно показать, что всякий одномерный одно связный и локально связный бикомпакт является пределом обратного спектра a) из квадратов, б) из дендритов.

Литература

- А. В. Архангельский, О факторизации отображений по весу и размерности, ДАН СССР 174 (6) (1967), стр. 1243.
- [2] С. Богатый, О теореме Вьеториса в категории шейтов и об одной проблеме Борсука, Fund. Math. 84 (1974), pp. 209-228.
- [3] K. Borsuk, Theory of Retracts, Warszawa 1967.
- [4] Theory of shape, Lecture Notes Ser. 28, Matem. Inst. Aarhus Univ., 1971, pp. 145.
- [5] H. Freudenthal, Entwicklungen von Räumen und ihren Gruppen, Comp. Math. 4 (1937), pp. 145-234.
- [6] Б. А. Пасынков, О спектрах и размерности топологических пространств, Матем. Сборник 57 (99) (1962), стр. 35-79.
- [7] S. Mardešić, On covering dimension and invers limits of compact spaces, Illinois Math. Journ. 4 (2) (1960), pp. 278-291.
- [8] Retracts in shapes theory, Glasnik Mat. 6 (26) (1971), pp. 153-163.
- [9] and J. Segal, Shapes of compacta and ANR-systems, Fund. Math. 72 (1971), pp. 41-59.
- [10] S. Smale, A Vieloris mapping theorem for homotopy, Proc. Amer. Math. Soc. 8 (1957), pp. 604-610.
- [11] N. Steenrod and S. Eilenberg, Foundations of Algebraic Topology, Princeton, New Jersey, 1952.

MFY MATEMATHUECKOE OTHENEHHE, Mockba MGU MATHEMATICAL DEPARTMENT, Moscow

Accepté par la Rédaction le 5. 9. 1973

⁽¹²⁾ Для краткости слова "(соотв., AR)" опустим.

⁽¹³⁾ Если все $X_a \in AR$, то $P_a = I^{2n+1}$.