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Finite dimensional completions in Noether lattices
by
Johnny A. Johnson (Houston, Tex.)

Abstract. This paper is concerned with the completion of Noetherian lattice mo-
dules. It is shown that under relatively general conditions the completion of a Noe-
therian A-module 2 is Noetherian as a lattice module over the completion of A.

§ 1. Introduction. In [3] R. P. Dilworth began a study of the ideal
theory of commutative rings with identity from a lattice theoretic view-
point and introduced Noether lattices. In a natural manner this theory
ean be generalized to include the study of module theory as a branch
of lattice theory and there are reasons to do so (for example see [7]).
Let R be a Noetherian ring and let M be & Noetherian R-module. Denote
the lattice of ideals of R by L(R) and the lattice of submodules of M
by L(M). Then, under the canonical multiplication between elements
of L(R) and elements of L (M), it is easily verified that L(R) is a Noether
lattice (see [3]) and that L(M) is a Noetherian L(R)-module (the defi-
nition of a lattice module is given in Section 2). We note here that there
exist Noether lattices 4 and Noetherian A-modules £ which are not
lattice isomorphic to the lattice of submodules of any Noetherian module
over a Noetherian ring (see [1] and [2] for some interesting examples
in Noether lattices) and thus the clags of Noetherian lattice modules
derived from Noetherian rings and modules does not exhaust the class
of all Noetherian lattice modules. In this paper we are concerned with
the completion (see Section 4) of a Noetherian A-module 2. This concept
is closely related to the a-adic completion of Noetherian rings and modules

(see Remark 4.10). ‘

In Section 2 we introduce some notation and establish some useful
results concerning dimensions of certain sublattices. If 4 is a Noether
lattice, 2 is a Noetherian A-module, and b is an element of 4, we show
(Theorem 2.2) that the sublattice [bB, B] of £ is finite dimensional, for
each B jn , provided that the sublattice [b, I] of 4 is finite dimensional.

Assume that a is an element of A such that the a-adie pseudometric
on 2 is a metric. Section 3 is devoted.to determining the nature of certain
Cauchy sequences (Cauchy relative to the a-adic metric on Q) of ele-
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ments of £ which are needed in the subsequent section. TLet By,
i=1,2,.., be a Cauchy sequence of elements of £ satisfying the con-
dition that: given any natural number #, it follows that B, , << Byva i,
for all integers ¢ > n. It is shown (Theorem 3.5) that the sequence ¢D,),
where Dy = A (Bive"M), n=1,2, ..., is the completely regular repre-
sentative (se%/gefmiﬁion in Section 3) of the equivalence clags determined
by the Cauchy sequence’ (F;>. Thus the unique completely regular repro-
sentative of a Cauchy sequence satistying the above condition. is completely
determined. This result is needed in Section 4 to determine the completely
regular representatives for meet and residuation of clements in the
completion of Q.

Let o be an element of A such that the.a-adic pseudometric on A

and Q is a metric (see Section 4) and [a, I] is finite dimensional. ‘Let 4*

and 2F be the a-adic completions of A and 2, Tespectively (sce Section 4
for definitions). Theorems 4.1 and 4.2 determine the structure of the
completely regular representatives for meet and join, respectively, of
elements of 2% It is shown in Theorem 4.3 that £* is modular and the
completely regular representative. for residuation is determined in Theo-
rem 4.4. Theorem 4.6 provides a way to obtain principal elements in oy
from principal elements in 2 and this result is uged to show (Theorem 4.7)
that the A*-module Q* is principally gencrated and satisfies the aseend-
ing chain condition. Our last regult is the following (Theorem 4.8): .

Let A be a Noether lattice, let 2 be a Noetherian A-module, let ¢ be
an element of A such that the ¢-adic pseudometric on 4 and Q is a mefiric,
and let A4* and Q* be the ¢-adic completions of A and 2, respéctiyely.

If there exists a natural number » such that [¢" ITis finite dimensional,
then ‘

L1)
(1.2)

A* is a Noether lattice, and
0QF is a Noetherian A* module.

Finally, an api»‘liqation of Theorem 4.8 to the special case of local '

and semi-loeal Noether lattices is given- in Remark 4.9.

§ 2. Notation and preliminary results. A lattice is said to bo mulbi-
plicative in case it is a éomplete lattice on which there is defined o commnri:
tative, associate, join distributive multiplieation such that the unit
element of the lattice is an identity for the multiplication. Let 2 be
a complete lattice and let A be a multiplicative lattice. Blements of @
will be denoted by 4, B, ¢;... The null element and unit element of @
will be denoted by 0 and M, respectively. Rlements of 4 will be denoted
by a,b, ¢, ... The null element and the wnit element of /4 will be denoted
by 0 and I, respectively. Q is said to be an A-module in case there is
@ multiplication between elements of A -and elements of Q, denoted a4,
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for @ in 4 and A in £, such that (i) (ab)4 = a(bA); (i) (\/ b)(\/ By)
B ]
= \/ b, Bg; (iil) T4 = A; and (iv)
B
all 4, B, in Q. |
Let 2 be an A-module. For A and B in 2, A:B will denote the

largest b in A such that bB < A. An element A in Q iy said to be meet
privcipal in case

04 = 0; for all a, b,, b in A and for

(bA(B:A)A=DAAB,
for all b in A and for all B in Q; .4 is said to be join principal in case
bv(B:4) = (bAVB): A,

for all b in A and for all B in 2; and A is said to be principal in case 4 is
both meet and join principal. Q is called principally generated if each
element of Q is the join (finite or infinite) of principal elements of Q.
0 is priﬁcipa.lly generated, modular, and satisfies the ascending ch{nin
Goi:diti‘on, 0 is said to be a Noetherian A-module. If A4 is a Noetherian
A-module, 4 is called a Noether lattice. For other properties and general
definitions related to Noether lattices and Noetherian lattice modules
the reader should consult the references.

" The following lemma is needed in the proof of Theorem 2.2. The
reader is referred to Lemma 2.5 of [4] for a proof.

LrMMA 2.1. Let 2 be an A-module, let A be a principal element of 2,
let a and b be elements of /A such that a < b, let A be medular, and let (0:1.1),
b'% a. Then the map @: [a, b]>[ad, bA] defined by p(a) = x4 is a latlice
isomorphism of [a, b] onto [ad, bA].

We now establish the following results on dimensions which will be
required later. :

THROREM 2.2. Let A be a Noether lattice, let Q2 be a Noetherian /l—modvule-z,
and let b be an element of A. If [b, I.is finite dimensional, then [bB, B] is
finite dimensional for oll elements B in Q. o

Proof. Assume [, I] is finite dimensional and let B be an arbitrary
element of 2. Since £ is- Noetherian there are principal el‘ements %?1,
By, ..., By in £ such that B = B;v..VB;. Define Iy= 0B, and define
Ty = TiVB; .y, tor cach j, 0 <j < k—1. Thus,

Ty = bB\/BlV...V,Bj for li‘]’ < k.
Since each By, L<<m -\%_.k,‘ is principal we obtain
(2.1) [Tj; Tj—}-l] = [Ty'7 Ty‘VBHl] = [Ti/\BJ‘H’ Bf+1]

= [(T;:By11) Byyas Brial s
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for each j, 0 <j < k-1, by the isomorphism theorems. Also, for cach s
0<j< k-1, we have
(0: B )AL= (0:B;,,) < T;:B

g1
*so that

(2.2) [Ty:B1s1, 11 =2 [(T5:B;,,5) Byyy,y Byyod,
for each j, 0 <j<k—1, by Lemma 2.1. From (2.1) and (2.2) it now
follows that
(2.3) [Ty5 Tjpa] 2= [T By, I
for each j, 0 < j < k—1. Now, observe also that
bB;,, <bBVB,V..VB; = Ty ,
so that
b < (T;:B;,,) .
for each j, 0 < j < k—1. Consequently, [Ty:Byyq, 11 is finite dimensional,
and hence [T, T,,,] is finite dimensional from (2.3), for each j, 0<j
< k—1. Hence, since '
bB = << Ty = bBYB,V..VB = B,

it follows that [bB, B] is finite dimensional which completes the yproof.
As a useful corollary we obtain the following result.
CoROLLARY 2.3. Let A be o Nocther lattice and let Q be a Noetherian
A-module. Let b be an element of A and let B be an element of Q. If [b,I]is
Jinite dimensional, then for each number ny [b"B, B] is finite dimensional.

Proof. Assume that [b, I]is finite dimensional and let n be a natural
number. We have that

B < b"‘lB <.<bWB<gB.

By Theorem 2.2, each quotient [6*B, b*~1R] ig finite dimensional, for
1< k< n Sinee 2 is modular it follows thag [6"B, B] is finite dimensional
a8 claimed.

COROLLARY 2.4. Let A be a Noether lattice and let b be an element of A.
If [, 11 is finite dimensional, then [b" I] is finite dimensio
natural number w.

Proof. Apply Corollary 2.3 to the N oetherian 4-module 4.

COROLLARY 2.5. Let A be a Noether lattice and let b be an element of A.
Then the following three conditions are equivalent:

nal, for each

(2.4) [b,I] is finite dimensional.
(2.5) [b"
(2.6) o

y I1 is finite dimensional Jor each natural number n.

y I1 ds finite dimensional for some natural number n.

e ©
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Proof. This follows from the modularity of A and Oorollary 2.4,

§ 3. Representatives, Throughout this section 4 is a Noether lattice
and 2 is a Noetherian A-module. We assume that @ is an element of A
such that the a-adic pseudometric (see [6], § 3) on 2 is a metric and that
the quotient lattice [a, I] is finite dimensional (see [6], § 2).

In this section we will establish a few results concerning certain
Cauchy sequences of elements of 2 which will be needed in later sections
of this paper. We begin with the following.

TueorEM 3.1. Let {Biy, i=1,2,.., be a sequence of elements of
Q such that, given a natural number n, it follows that

(3-1) By, <BNa"M for all integers i =n .
Then the sequence {Biy, i =1, 2, ..., is Cauchy.

Proof. Let ¢ > 0. Choose » to be the least natural number % such
that 27% < e. Consider the sequence

Eyva*My for i=1,2,..
From (3.1) it follows that this sequence iz decreasing in ¢, for ¢ > n. Also

note that )
a'M < Byva*M  for i=1,2,..

Consequently, . since [a"M, M] is finite dimensional by Corollary 2.3,
there exists a natural number s such that

E;Va"JII = E;va"M  for all integers i,j=>s.
It follows that
do(Bi, By) <27 "< e for all integers i,j>s.

Hence the sequence (B>, i = 1,2, ...,1s Cauchy and the proof is complete.

Since any decreasing sequence of elements of 2 satisfies the conditions
of the above theorem, we obtain the following.

CoROLLARY 8.2. Let (A, ¢=1,2,.., be a decreasing sequence of
dements of Q. Then {A) is o Cauchy sequence.

Reeall ([6], Definition 4.7) that a Cauchy sequence ¢(B:> of elements
of 2 is said to De regular in case

Bive'M = By, Vo' M,
for all positive integers 4, and completely regular in case
Bi= B, V&'l ,

for all positive integers 1.
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PrEorEM 3.3. Let (Hiy, t=1,2..., be a sequence of elements of
Q such that given o natural number 1, it follows that |

3.8y Biy <BvarM for all integers i>n .

For each natural number ®, deﬁne D, by
B Dy=\ (Fevadr) .
izn
IIze;z the sequence {Diy, 1 =1,2,...,795 a completelz/ reqular Cauchy sequence.

Proof. In order to esmbhsh that the sequence <Di», 3=1,2, ...,
is a completely regular Cq,uchy sequencc we must show that it iy Cauchy

and that
(3.3)

Dy=D,,  ,ve"M  for all integers n = 1.

Thus, Tet n> 1. Sin'c‘e, from (3.2), the seqﬁence

Biva"My for. 1=1,2,..
is deecreasing in 4, for 7 =>n, and since
"M < Eiva’”_M for i=1,2

1t follows from Corollary 2.3 that thele emsts 2 nmtuml numbel 7 such that

(3.4) A (Bivardl) =

i>=n

L’jva“M = Byva®M for all integers & > j.

Similarly, for the seqﬁendé

(Byva"'My for 4§=1,2,..,

there exists a natural number p such that

35 A (Brvaii) —

izntl

Eﬂ V,an-}-lﬂ_/[ — -Ela V] Cﬁ"‘+1ﬂf y

for nll__‘integers_ g=7p. By eombiniﬁg (3.4) and (3.5) we obtain
Dy = /\ (EiV&”M)

=2

By 60 = (B Va0 v a3

(A (Byva T M)yvar M = I)M,lva’“]l{

izn+1

w‘vhich establishes (3.3). It follows from (3.3) that the sequence (D),
1=1,2,.., i3 decreasing and hence Cauchy by Corollary 3.2 which
completes the proof.

The sequences (E;> and <D, > in the above 1]1@010111 have an important
relationship which is now established.

icm®
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TororEM 3.4. Let the sequences (i), i= 1,2,.., and (D,
i=1,2,.., be as in Theorem 3.3. Then the equwalence class determined
by <HE amd the equivalence class determined by (D;> are the same.
Proof. In order to show that (&>~ (D;), it is sufficient to show
([6], Theorem 4.4) that, for each nonnegative integer w,

(8.6) BNd® M = Dyva® M,

for all sufficiently large positive integers 4. We proceed as follows. Let

w be a nonnegative integer. In a manner similar to that used in the proof

of Theorem 3.3, for each nomnegative integer n, there exists a positive

integer j, such that ju = n and
Biva*M = H; va"M  for all integers ¢ > j, .

Now, for each nonnegative integer =, let k, be the least such positive

integer j, . Hence, for each nonnegative integer 7, we have that &, > n and

(8.7) Byva"M = B, va"M  for all integers ¢ > ky .
By Theorem 3.1, the sequence (Hy), i=1,2, ...

. , is Cauchy, so there,
exists a natural number N such that

da(Em -Ey) <27 for all [ N.

Thus ([6], Remark 3.6)
(3.8)

Byva*M = Hyva®M  for all integers @,y > N .

Now, let » be a positive integer such that n >
Hence from (3.8) we obtain

(3.9)

N+4+w Thuos &y = n> N, w.

By, VM = By va*M .
Since n > w, it follows from (3.7) and (3.9) that

DoVa® M = [\ (HyaM)]Vae M == (B, v

N

varM)vae®M = B,va*M .

Thus, for all positive integers ¢ >

BVa® M = Dyva* M

> N-+4w, we have thab

which establishes (3.6) and completes the proof.

As an immediate Corollary to Theorem. 3.3 and Theorem 3.4 we
have the following result.

TaEoREM 3.5. Let the sequences <(By, 1=1,2,.., and <D}, i
=1,2,.., be as in Theorem 3.3. Then the sequence <Dy is the unique

7— Fundamenta Mathematicae LXXXVII
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completely regular representative of the equivalence class determined by the
sequence (Hi).

_§ 4. Noetherian completions. Throughout this section A is a Noether
lattice and @ iy & Noetherian A-module. In addition we assume that « is
an element of 4 such that the a-adic pseudometric (see [6], § 3) on A4
and Q is a metric and that the quotient lattice [a, I] is finite dimensional.
Thus, the a-adic completions of 4 and £ ([6], § 6) may be constructed.
Throughout this seetion £* will denote the a-adic completion of 2, and A*
will denote the a-adic completion of A. It hag been established previously
(6], § 7) that Q* is a A*-module. In this section (Theorem 4.8) we show
that A% is a Noether lattice and that ©* is a Noetherian A*-module given
the above assumptions, -

The first two theorems determine the structure of the completely
regular representatives of BA ¢ and Bv(, for B and € in Q. Theorem 4.3
ghows that ©* is modular and Theorém 4.4 establishes the completely
regular representative for residuation. Theorem 4.6 provides a useful
tool for obtaining principal elements in the A*-module 2%, and finally,
the last theorem establishes our goal.

THEOREM 4.1. Let B and O be clements of @F. Let the sequences {Bn)
and <Cn> be the completely reqular representatives of B and O, respectively.
Then L :

(1)  The sequence (BuACpy is Cauchy and is a represeniative of BAC.
(4.2)  The sequence { N\ [(BirCvarMl)y, n=1,2,.. is the completely
=n
regular representative of BAC.

Proof. Since the sequences <B;) and <{C;» are completely regular,
they are decreasing. Hence the sequence (Bia ;) is decreasing and thus
Cauchy (Corollary 3.2). Let D be the .equivalence class determined by
(BiA 0> and let <D;>» be the completely regular representative of D.
Thus, by Theorem. 3.5, we have that ' -

Dp= A\ [(BirC)varM] for n=1,2,..
i=n

Sin(;e Dy, < By and Dy < Op, for all integers # > 1, it follows ([6], Pro-

position 5.10) that D < B and D < ¢, and consequently D < BAC.
Suppose F is an element of Q* such that 7 < B and I < 0, and let
the sequence {F:) be the completely regular representative -of F. Then
Fn< By and Fp< O, for all integers n > 1 ([6], Proposition 5.9), and

hence Fy << BuACy, for all integers # > 1. Consequently: . i
CFa= \ (FovaM) < A\ (BN G)VaM] =D, -

izn i=n
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for all integers » = 1. Thus F <7 D. We conclude that D = BA ¢ which
establishes (4.1) and (4.2) and completes the proof.

The following result is Proposition 4.7 of [6] and is included here
for completeness of thiy seetion. The reader is referred to [6] for the proof.

TaroreM 4.2, Let B and O be elements of Q*. Let the sequences {(B;)>
and <053 be the completely regulur representatives of B and C, respectively.
Phen the sequence By Ciy 48 Canchy and is the completely regular repre-
sentative of Bv .

The above two theorems are used in the next result to show that
0 iy modular,

TuworuM 4.3, The lattice 0 is modular.

Proof. Let A, B and ¢ be elements of ©* such that A > B. Let
the sequences {A>, <B>, and {U:) be the completely regular representa-
tives of A, B, and C, vespectively. Sinee A = B, we have 4; > By, for
all integers ¢ = 1 ([6], Proposition 5.9). Let (D> and (E:> be the com-
pletely regular reprosentatives of AA(Bv ) and Bv(4A (), respectively.

Let # be o positive integer. Sinee 2 is modular, <B;)> is completely
regular, and [a®d, M is finite dimensional (Corollary 2.3), it follows that

D= N [AA (Bev O var ] = A [[Biv(Ain Co)var M|
120

[»-373

= A |Bav((Ain O varM)| = Buv \ ((dan C)va"d) = Ba

i izn
by Theorems 4.1 and 4.2, and Theorem 4.10 of [6]. Thus, for each integer
n > 1, we have Dy = T,. 1t follows that
AA(BV () = Bv(4AC)
and henee that £ is modular as claimed. .
We neoil the next result in order to. work with residuation in £7.
Tuuornm .l Let A and B be elements of ¥, Let the sequences (Aa)
and <Dy be the completely regular representulives of A and B, respectively.
Then :
(£3)  The sequence Ay Bad s Canchy and is represeniative of A:B,
(4.4) ~ The seguence < N [(ApB)valy, n= 1,2,.., is the completely
R ) .
regular representative of A:B in A%
Prootf. Since the sequences (An) and (B> are dorx*lplgtely regular,
it follows that o )

: 11'%’1“1:]}‘11']‘1 B (—A.”,‘_L,\/l(l”ﬂ[)ZB“,H == (AH,HV(I,”JIT):(BM_]:V a"JlI) = An:Bn ?
*
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for each integer m > 1. Thus the sequence {4,:B,) is decreasing and
hence Cauchy by Corollary 3.2. Let b in A* be the equivalence clags
determined by the sequence <(An:Bn). Let the sequences <b,) and {c,)
be the completely regular representatives of b and A:B, respectively.
Note that by Theorem 3.5 we have

bo= A [(di:B)va™] for n=1,2,..
izn

In order to complete the prbof it iy sufficient to show that b = 4:B,
Since, for each integer m = 1, we have that

bn By = ( /\ [(Ae:By)va™) B, < [(An:Bu)Va™] B, < An )
i>n
it follows from Propositions 5.10 and 5.13 of [6] that 0B < 4, and con-
sequently b < A:B. Since (4:B)B < 4, we have that
(4.5) aBi< e Biva'M < Ay  for all inbegers ¢ > 1

({61, Proposition 5.9 and Corollary 5.15). Hence, for each integer n > 1,
it now follows from (4.5) that

o= A (ava") < A [(daBi)va*] = by,
izn i>n
and therefore that 4:B < b by Proposition 5.10 of [6]. Thus 4A:B =15
and the proof is complete. .
We will make use of the following characterization of prineipal

elements in the process of proving Theorem 4.6. The reader is referred
to Lemma 2.1 of [4] for a proof.

Lemma 4.5. Let 2 be-an A-module and let A be an element of Q. If 2
and A are modular, then A is a principal element of  if and only if:

(4.6) OnNA = (C:A)A
and
(4.7) bA:A =bv(0:4),

Jor all b in 4 and for all C in Q.

‘TH:EOR].EM _4.6. Let <Byy be a Cauchy sequence of elements of Q. If each
B; is a principal element of Q, then the equivalence class determined by
{Bi) is o principal element of the A*-module Q*, ‘

Proo_f. Agsume each By, § =1, 2, ..., is a principal element of Q.
By sele‘zetmg a subsequence of {Bi), we may assume without loss of
generality that <BE.> is a regular Cauchy sequence. Let D in O* denote
the class determined by (B> and let <Dy be the completely regular
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representative of D. Sinece Q" and A* are modular (Theorem 4.3) we
shall show that D is principal by establishing (4.6) and (4.7) of Lemma 4.5.
Note that Dy = Bnva"M, for each n > 1 ([6], Corollary 4.13 and Theo-
rem 4.14).

Let ¢ be an clement of 2" and let (C;> be the completely regular
representative of 0. For each integer # > 1, a routine computation shows
that :

(4.8) OnADy = OpA(BuVa M) = a"MV(Ch:(ByvaM))B,
== (L"MV(O)LZDW,)B»

since M is modular and By is a principal element of M. Using Theorem 4.1
and Theorem 4.4 above, it now follows from (4.8) that CAD = (C:D)D
by ([6], Corollary 4.6 and (5.16)). Thus (4.6) of Lemma 4.5 is established.

Now, let b be an element of A* and let ¢b;> be the completely regular
representative of b. A routine computation shows that, for each integer
n=1, )

(4.9)  (buDyVa™M): Dy = (bn(By v a" M)V a"M): Dy = by V (6" M: (B, v a™M))
== by, V("M : By)

because each By, iy principal. By ([6], Corollary 5.15 and Corollary 4.13)
and Theorem 4.4, it follows from (4.9) that bD:D = bv(0:D) which
establishes (4.7) of Lemma 4.5 and completes the proof.

In order to establish our main theorem we require the following result.

THEOREM 4.7. The A*-module Q* is principally generated and satisfies
the ascending chain condition.

Proof. It was shown in Theorem 6.3 of [6] that 2* satisties the
ascending chain condition. Thus, we need only establish here that Q% is
principally generated as an A*-module. For this, since £2* satisties the
ascending chain condition, it is sufficient to show that: if given any two
elements 4 and B of Q* with 4 < B, there exists a principal element D
in Q* suech that D ¢ A and D<B.

Thus, let A and B be elements of 2* with 4 < B. Let (4:> and (B:>
be the completely regular representatives of 4 and B, respectively. Since
A< B and 4 # B it follows that 4; < Bi, ¢=1,2,.., and that there
exists a natural number n such that A;< B; for all integers i =n. In
particular, 4, < B,, and hence, since £ is principally generated, there
exigts a principal element D, in £ such that D, < Bx' and Dn & 4a.
We will now construct inductively a sequence D,.;, j=1,2,.., of
principal elements of Q such that

(4"10) Dn+7‘ < (Dn+7'—lva‘n+j—1ﬂ[)/\Bn+i
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and
(4.11) Doy & A

Suppose D, j=1,2,..,% have been chosen such that (4.10) and
(4.11) are satisfied. If

(DA™ EMYAB,, gy < Ay
then

Dn—l—k = (Dﬂ.—H:V (I’1L+k*7[[) A »Bn-}« T (Dn»k xY a/n—l.kﬂ[) A ( anl-lc»l-l v arte Zl])
= (D VA EMYA By ) VAP RN 2 A

Rl 2]
since the sequenee (B;)» is completely regular, which contradicts our
assumption that (4.11) holds for D, ;. Consequently we have that

(4.12) (D VA M)A By gy % A,
From (4.12) and the fact that Q is principally generated we can choose
a principal element D,.,., in £ such that

Dn+l:+1 < (D”/H-k v (1’7L+76J[) A Bm-l~ k1
and

D, n+k41 ‘ﬁ An
which completes the inductive construction.

Now, for 1<i<n—1, set D;=D,. It follows from (4.10) and
Theorem 3.1 that the sequence <Dy}, i=1,2, ..., i3 Cauchy. Let D be
Fhe equivalence class determined by the sequence (D). Sinee each D
t=1,2,.., is principal by construction, D is a principal element OE
the A*-module ©* by Theorem 4.6. '

Suppose for a moment that D < 4. Let By, i =1, 2, ..., be a sub—.
sequence of (D;» which i3 regular ([6], Lemma 4.11). Then

(4.13) Bi< Biva’M < A; < Ay . for all integers i > n,

by ([6], Corollary 4.13 and Proposition 5.9). From (4.13) it would follow
that D; < 4,, for all large integers j, which i% a eontradiction to (4.11).
Thus D & A. It follows from (4.10) that D < B which completies the proof,
We are now in a position to establish our main theorent.

» b’_[l‘,I:EEOREM 4.8. Let A be a Noether lattice, let © be a Noetherian /A -module,
e e an element of A such that the b-adiec psendometric on A and Q is
a metric, a?zd let A" and Q* be the b- adic completions of A and Q, respectively
If there exists a natural number n such that [b", 17 is filnite (Zima’nsrion-al thm?:
(414) - A% is a Noether lattice . ,

and

(4.15) Q% is a Noetherian - A*-module,
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“Proof. Assume [b™, I] is finite dimensional. Then (4.153) follows
from Corollary 2.5 and Theorems 4.3 and 4.7. Since A* is a Noetherian
A*-module, (4.14) follows from (4.15) which completes the proof.

The following note provides an interesting application of Theorem 4.8
to the particulax ease of local and semi-local Noether lattices which are
of special interest (see [5).

Remark 4.9, Let 4 be a Noether lattice and let @ be a Noetherian
A-module. If b is an element of A such that the b-adic pseudometric
on A and £ is a metric, denote the b-adic completion of A by 4; and the
b-adic completion of @ by Q. Define m in 4 by

m= A {p in 4] p is & maximal element of A}.

From Corollary 3.4 of [4], if b is an element of A such that b < m, then
the b-adie pseudometric on 4 and Q is a metric and, thus, for b< m,
AF and ©} are defined. In conjunction with the above we have the
following: ‘

Let b be an element of A such that b < m. If

(4.16) [, I] is finite dimensional,

or

(&.17) A ds semi-local and [b, m] is finite dimensional,
then .

(4.18) A is & Nocther lattice

and

(4.19) & is a Noetherian Aj-module.

Proof, Assume that (4.16) or (4.17) holds. If A is semi-local and
[b,m] is finite dimensional, then, since [m, I] is finite dimensional by
Corollary 4.5 of [4], it follows that [b, I] is finite dimensional by the
modularity of 2. Hence, in either case, [b, I] ig finite dimensional. It
now follows from Theorem 4.8 and the above comments that Ay is a Noether
lattice and @} is a Noetherian Af-module which completes the proof.

Note in' particular that Theorem 5.9 of [4] and Theorem 8.7 of [6]
are just special cases of the preceeding result which in turn is a special
case of Theorem 4.8. '

Remark 4.10. We point out that the lattice of ideals of the comple-
tion B of a local ring R can be obtained lattice theoretically from the
lattice of ideals of B by using the lattice ecompletion concept discussed
above. This is achieved in the following manner. Assume (R, p) is a local
ring (commutative and Nostherian with identity) with p-adic (ring)
completion E. Let 4 and A denote the lattice of ideals of R and R,
respectively. It ean. be shown [8] that A and /l; (the p-adic lattice com-
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pletion of 4 — see Remark 4.9) are isomorphic as multiplicative lattices.
Thus, the ideal structure of E can be determined by purely lattice theo-
retical means from the lattice of ideals of K.
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Locally flat embeddings of Hilbert cubes are flat
by :
T. A. Chapman * (Lexington, Ken.)

Abstract. In this paper it iz shown that any locally flat embedding of the Hilbert
cube ¢ into a @-manifold is flat. The techniques employed in the proof of this result
also imply that the group of homeomorphisms of @ x R™ onto itself which are fixed
on @ x {0} has exactly two components.

1. Introduction. For topological spaces. X and ¥, an embedding
4: X =Y is said to be locally flat (with codimension #) provided that each
point of X has a neighborhood U and an open embedding i: UX E*—Y
such that % (z, 0) = i(x), for all # ¢ U. We say that the embedding is flat
if we can take U = X. We use R" to denote euclidean n-space, @ to de-
note the Hilbert cube (i.e. the countable infinite product of closed inter-
vals), and by a Q-manifold we mean a separable metrie manifold modeled
on @. The following is the main result of this paper.

TrEorEM 1. If X is a Q - manifold and i:Q — X is a locally flat embedding,
then i is flat.

Of course this result is false if @ is replaced by a more complicated
Q- manifold. For example let X = M X @, where M is the open Mdobius
band, let 4,: 8~ be a homeomorphism of the 1-sphere onto the center
circle, and let ¢ = 4, x id: §*X @ > M x Q. Then 1 is a codimension 1 locally
flat embedding, but ¢ is not flat. (If ¢ were flat, then arbitrarily small
neighborhoods of 7,(8') in M would be separated by 4,(8").) A more general
question would be to investigate when locally flat embeddings of @ - mani-
folds into @-manifolds have normal bundles (see [2] and [4] for finite-
dimengional results).

Let 36,(Q X R™) denote the space of all homeomorphisms of @ x R"
onto itself (with the CO-topology) which are the identity on € X {0}.
The following result is a by-product of the proof of Theorem L.

THEOREM 2. 7,(06,(Q X B} =2, for all n=1. That is, 2 (Qx E")
has exactly two components.
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