.
[6] R. L. Jeffer Generalized iniegmls with 7'66’1)ﬂ6i to ﬁmctions {)f bounded variation,
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Abstract. We investigate four generalizations of the notion “algebraically cloged”
to a model theoretie context involving weak second order logic. Whereas in f‘irst order
Iogic the existence of algebraically closed structures of various sorts is proved by anatural
transfinite induction, in our context it is necessary to assume the existence of large
cardinals in order to prove the corresponding existence theorems for struetures. The
present; article is devoted to a relatively precise description of the relationship hetween
large cardinals and structures of the special types alluded to. In the final section some
examples are discussed.

1. Introduction. If X is a class of similar structures, several inequiv-
alent formulations of the notion of an “algebraically closed” structure
relative to the class X and the appropriate first order language have
been studied [4, 11, 13]. The concepts introdueed for this purpose may
be extended to more powerful languages, such as modal, higher order,
or infinitary languages; a detailed treatment of some aspects of the last
ease is given in [3].

We wish to discuss the algebraically closed structures relative to
a second order language I which permits quantification over all non-
empty subsets § of the domain of & given structure m such that the
cardinality of S is less than the cardinality of the domain of m and to
find necessary and sufficient conditions for the existence of such structures.
For example, concerning the analogue of Robinsor’s class G5 of the
infinitely generie structures [10] we will prove:

TaroreM. The following are equivalent: .

1. Bvery increasing function from the ordinals to the ordinals which
18 continuous at limit ordinals has regular fized point.

N 2. For any cass X of similar structures which is inductive (i.e. closed
under unions of chains). Gy is model-consistent with X (i.e. if m is in %
then m has an extension m’' in @s).

_—
* Research supported in part by an NSF Graduate Fellowship.
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Condition 1 is a well-known axiom of large cardinals. We will discuss
the significance of condition 2 in section 5 below.

In the next section several formulations of the notion of L-algebraic-
ally closed structures will be presented, to be studied in sections 3 and 4.
We discuss @ in section B, concluding in section 6 with some examples
and open questions.

I am indebted to Abraham Robinson for his advice, instruction, and
encouragement, and to Joram Hirschfeld for many interesting conver-
sations.

2. Algebraically closed structures. A first order alphabet consistes of
the symbols (, ), &, v, 71, &, V, infinitely many first order variables
&y, @5, ..., and a fixed supply of relation symbols, function symbols, and
first order constants. If m is a structure, m = (M, {R}, {f;}>, then M is
the domain of m. If A is a set then [.4] denotes the cardinality of 4, but |m|
denotes the domain of m; the cardinality of |m| will be denoted [im||. A sub-
set 8 of |m| is small iff |8] < |Im|. Xf T is a theory, then X, denotes the
class of models of T.

DrrFINITION 2.1. The language L.

1. A second order alphabet is obtained by adjoining a binary predicate
symbol ¢, infinitely many second order variables X,, X,, ..., and second
order constants {C,} to a first order alphabet. Given such a second order
alphabet ‘we define well-formed formula and related notions in the obvious
way, allowing as well-formed such necessarily false formulas as ¢ € ¢,
Crecy, and O, ¢ C,, where ¢, ¢, are first order constants and C,, 0, are
second order constants.

2. A weal second order language L is a langnage determined syntactic-
ally by a given second order alphabet and semantically by interpreting
second order variables or constants in a given model m as nohempty small
subsets of m, and interpreting e as the membership relation. We also place
an important restriction on the substructure relation m, C m, by requiring
that the interpretation of any second order constant defined in m, must
be the same in both m, and m,.

3. A formula % of L in prenex normal form consists of a quantifier-
free matrix preceded by a number of blocks of existential or universal
quantifiers.  is in B, (respectively A,) if there are n such quantifier
blocks and the first block is existential (respectively universal). Sentences
in B, or A, are 2lso considered to be in By and Ay for % = n. Sentences
of B, are called existential.

4. We introduce the restricted quantifiers (z e T), (Vaz e T) in the
usual way where T is a second order variable or constant (cf. [8]).

8, = P, is the class of formulas of L containing only restricted quanti-
fiers. 8,,, (respectively P,.,) is the closure of P, (respectively Sy) under

® ©
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first and second order unrestricted exist
quantification and restricted existentia] an
Note that B, C 8, and 4,C P,,

5. Within 8, we distinguish the clasg 8

entiaEI (respectively universél)
d universal quantification,

of formulas of the form

OX,y e OXy Wty Bty (X, oy Xy 3, oy )
where u is in §,.

DEI«‘INI‘TIC.ON 2.2. Notions of L algebraic completeness. Suppose I is
a class of similar structures, and L is a weak second order lan, ..
propriate to the structures in 3. sage a-

1. A sentence u of L is J-persistent iff whenever u is true in
strueture m in X then w is true in all extensions of m in ¥ (recall thsome
striction placed on the notion of extension in 2.1.2). A formuls, efnz
is X-persistent iff every instance of v is Z-persistent. e

2. Let € be a class of Z-persistent sentences.
G- complete over X iff for any 4 in ¢ which is de
some extension of m in X, 4 is true in m itgelf.

A structure m in X is
fined in m and true in

3. If X is an arbitrary class of similar structures, then ¥, and &,
are X-persistent. F,-complete structures are also called ea:il.stentiallyl
complete and the class of all such is denoted By. Similarly the class of
8;-complete structures is denoted .

4. If O is taken to be the class of all Z-persistent sentences then
C-complete structures are also called - persistently complete and the class
of all such i denoted X’. We do not in general have (2')' = 3”, because
the class C’ of all X'-persistent sentences may be larger tha:n, C.

5. Let X°= X and define inductively I™*+1— (&, Z®=N 2,

Then X'= X°D 3" D..D 2% Tt can he proved that (Z%) = X southa,t
this process terminates with X%,

REMARKS. Bach of the classes By, 8z, Z', and ™ may be taken
to be the class of “algebraically closed” structures of X in the weak second
order sense. When we wish to distinguish our weak second order notions
from the corresponding first order notions we will write Bz,
opposed to BL, I, I

It I' is a subelass of X, I" is said to be model-consistent with % iff
every structure m in 2 has an extension m' in I'. Tt is known, that a suf-
ficient condition for the model-congistency of Z7° (and a fortiori of EL
and 27) with X is that  is inductive (i.e.-that the union of a chain of
structures in 2 is again in X). For the classes BY, Sy, Xy, and 5% the
assumption that X is inductive must be supplemented by assumptions
concerning the existence of special kinds of large cardinals.
3~ Fundamenta Mathematicae LXXXVII
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We will make use of the following familiar notions of cardinal arith-
metic. A cardinal A is called singular if A is the sum of fewer than A cardi-
nals, each of which ig less than A; otherwise 1 is regular. For cardinals
A,y X (vead “A to the weak power #7) equals Y A%, 2 is a strong limit

<t
cardinal iff for p< 4, 26 < 4.

3. Model-consistency of By, Sy, 2’ and X%, We wish to discuss the
following question in this section: if X is an arbitrary inductive class,
does it follow that By, Sy, 2', or 2™ is model-consistent with X? In the
next section we will restrict our attention to elementary inductive classes.

TaEoREM 3.1. If Z is an arbitrary inductive class then Hy is model-
consistent with Z. :

‘We need a lemmas: )

DEFINITION 3.2. A set A in a structure m meets the formula w (@, ..., @)
itf 0T @y, ..oy Gn 0 M, It mEu(ay, ..., @) then A~ {ay, ..., an} # O.

LeMMA 3.3. A necessary and sufficient condition for a structure m to
be in EZ is that for every first order formula w in By, if A is & set in m which
meets u, then |A[= |\m|| or A meets u in every emtension of m in Z.

Proof. The necessity of the condition on m is obvious. We will show
that it is sufficient. _

Let m be a structure satisfying the condition of the lemma and let »
be a sentence in K, satisfied in an extension m' of m. Without loss of
generality « may be assumed to have the form '

: I o
"Xy ... HX, oy ... Hap N vu(®, X),
N 1

V

i=1 §=

where each vy is a basic formula (i.e., atomic or negated atomic). Let

byy ey bpy By, ..., B, be respectively elements and small subsets of |m'|"
I

Ji - Jio R

such that m’ E\/ A vy(b, B), and let i, be chosen so that m’ F A v,,(b, B).

i=1 =1 j=1

‘We may assume that by, ..., b, are not in m, since otherwise if b is in m
then the variable 2y may be replaced by a constant naming by.

Let w, be the conjunction of all first order basic formulas viy, ie. of

all those formulas vs; which do not contain the symbol e. Let w, be the

conjunction of all formulas of the form @ # @, such that by # b,, as’

well as all formulas of the form 2 5 a, where @ is a constant occurring
in u. Let 4;,..,4, be the second order constants occurring in the for-

b
mulas vy, and let 4 = | J 4;. By assumption 4 does not meet the for-

i=1

mula w, &w, in m’ (consider b,...,d,), and [A{< [lmll, so by the as-’

sumption on m, 4 does not meet w, & w, in m. Let ay, ..., a, be chosen

icm®
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in m satisfying w, & w,, such that ay,
let

8i= {a: for some j, vy =

«+y @p all lie outside 4. For 1 <1<y,

»
ae X or Vigj = “dr e X;” and g — ag}.

. s . i
It is then fairly easy to cheek that m k /(vm(a, 5), so that mku B
F=1 N
CoROLLARY 3.4. A countable structure is in, BE if and only 4f it is in B
Theorem 3.1 will be proved by iterating th, i :
e e
. g onstruetion. of the next
Lemma 3.5. Let m be a structure in the 4
that w is a first order emistential semtence defi
lension m' in X with the following property:

nductive class X, and suppose
ned in m. Then m has an ez-

if A is any set which meets w in m’ then either

! A meets u in all extensi
of m' or || > |mj. nsions

Furthermore, any ewtension of m' has the same property.
Proof. We define a chain {m,: a< |mj]} as follows:
1. my= m.
2. For y a limit ordinal, my, = ) m,.

5 a<ly
3. If m, has been obtained, let {4g: f< A} bea well-ordering of the
set of all sets which meet u in m,.

We define another chain {m?:
ag follows: ¢ {mz: p< 2}

2 M= m,.
b. For y a limit ordinal, mf = | jm¥.

B<y
¢. If m{ has been obtained, let mf+* be an extension of mf in which 4,
does not meet u, if such an extension exists; otherwise mf+: = mf,
Take m,,, =5U mf. Note that Mqyy has the following property:
<<,

if 4 is a subset of |m,| which meets % in Mey1, then A4 meets » in all ex-
tensions of my,,,.

Now set m'= | ) m,, and suppose that A meets u in m’. Tet 4,

a<fjml)
= 4 ~|m,|. Then for each a 4, meets u in m,. If for some a A, meets «
inm,,, then 4, meets 4 in all extensions of My a0d a fortiori 4 meets « in
all extensions of m’. On the other hand, if for each a 4, does not meet
in m,,, then for cach a -Aa+1'2-Aa7 and it is clear that |A| = |jm].

This eompletes the proof of the first part of the lemma; the additional
remark is obvious. m

Proof of Theorem 38.1. It is clear from Lemma 3.5 (including the
final remark) and the inductivity of X that for any structure m in X
a structure B (m) may be found in ¥ which extends m and has the following
property:
5%
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if u is a first order existential sentence defined in m and 4 is a sub-
set of B (m) which meets « in ¥ (m), then either 4 meets u in all ex-

tensions of B(m) or |4] = |im].

Form the chain m C B(m)C B({H (m)) = B*m) C ... C F¥(m) C ... and let
E®(m) = | B*(m). Using the criterion of Lemma 3.3, it is easy to see that

n
E(m) e FZ. m
We turn now to an examination of the classes Sy, X', and X*,
DEFINITION 3.6. A strictly increasing function f from ordinals to

ordinals is normal iff it is continuous at limit ordinals, i.e. iff f(y) = supf(a)
a<y

for a a limit ordinal.

TurorEM 3.7. The following are equivalent:

1. Brery normal function has o regular fived poind.

2. For every inductive class X of similar structures, Sy is model-con-
sistent with Z.

3. For every inductive class X of similar structures, X' is model-con-
sistent with . '

4. For every inductive class X of similar structures, X* is model-con-
sistent with X.

Proof. Bvidently 4= 3= 2.

2 implies 1. Let f be a normal function. For « an arbitrary ordinal
let M, be a seb of elements well-ordered by <, with order type f(a) and
let P, contain a single element @, of M’. Assume for o # 8 that M, ~ M
=@. For a>0 let m, be (|J Mz, {<,, P}y where P,= {m: f< a},

[

a

and <,y if we My, ye My where fi< By or (By= & x<py).

Let X'= {m,}. X is inductive, and the cardinality of any structure
in 8 is easily seen to be both regular and a fixed point of f.

1implies 3. We remark first that if 2is inductive and m is in X, then-
it is an easy matter to construct an extension m’ of m in X such that
every X-persistent sentence defined in m and true in some extension of m’
in Xis already true in m’; compare the iterative argument of Theorem 3.2.

If m is an arbitrary structure in X define a chain

My C...Cm, C...

by the following transfinite induction:
8. My = M.

b. For y a limit ordinal m, = | m,.

a<y
¢. M, is an extension of m, in X such that any X'-persistent sentence
defined in m, and true in some extension of m,,,.is true in m,,. Further-
more, if it is possible to take ||jm,,,|| > |m,, we do so.

Second order foreing, algebraically closed structures and large cardingls 147
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Note that we may in fact assume
since otherwise it is very easy to show that M, has an extension m’ in ¥
such that m, has no Pproper extension in A ;nd then m’ isl'Il g"z (nd
even XZ%) for ’Frivial reasons. Thus if we define the fum‘;’cionu;r by (;‘l(ljg
;iﬂmﬁl’rﬁ;ﬁl f is strictly increasing and hence, in view of clause b above,

Let 2 be a regular fixed point of 5 then 2 is a Iimit eardinal Consid,
any X'-persistent sentence u defined in my and true in some ext.ensio 61'.
of m;. By the regularity of 1 and the construction of m,, u is 'def]iln:g
in m, for some a < 1 and is therefore true in Myy15 Since it i:;’ - persistent
% must hold in m;. Thus m, is in 2, and evidently m exte;dls, m 11,

1implies 4. Let X be an inductive clagg of stmegu.res‘ Assun;jn 1
we have just shown that 3’ is model-consistent with 2. Retainin g;;hé
assumption that 1 holds, we may prove by a very similar argumenf that
if 2™ is model consistent with X then X+t i model-consistent with >*,
from which it follows by induetion that for every integer n, X7 ig model3
consistent with X There is however one complieation in th:e proof of the
induetion step which requires some attention: if X is inductive it need
not follow that X" or any other 3" is inductive, so that clause b in the
above definition by transfinite induction may carry us out of Z® We
modify the clause as follows:

b’. For y a limit ordinal, m, D |Jm, and m, is in I if | Jm, e In

thab Jor every o, [,y > m,],

a<y o
then m, = E} My, and the argument goes much as before (notzythat if

a<y
Imil= 4 and 2 is regular, then m, = (U my,).
a<i
. Thus for each #, X" is model- consistent with 2. Let m be in X and
define another chain by transfinite induction satisfying:
. My = M.
b. For y a limit ordinal m, = | Jm,.

. . B (I<V
¢. For y a limit ordinal and » a nonnegative integer, m,,,,, is an

extension of m,,., which liey in I+,
Let f(a) = |lm,)| and let A be the first regular fixed point of f. Then

my I8 in £ and m, extends m. m

4. The elementary inductive case, According to Theorem 3.1, if X is
an elementary inductive clags then Iy is model-consistent with 2. In
t_hls seetion we study the corresponding problem for Sy, X', and 2=,
We begin with 8.

Taeormar 4.1. The following are equivalent:

LIf X ds an elementary inductive class then 8z is model-consisient
with X, :

2. There are arbitrarily large cardinals A such that A= 2.
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Our proof will depend on a downward Lﬁwenheim—Sko}em .theorem
for 8;. It is convenient to introduce the following notation: if u is a sen-
tence with constants @y, .., dpy Ay, ..., Ag Which are defined in a structure
in, then m,, is the substructure of m generated by {a, ..., p} v A1 v ..
. 4,. We will occasionally write |ju]| for max (||m,f, %)

LEMuA 4.2. If m is a structure and w s & sentence of 8, defined in m
then the following are equivalent:

1. mEu.

2. Tm' Cm, |lm']| = ™, m’ ku.

Proof. We first sketch a standard reduction of §; to §; achieved by
moving unrestricted quantifiers outward, past restricted quantifiers,
Fix a one-to-one function F: |m|X |m|—|m| and think of it as a ternary
relation. We associate to « a sentence # in 8, by iterated applications of
the following transformations:

4.2.1. A subformula of the form Hz ¢ AH X w/'(z, X) may be replaced
by BXHx e Au'(z, X).

4.2.2. A subformula of the form Vz e AH X u'(z, X) may be replaced
by HHVw e Az, {y: Hz,y)}).

4.2.2 requires some explanation. H is a second order variable, which
we may interpret as representing a relation via the function F. (Intuitively,
H(z,y) represents “F(z,y) e H?.) All that iz necessary for a formali-
zation of 4.2.2 is a formalization of the atomic formulas occurring in
w'(z, {y: H{z,y)}) which involve {y: H(w,y)}; these have the form
te{y: H(z,y)}, {y: H(m y)}et, or {y: Hiz,y)}e{y: H(z,y)}. We for-
malize the first formula as

Hz(F(z, 1, 2) &2 H).

The other two formulas are tautologically false and may be formalized
by Hz(z # o).

Evidently for structures of regular cardinality the formulas occurring
in 4.2.2 are equivalent. However in the singular case the desired relation H
need not be small. Nonetheless, if the transform 4 is defined by successive
transformations of the type described in 4.2.1 and 4.2.2 the following
properties are clearly satisfied:

4.238. 4 is'in 8], 4= 8X; .. LX,%'(X;, ..., X,) where 4’ contains
ne bound second order variables (and is in §,).

4.2.4. If m k4 then m Fw. If |m|| is regular and m k% then m E 4.

4.2.5. Tf m F u then there ave sets 4, ..., 4, which may not be small
such that m k&' (4, ..., 4,). '

We will now prove that 1 = 2, establishing the lemma (the reverse
implication is obvious).
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Suppose then that m ku, and that we have introduced s suitable
function F: |m|X lm|—|m| and have defined the transform 4. Fix sets
4y, ..., Ag according to 4.2.5 such that m k 4'(4,, .y Ag). We may inter-
pret 4'(4y, ..y 4g) a8 a first order sentence, construing 4y, .., 4, and
all other second order constants in 4’ as unary predicates. Apply the
downward Lowenheim-Skolem theorem to m to obtain a substructure m'’
of m which is an elementary substructure with respect to all these predi-
cates as well as the ordinary first order predicates occurring in u’ and the
predicate F'; we may assume that m, Cm”, and |lm'|| = |ju||. Let A;= A7,
so that m” Fu'(Ay, ..., 4). Bxtend m” to a structure ' satisfying
m' Com, |lm'|| = |ul*. The}l m' Fu'(Ay, .., A) and A], oy Ay are small
subsets of |m'[, so m' k4 (compare 4.2.3). Therefore (4.2.4) m'ku, as
desired.

Proof of Theorem 4.1.

1implies 2. Let B be a binary predicate symbol, and take T — a,
or any other set of tautologies involving B. Then I = X is an elementary
inductive class. o

If m is in Sy, A C [m] is small, |ml] = 4, and B C 4, then the sentence

4.1.1. HaVye A[E(y, 2)<>y ¢ B)
is in §; and it true in an extension of m and hence in m. But as B varies
in 4.1.1 this requires the presence of 21! distinet elements in m. It follows
that A = 2%.

Suppose now that 2 is singular, and let {4,: « < pu} be a collection
of fewer than A subsets of |m| such that for edch a |4,] < 4, while (] 4,

a<y
= |m|. Since m iy in Sy, it is easy to see that for each a

4.1.2. m E BaVy ¢ A(H(y, o).
For each a choose a, such that mkVyeAd,(H(y,q,)) and let B
= {a;: a<<u}. Since m is in Sy, therefore m k EaVy e B[ 1H(z, v)],
4 confradiction.

Thus A is rvegular and A= 24, which implies that A= 1% (ef. [1]).

2 implies 1. Let X be an elementary inductive class, = 2, and
let m be an arbitrary structure in . Choose A= |T|F, |m|, such that
& = ), Bxtending m if nocessary, we may assume that |jm| = A.

If u ig o sentence of 8, which is true in some extension m’’ of m in X,
then # i3 true in some substructure m' of m'’ of cardinality <2 by

- Lemma 4.2; since X is elemontary, m and m' have a joint extension of

cardinality 1 in 2. Thus we have constructed an extension of m of cardi-
nality 1 in which u is satisfied. Since there are A% = A such sentences de-
fined in m it is clear that we can iterate this construction to obtain an
éxtension m, of m in X of cardinality A such that any sentence u of §;
defined in m and true in some extension of m, in X is true in m,. Iterating
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this least construction A times and applying the regularity of A (which
is a consequence of 1 = A*) we see easily that m has an extension in S, of
cardinality 4. B

The class Sy is related to another well-known class of ‘structures,
the X-homogeneous universal structures, introduced in [6, 7] and more
fully investigated in [9, 5].

DEFINITION 4.3. Suppose X is a class of structures and m is in X,

1. m is Z-universal iff for each m’ € X such that |m']| < ||m| there is
an embedding f: m'—m.

2. m is X-homogeneous iff for each m’ C m in X such that m'| < [jm|}
if f: m’—>m is an embedding then f extends to an automorphism of m.

THEOREM 4.4. If X is an elementary class of structures, m is Z-homogene-
ous universal, and |m|] >, then. m is in Sy.

Proof. Suppose mCm'FueS,, and « is defined in m. Then « is
satisfied by some substructure m' of m’ of cardinality at most jju". As
an easy consequence of the homogeneity and universality of m we can
find an embedding f so that

m
w ¥
N

m

commutes .

It then follows that m ku. @

There is an analog to Theorem 3.5 which for ~ elementary inductive
relates the model-consistency of 2> to the existence of fixed points for
definable normal functions. The rest of this section is devoted to this
theorem and related results, some of which apply to 5’ (Corollary 4.11
and Theorem 4.15).

Let Z Dbe the usual language of set theory, whose only predicate
symbol is the binary predicate symbol ¢ denoting the membership re-
lation, angmented by the following unary function symbols: T, P, 8, B
intended to denote respectively tramsitive closure, pair set, power set,
and the function R(x) = {y: tk(y) < «} defined for ordinals x, where rk
ig the ordinary rank function defined by rle(y) = sup (rk(2)-+1: zey)
and containing in addition the constant o denoting the integers.

) We will be interested in the (S,, Py) -hierarchy defined relative to Z,
in which quantifiers of the form:

*

Vo el (1, .yyn) or Ha €F (YyyuyYn) ,

for F & term of Z may be ignored. Let us denote the sets of formulas thus
defined by 87, P;. It follows from Lemma 5, p. 12 in [8] that formulas
in 8y and P} are equivalent with respect to Zermelo-Fraenkel set theory
to formulas in §,,; and P, ., respectively, for n > 1.

icm®
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For the remainder of this section X, will denote the class of all struc-
tures of the form m = <|m|, {B™}> where B™ is a binary relation on m.
2, is inductive and elementary.

Lemma 4.5. Suppose m is in Zg and u (v, @y, y) is the formula Bz, y) &
& B(y, #). Then:

1. In m, VX EY[u: XX X3T] in the sense that

m bk VILY Ve, 0y e XBy ¢ ¥ (u(@, o, y) & Vo), o) X{u(z], 55, y)) =
= (0, = a0, &2, = ;).

2. |Im|| is an uncountable reqular strong limit cardinal.

Proof. Obvious. &

Lemma 4.5 serves to indicate the power of the language L when it
is interpreted in models in Zj. According to part 1, we may quantify
over small relations of any fixed rank (“arity”), as well as small subsets.
The regularity of |[m|] eliminates all the pathology which might otherwise
accompany such quantification, the uncountability of |m| permits us to
discuss syntactical and semantical notions such as satisfaction in L,
since @ may be embedded as a small subset of any such |m|, and the fact
that [lm]| is a strong limit cardinal will be useful when we need to replace.
an ordinal a < |m|| by a larger cardinal, as well as in dealing with re-
stricted quantification of the form Wz e S(y), or Vo e S(y).

We will now describe a transformation which associates to each
formula « of Z a formula U in the language of Z,. It will be convenient
to denote the structure <&(a), { elgw}> by 7(a).

DEFINITION 4.6. :

1. Let Rk(X, Y, H) be a formalization in the language of X, of:

<X, {H})~r(X)

(or, somewhat more preecisely, of VS EI(u: Sx SET) & <X, {H}y ~
r(X); the truth of the first conjunct is required to adequately. formalize
the second).

Let w(@y, ..., #%; X, Y, H) be the formula:

@ e Y &.. &Gwge Y &RE(X, T, H).
Lot Bxt(X, ¥, I; X', X', H') be:
Rk(X, Y, H)&Rk(X, ¥V, H) & YCY &A=H ~Tx Y.

Thus w(ay, ..., 45 X, ¥, H) says that ..,z may be construfacl
as sets of rank < |X| via the isomorphism of <¥, {H}) with ¢(|X|), while
Ext(X, Y, H; X', Y, H') means

(1 X)) = KX, {1} CKY, {7 > (1 X)) -
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9. Let u(wy, ..., %) be a formula of Z containing constants a, ..., a,
denoting sets of rank < 1, where J is some infinite cardinal, and suppose
m is a structure in X, of cardinality at least 7. Choose 4, 8, ¥ satisfying
Rk(4, 8, B) in m such that |4|= 2, and let ai, ..., a, correspond to
@y, ., Gp under the isomorphism (S, {E}) ~ r(|4|). We define the trans-
form U(yy, ..., Ys; X, ¥, H) corresponding o .« by induction on the
complexity of u, in such a way that U formalizes the following notion:

Y1y ey Yg correspond to sets oy, .., of rank < |X| via the iso-
morphism (¥, {H}>~ r(|X]) and %(@, ..., %) is true.

We may suppose without loss of generality that the function symbols
T, P, S, R and the constant w do not occur in w, since any formula «’ is
equivalent to such a formula . The definition of U is as follows:

2.1. If « is atomie, so that w is ?, e {, where ¢, and {, are variables a;
or constants a;, then U is: :

HE,t) &w, 4 X, Y, H) &Bxt(4, 8, B; X, Y, H)

where for ¢=1,2 if = a; (vespectively ;) we take ?;==a; (respec-
tively ;).
2.2, If w=1u; &uy, w3V, or “ly and U,, U, are defined corre-
sponding to u;; u,, then U= U, & U,, U;vU,, or 71U,, respectively.
2.3, If w(@y, ..., 2) = Hau' (@, 2y, .., %) and T, ¥y, ooy Y5 X, Y, H)
is defined then U(yy, ..., %5 X, ¥, H) is:

BX, ¥, H', y(Bxt(X, ¥, H; X', X, H') & U'(Y, thy s ¥; X', T, HY))

Lmvwa 4.7, Suppose (@, ..., @4) is o formula of Z and all of the con-
stants mentioned in u have rank << A where 1 is an infiwite cardinal, that m is
in Ly, lmll > 2, m satisfies 4.3.1 and 4.3.2, and that A, 8,5, a;,...,a,
have been determined as in Definition 4.6. Let Uy, .., yy X, ¥, H) be
the formula associated with w. Then for all s;, ...,s, in |m| and all small

X,Y,H such that mFw(sy,..,s;5 X, ¥, H)&Bxt(4,8,8; X, ¥, H)
mEU(sy,..,s5; X, Y, H)

’

if and only if  r(im|) F w(sy, ..., 8)

where s; corresponds to s; via the isomorphism (¥ (7} = (| X)), Further-
more, if w is in Sy, then U is Z7-persistent.

‘Proof. The first statement involves a trivial induction on the com-
plexity of u; the fact that |m|| is a limit cardinal enters in the trestment
of the existential quantifier.

For the second statement it suffices to prove the following assertions:

1. If % is in §; then U is 3,-persistent.

] 2. If » was obtained from ' by existential or restricted quantification
(in the sense of Z) and if U’ is ZP-persistent then T is 2y -persistent.
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3. If w= Tlu’ and U’ is I7-pewsistent then U= 0" is I -per-
sistent.

1 and 3 are thoroughly trivial and 2 is straightforward. m

LeMua 4.8. Suppose that X3~ is model-consistent with X, or, for
n =0, that there are arbitrarily large regular strong limit cardinals. If u is
a sentence of Sy, m s in ZF, m is a regular uncountable strong limit cardinal,
u 4s defined in r(|ml), and r(|m|) & u, then V  w, i.e. u is true.

Proof. Since [[m| is regular we may assume that % is a subformula
of a formula of the form ‘

4.8.1, Wy Vo, ... Qyyy 0(Byy wry Bpyq)
where @ is V or L and » is in 8¢ (ef. [8]).

The proof then proceeds by induction on n and the complexity of u,
and is immediate if % is in 8 or if » was obtained by existentisl or re-
stricted quantification (in particular we may assume n > 0).

Assume therefore that

U@y, cony i) = (V) U (@, Ty, ..y @)

isin 8y, (hence in Py, in view of 4.8.1), and that r(|m|) k « while V £ ~Ju.
Then for some s, VE ~u'(s). «' is in 8}_,.

Take an extension m’ of m in Zp~* such that [m| >1k(s), and [jm’
is a regular strong limit cardinal. By the induction hypothesis, if »(|jm/||)
Ew'(s) then V k u'(s); hence 7(||m’||) E TJu'(s). Then r(|m’|)) F TJu which is
in. 8. :

Let U be defined in m corresponding to « as described in 4.6. Note
that Lemma 4.7 applies to U in m' as well as in m. By that lemma,
m' kU and 7\U iy Zy~'-persistent. By definition of XF it follows
that m E 71U; hence #(||m||) F 7Ju. This contradiction completes the proof
of the lemma. B .

DeriNizIoN 4.9. A relation R(2y, .., 2s) is definable iff there is
a formula w (@, ..., #x) of Z (which may mention sets by, ..., by in V) such
that for all a, .., @

Rty ey o) i and only i V Eu(ay, .., an) .

R is said to De Sk- ov I%-definable iff the formula v may be taken in S,
or P} respectively. In particular we may speak of definable classes and
funetions. '

Lmvma 4.10. If n >0, m is in S} and 2§ is model-consistent with Iy
then |lml| 45 a regular fized point of any Sy -definable normal function f whose
defining formula w(x, y) is defined in r(|m]]).

Proof. Let f be defined by u(z,y) in 8, and let U(z,y; X, ¥, H)
be the corresponding formula defined in m relative to some fixed choice
of A,8,H. For A< |m|], p=F(A), choose m' in Z} such that m Cm’
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and |m'] >p. I r(m})F Tu(d, p) then VF Tlu(l, u); therefore

r(mf) Fu(l, p).
Fix A, §’, B’ and A" in |m| such that

mEw(i; A, 8, B') & Bxt(4,8,8; A', 8, B'),
and such that A’ corresponds to A. Then:
m' EHTyU@Q,y; A, 8, F').

which is XP~*-persistent, so m k Hy U (X, y; A', 8, B'). Let ' in jm| be
such that m k U(4', ¢'; A', 8', B') and let s bo the set corresponding to s'.
Then V Fu(2, s); it follows that s = w. Thus ' is in |m|, and therefore

|lm)] = p. Thus |m)] = sup f(1). The lemma follows immediately. @
A<{[m||

COROLLARY 4.11. If n >0 and Z¢ is model-consistent with X, then
there are arbitrarily large cordinals A such that A is a regular fized point
of all 8*-definable normal functions defined over v(2).

‘We will obtain a partial converse to this corollary by studying certain
definable normal functions associated with definable classes of structures.

Dermvariow 4.12. If I'is a class of similar structures, the Lowenheim
function f for I' is defined as follows:

Sr{2) = p iff  is the least cardinal > 1 such that for every structure m
in I' such that [m] is in B(4), if % is defined in m and true in some extension
of m in I, then % is true in some extension m’ of m in I" such that |m/|
is in R(u).

Levwa 4.13. Suppose >0, I' is an S:-definable class of similar
structures, and f is the Lowenheim function for I. Then:

1. f is P},,-definable.

2. I" is 8},,-definable. :

Proof. Both assertions may be verified directly. We remark that
such quantifications as: (Vu defined in 1) may be formalized by restricted
quantifications since all such formulas u may be construed as finite

functions from w to o v |m|, and henece lie in S(S(S(T(I’(m, Mnl))\))).

COROLLARY 4.14. If T is o elementary then for each n X" is 83, - defin-
able and the corresponding Lowenheim Function fn is P}, ., - definable.

We can now augment Corollary 4.11 by

TI:EEOREM 4.15. Suppose that there are arbitrarily large cardinals A such
that A is a regular fived point of every Sy, - definable normal Sfunction defined

over r(1), and that ¥ is an elementary inductive class. Then 3™ is model-
consistent with X.

Proof TLet fx be the Lowenheim function for X* and let f(2)
£

= Sup(fy(4), ..., fo-q(2)- Then § is Py, -definable. f may not be normal

e ©
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because it need not be strictly increasing. However f is dominated by the
8% -definable normal funection g determined by

g(4) = sup (g(p)+1: p<2+f(2) for all 2.

If m is & structure in X and m < B(A), let p, ..., g be regular fixed
points of g, and hence also of f, such that 1< iy < py<< ... < fn. It is
easy to show inductively that there is a chain

mo= g C 1y Cmy C ... Cmy
such that for 0 < ¢ < m, mye % Thus the theorem ig proved. ®

CoroLLARY 4.16. The following are equivalent:

1. Bvery definable normal function has a regular fized point.

2. For every clementary inductive class X and every integer n, I™ is
model-consistent with XZ.

TurorREM 4.17. The following are equivalent: .

1. There are arbitrarily large cardinals A such that 1 is a regular fized
point of every mormal function definable over A (i.e., by a formula u defined
in r(d)).

2. For every elementary inductive class X, X% 4s model-consistent
with X. )

Proof. 2 implies 1. It follows from Lemma 4.8 that for any struc-
ture m in X%, |m|| is & regular fixed point of every normal function defined
over |m|.

limplies 2. Suppose &= 2y and 1 >1k(T) is a regular fixed point
of all normal functions definable over 1, and in particular of all the
Lowenheim funetions f, associated with the classes ™ Then it follows that

{{m e X" |m| e R(A)}: n e w}

is a definable set of sets. Thus starting with any m in X such that |m]
e E(1), we may obtain a chain

[m=myCmy CmyC .. Cm, Cmy C e (¥ << A);

such that for cach limit ordinal y and integer n, m,, € 2%, and |m,.,)|
e R(A); under the assumptions on A, this may be carried out in ZFC.
Let m' == [ Jm,. Then m' e 5. This completes the proof. m
a<d

5. Forcing; Gy. There are two notions of algebraically closed structure
with respect to firgt order logic which have been developed recently by
Abraham Robingon, namely the notions of “generic structure” with
respect to cither finite or infinite forcing. The latter generalizes to the
weak second order language L in an obvious way, and is intimately related
o our class £%; see Theorem 5.5 below. The first order case is described
in detail in [10] and [2].


GUEST


156 G. L. Cherlin

DrrINITION 5.1. If X is a class of structures and m is a structure
in X, we define the forcing relation m § u (m forces w) with respect to X
for sentences # of I by induction on the complexity of u:

1. For « atomic, m # « iff m Fu (this applies to sentences of the
form a e A as well as first order atomic sentences).

2.m b u, &uy i mE u and mE u,.

3. m tk wuyVu, I m ¥k u, or m o u,.

4. m § “lu iff there is no extension m’ of m in X' such that m’ § 4.

5. m § (Ho)u(x) iff for some a in |m|, m k u(a).

6. m § (LX) (X) iff for some small set .4 contained in |m|, m k u(4).

DerINITION 5.2. A structure m of X' ig generic iff for cach sentence u
of L defined in m, m ¥ w if and only if m F . The class of generic structures
in X' ig denoted Gy.

The following standard lemma of forcing theory may be proved
without difficulty:

Levwa 5.3, Suppose m is o structure in X, w is defined in m, m & u,
and m’' is an extension of m in . Then m' k u.

CoroLLARY 5.4. If my,my are generic.and m, C m, then m, <, m,.

TEEOREM 5.5. If Gr or Z* is model-consistent with X, then Gy= I=,

Proof. We will simply sketch the argument; details for the first
order case may be found in [2].

First one proves that @, and I* are both model-complete, ie. that
for m; C m, in I where I'= @5 or %, m; <z m,; for ¢, this is just Corol-
lary 5.4. Next it may be proved that if I'is an arbitrary model-complete
model-consistent subclass of X, then I'C @ ~ I*, The proof of this fact
simply consists of a direct verification that structures in I' satisfy the
defining conditions for G, ag well as for XT*,

From these results the theorem follows at once. m

CoROLLARY 5.6. The following are equivalent:

1. Bvery normal function has o regular fized point.

2. For every inductive class X, Gy is model-consistent with X.

. Although this corollary is an utterly trivial consequence of Theorems
3.5 and 5.5, it should be noted that in pathological cases Gy and Z*® may
actually exhibit radically different behavior.

The model-consistency of G, or Z® is the basis for any real theory
of these classes, and it can be used to characterize 5° abstractly as the
L-model-companion of X (cf. [1], sections 1 and 6). We give the following
application of model-consistency as an example.

‘THIEORF.;M 5.7. If Zis am elementary class of structures and 3 is model-
consistent with X then I is closed under L-clementary substructure, i.c. if
My <pMy and my i in Z°, then my is in 5%, .
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Proof. It is evidently sufficient to apply the following to I'= I™
for n=10,1,2,..: ,

5.7.1. If X' is elementary, I'C X is cloged under L-elementary sub-
structure, and I" is model-consistent with 2, then I" is closed under
L-elementary substructure. »

To prove 5.7.1, suppose m, <z m, and My i3 in I, Since X iy ele-
mentary, my is in X. Let my be any extension of iy, and let u be a I'-per-
sistent sentence truc in m,. Then by a standard compactness argument
a structure m, can be found in X such that

My,
7N

My m,  commutes .
A
N
My

- By the model-consistency of I', m, has an extension m; in I' The
Mg F 1 => My Fu=>my F u=m; Fu It follows that m, is in I”. m

6. Examples and open questions. Motivated by various formulations
of the notion of algebraic completeness in first order logic, we have de-
seribed four classes of special structures: By, Sy, X7, and 2. It is clear
that for interesting classes X of algebraic structures, X' and Z® are ex-
tremely difficult to “compute”. On the other hand H, and Sy are fairly
well-behaved, according to Lemma 3.3 and Theorem' 4.4. We might also
consider the class Sy of §;-complete structures, but as yet we know of
no example in which S, and S differ.

It should be possible to deseribe By and 8 explicitly for a number
of interesting clagses X. We give two simple examples: .

Exampin 6.1. It X is the class of all fields, then Xy is the class of
algebraically closed fields (as in the first order case) while S is the class
of uncountable algebraically closed fields.

Proof. If A4 iy the class of algebraically closed fields and B ig the
cdass of uncountable algebraically closed fields, then 4D H;D 8;D B,
the last inclusion following from Theorem 3.10. All fields in A—B are
countable; therefore, by Corollary 3.5, A = FY. Tinally, to see that
(A—B) ~ 8y == 3, consider the formula

HX(VoeX[atca] & Vo, ye X[at= = o=y
&GUz eXVyeX(y2 # ). W
Examerm 6.2, Tf X ig the class of ordered sets, then B is the class

of densely ordered sets without first or last element such that no interval
is small, while Sy is the class of uncountable saturated ordered sets.
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Proof. The first statement is a straightforward consequence of
Temma 3.3. For the second part, since each saturated ordered set is
homogeneous universal, each uncountable one is in Sy. It i3 obvious that
each ordered set in Sy is saturated; to see that each is uncountable consider
the formula:

AXVz e XHye X(z<<y). M

In Examples 6.1 and 6.2 B3 coincides with the class of struetures
in B in which all infinite definable subsets of [m| have mrdma,hty [lml].
The next example shows that this last property is not a sufficient con-
dition for member-ship in EY.

ExAMPLE 6.3. Let @, B be binary predicate symbols and lot 1,, B,, ...
be unary predicate symbols. Consider the following axiom scheme:

1. Va,y (B(z, y)=Q(@,y) &Q(y, ).

2. B is an equivalence relation.

8. Va,y,2,w(Q(z,9)=[Q(@,2) &Qw,y)«=R(z,w) & R(y, #)]).

4. Vz, ?/a'z(Q(m3 ) &Q(y, 2) = B(z,y )WER(y, z))

5. For each integer n B, is the unique equivalence class E with
respect to B such that |E| = n.

6. Vally(Q(e, y)vQ(y, 2) & TIR(w, y).

These axioms can be formalized by a first order theory 7. Lot 5 = X.
It m is a structure in X and m' is the graph obtained by reducing m modulo
the equivalence relation R then each connected component of m' contains
exactly two vertices and @ is asymmetric on m'.

Let m be the particular model defined as follows:

1. Let 44, 4,, ..., By, B,, ... be mutually disjoint sets such that for
each integer » [dn]=mn and ]B,,] = §. Take |m|= U (4n © By).

2. For each integer % and each  in |m|, En(x) holds if and only if 2
is in 4,.

3. For 2,y in |m], @ (x,y) holds if and only if for some integer n:

B,y € An; €,y € B; & e Ay &y € B, and w is 0dd; or weBy &y e Ay and n
is even.

4. For 2,y in |m|, B(x, y) holds if and only ifQ(x,y) &Q(y, x) holds.
Then m is in 2. We claim:

m is in B, every infinite definable subset of m has. cardinality |m|,
and m is not in FL

Proof. Let D be the diagram of m, and let ¢,
many distinct new constants. Define:
1. Uily) = “BalQ (y, ») & TR (=, y)1%;
Uyy) = “Ha[Q (2, 9) & 1B (w, y)]".

Cyy +.. be infinitely
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2 Tor 4==1,2, let I 4

8, = {U, ((‘1 v {Va(Bu(z) = T1Q(e,, 1) & 02, 6)): 1< n< oo},

3. l‘or 4 == 1,2, let ) .

= {Uey): 1j < o0} u - _
wAVa(Bu@) = T1Q(es, 2) & TQ(@, o)) 1<j, n< oo).

4o D= Lo D; for d=1,2, =108 and =Ty 8.

We will sketeh the argwment very briefly.

For == 1,2, 13" muy be proved complete by a modification of
Vaught’s test involving the - categoricity of T relative to any finite
set of constants in the voeabulary of I (15" is not itself x,- categorieal),
Tt follows froin this that 77" is also complete, and then that 17 is complete.
Since 1" is eomplete, 1;][@1’0[01‘0 m is in BE. Using the completeness of

T; for i ==1,2, it is not difficult to prove that |m| has no small infinite
deh.nable subsets. Finally, note that the countable set U 4, meets

n
Q(z,y) & E(x,y) in m but not in all extensions of m in ~. m
We close with two open questions:

Provrem 6.4, Ts there an inductive clementary eclass 5 with the
joint. embedding property and amalgamation such that 8, contains
a structure which is not homogencous universal? In particular are there -
groups in Sy (X== the class of all groups) which are not universal? (All
such are homogeneous.)

Propraem 6.5, Can Theorern 4.13 be improved to yield a natural

condition equivalent to:
“for every elementary inductive ¥, X' is model-consistent with =%
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Recursiveness of initial segments of Kleene’s O
by
Carl G. Jockusch, Jr.* (Urbana, IlL.)

Abstract. Tt is shown that for any constructive ordinal a > w?, there are both
yeeursive and nonrecursive initial sogments of the partial ordering <, of Kleene's (4]
which bave order type .

Let 0 be Kleene’s set of mnotations for constructive ordinals and
let <, be Kleene’s partial ordering of 0. If a € 0, let 0 (a) denote {b: b <, a}.
Tt is well known that for any a € 0, O(a) is a recursively enumerable (r.e.)
subset of O which is well-ordered by <, with order type |a|, the ordinal
for which @ is a notation. Our purpose here is to determine which con-
structive ordinals have notations a such that O(a) is recursive (non-
recurgive). We prove that every constructive ordinal has a notation ¢ such
that O (a) is recursive and in fact that there is a IT} path P through 0 such
that 0 (a) ig reeursive for all 4 in P. In the other direction we show that
the constructive ordinals which have notations @ with O(a) nonrecursive
are exactly those which are > w? Our constructions in fact show that
if o> ®is a constructive ordinal and A is ‘an infinite r.e. set (other
than ) then a has a notation a such that O(a) is m-equivalent to A.

Most of our notation is standard. In particular, we use g for the eth
partial recursive function and call e an index of .. We use the recursion
theorem in the following informal style: in the definition of a partial
recursive function ¢, its index may be assumed known in advance. Of
course such arguments arve easily formalized. An index of a recursive
set is any index of its characteristic funetion. A path through O is a sub-
set of O which is lineaxly ordered by <<, and contains a notation for each
constructive ordinal.

Information on Kleene's O can be found in [1], [2], or (5]. In pax-
ticwlar we shall need the binary recursive funetion --o which represents
ordinal addition in the sense that |a-ob| = |a]+ ] for a,be0. Also +¢

* This rosearch was suppored by NSF Grant GP 29223. The author is grateful
to G. Kreisel for introducing him to this subject and for muech helpful correspondence.
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