Upper and lower Lebesgue-Stieltjes integrals
by
D. K. Dutta (Kalyani, Nadia, West Bengal)

Abstract. Following Perron’s method of introducing major and minor funetions
we have defined upper and lower integrals of a function defined on a closed interval
and have shown that their coincidence gives rise to an integral completely equivalent
to that of Lebesgue-Stieltjes. Some properties of upper and lower integrals are established
and in particular it is shown that these are AC-o on the interval. Finally it is shown
that if the upper and lower integrals are not equal then the function is not & -mesurable.

§ 1. Introduction. Let w(x) be 2 non-decreasing function defined
on the closed interval [a,b]. We extend the definition to all # by taking
(@) = w(a) for z<< a and w(r) = w(b) for » >b. Let § denote the set
of points of continuity of w(x) and D =[a,b]—~8. Let 8, denote the
union of pairwise digjoint open intervals (aq, bs) in [a, b] on each of which
o(z) is constant,

8, = {a;, by, Gs, b2 -} 5 S, =88, and S;=[a,b]18—(8+ &)

R. L. Jeffery [6] has denoted by UL the class of functions f(x) defined
as follows:

flx) is defined on the set [a, b] § such that f(z) is continuous ab
every point of [a,b]S with respeet to 8. If x, e D, f(x) tends to a limit
as z tends to x4 or 2,— ovelf the points of §. These limits are denoted
by fl@e+) and f(#—) respectively. Also, f(z) = f(a+) for 2 <<a and
f(a) = f(b—) for @ > b. f(x) may or may not be defined at the points of D.

Suppose Uy, C U contains those funetions f(z) in U such that for
@, € D both f(xy-) and flz,—) are finite.

DerisrrioN 1.1, Let f(x) be o-measurable ([3], [6]) on a w-measur-
able set B Cla,b] and let A <f(r)<B on E. Let

A=y<ph < <Yn=2B
be a subdivision of [4, B], and

ei=F Wi<f<Yip,i= 0,1,..,n—1).
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n—1
The limit of g{:‘) yiled, a8 max|yi—y, ;| -0 where |e], denotes the

w-measure of e;: is called the Lebesgue—Stieltjes integral (Def. 3, [6
over F and is written as [fdo. (D5 L60) o fle)
E

This definition may be extended to unbounded functions in the
usual way.

_Some properties of Lebesgue—Stieltjes integrals are given in [6] and
als? in [3] and [4]. The purpose of the present paper is to introduce a new
definition of the Lebesgue-Stieltjes integral by a modification of the
procedure introduced by Perron, and also to study some properties of
upper ‘ancl lower Lebesgue—Stieltjes integrals defined in this pa.p.o.r )

We have ilenoted the upper and lower w-derivates [6] of a full'ction
Fi#) e Uy by Df,(z) and Df(2) respectively, and the w-derivative ([3]
[61) of f(x) by f.(x). The outer w-measure of a set & is denoted by m*(E)’

N If a propertyhP is satistied at all points of a set A except a sob of.
w-measure zero, then it is sai is isfi : 3 wl
e e gihn(}st . Pz?llgstlgitAIj is satisfied w-almost everywhere

We require the following known definitions and results:

. DzFINTTION 1.2, [6]. A function f(s) defined in [a, 5] and in class U
is absolutely continuous relative to w, AC-w, if for ¢ >6 there exiqé; z) >8
81_1‘0]1 thfxt for any set of non-overlapping intervals (s, 1) on .[a' v‘b] ith
% {o(@;4)—o(@i—)} < 6 the relation o A

2 [floiH)—flom—)| < e

is satisfied.
Let
" . ’ - s p o
OBy <& < Ty < 113"\\ <m1L<$.,’L<.b

be any subdivision of [a, b]. Then the intervals
(w1, 21), (s, B3}y ey (ny 2,)
are sai ax
Te said to form an elementary system [2] in [a, b] which is denoted by

I=(,2;) (i=1,2,..,n).

Let
ol = g;{f(l‘;'?“)“f(mr—)} ) I, = i’ {w(m;—}-)_ w (a_)} .

DErIx N i
ot C]aSjT;Ehqu.s"dl_pl A function f(») defined on [@, 0] and belonging
e ¢ fO; ) >u 0 szl to }')e absolutely continuous above relative 1o w, AC-w
y ere exists 6 > 0 such that for any clementary q;yistem I
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in [a, b] with |I|, <  the relation oI < & holds. Tt is said to be absolulely
continuous below relative to w, AC-w below, if the relation oI > — ¢ holds
whenever |I},< 6.

TrmoreM 1.1 (cf. Th. 3, [2]). Let f(z) be defined on [a, b] and be in
class V. If f(m) s either AC-o below or AC-w above on [a,b], then f(r)
is BV-w, [1], on [a, bl

TaEEoREM 1.2 (Th. 2.1, [3]). If f(z) € W, be AC-o below on [a, b] and
if fo(@) = 0 except on @ set of w-measure zero in [a, bl, then f(x) is non-
decreasing on [a, b]S.

TrrorEM 1.3 (cf. Th. 2.5, [3]). If f(@) € Wy be either AC-w below or
AG-w above on [a,b] and if fla+) =0, then

f(#) = fila)—folw)  for all @ <la, bl ,
where fi(x) and fix) are in class Wy, and are non-decreasing on [a,b] and
fila+) = fila+) = 0.

§ 2. Major and minor functions.

DerINrTIoN 2.1. Let a function f(z)
[a, b]. A function M (z) € Uy is said to
[a,b] if
(a) M (x) is AC-o below on [a, b],

(b) M(a—)=0,

(¢) DM (x) = f(2) w-almost everywhere in 83+ D.

Simia-rly a funection m(z) € Uy, is said to be a minor function of f(x)
on [a,b] if

(a') m (%) is AC-o above on [a, b],

b’y m(a—) =0,

(¢/) Dm,(x) <f(®)

Levuma 2.1. If M (z) is @ major function and m ()
of f(x) on [a,b], then the difference

R(z) = M (@)—m(@)

be defined on the closed interval
be a major function of f(x) on

w-almost everywhere in 8+ D.
is a minor function

is non-decreasing on [a, b1S and in particular M@p+)=md+).

Proof. By Theorem 1.1 we get that the functions M (x) and m(x)
are BV-w on L[a, b]. So, it follows that (Th. 6.2, [3]) the w-derivatives
M!(x) and m(x) exist finitely «-almost everywhere in la, bl Hence
for o-almost all points in [a,b]

R (2) = Mo(@)—m,{z) = QMM(m)——ﬁmw(x) >0,

(by (c) and (¢")). Since R(x) is AC-@ pelow on [a,b], we get by Theo-
and 7 are two

rem 1.2 that R(#) is pon-decreasing on [a, b]S. So, if &


GUEST


124 D. K. Dutta

points of [a, b]8 with &<y we get
R(y) = R(é).
Proceeding to the limit as £é—~a-+ and n->b— over 8, we get

Rb—)=R(a+)=0.
So

MHb—)=mb—), o M@B+)>mb+).

§ 3. Upper and lower integral functions.

Dprinrrion 3.1. Let the function f(x) : j i
r : possesses major funetions M
on [a,b]. We define the function U(z) by @

0 for s<a,
Ulm) = { inf{M(m,)} for a=me [a,b]S,
U(b—) for &>b.

ThenS Z’(;r) IIS said to be the upper mtegmil Junetion of f(z) on [a, b]
imilarly, if the function f(z) possesses minor-funct 2)
if we define the function L(z) by ons (@) and

0 for z<a,
L(z) = sup{m(z,)} for = @y e[a,b]8,
L{d—) for ®>b,

then L(z) is said to b.e the lower integral function of f(z) on [a,b].
N If f(2) has a major funection M (#) and a minor funection ';n(m) it
as both the upper and the lower integral functions and ’

. m(@) < U(z) < (),

m(z) < L(z) gl M ()

for alllme[a, b]8. Throughout the paper,
and minor functions of f(z) exist.

m(x)TbHE?REM 31 Let 'th.e Junction f(z) be defined on [a, b]. If M (%) and
e respectively a magor function and o minor Junction of f(x) on [a, D]
)

and if U(x) and L(z) be the upper and ;
‘ th . A :
then each of the differences pper ‘MZ e lower intogral functions of (@),

we assume that both major

M (2)— U (@)

is non-decreasing on [a, b]8S.

and L ()~ m(x)

icm
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Proof. et @, and x, be any two points of continuity of (zr) with
a < @ < %, < b. Let My(z) be a major function of f(») on [a, b] such that

Mi(z)—Ul(z) < e,

where &> 0 is chosen arbitrarily. Then the function My(x) defined by

[0 Cfor z<a,
M) = {l My(zx) for zela,n]S,
R | Aa(o)+ 21 (0)— M () for welm,b]s,

| M 0—) for #>b,

is also & major function of f(«x) on [a,d]. Hence
U (@,) < My(@s) = M)+ M (w2)— M (1)

< Ula)+ e+ (@) —H (@)
or
o M (m,)— T (2) < {HM (@)— T (@)} +e -
Since &> 0 is arbitrary, it follows that M (#)—TU () is mon-decreasing

on [a, b]8. ) :
The second difference may be treated analogously. This proves the

theorem. .
TEmOREM 3.2. Let the function f(x) be defined on [a, bl. If U(x), L{x}
be the upper and the lower integral functions of f(x) on [a, b], then U(x)—
—L(=z) is non-decreasing on [a, b]8.

Proof. Suppose @, 2, are any two points of [a, 518 -with 2y < Xp.
Let M (2) be a major function and m(x) be a minor function of f (¢) on
[a, b] such that

M (2,)— U () < 32, L{)—m(x:) < %,
where ¢ >0 is chosen arbitrarily. From the definitions of upper and
lower integral functions it follows that
U () — L (@) < M (y)—m ()
< M (1)~ m ()

< Uw)—L(®)+e.

(by Lemma 2.1}

Since & > 0 is arbitrary, it follows thab
U (@) —Lim) < U () — L () 5

and so the difference U (#)—L(#) is non-decreasing on [a,blS.
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THEOREM 3.3. The upper integral function U (x) associated to a function
(@) on [a,b] is in class Wy and is AC-o below on [a, b], and t{ze lower
integral function L(w) associated to f(x) belongs to the class Uy and is AC-w
above on [a, bl.

Proof. We first show that U(z) belongs to the class Uy. Let {e,}
be a sequence of positive constant terms such that & —0 as n—oo, and
let for each &, Ma(x) be a major function of f(z) on [a, b] such that for
zefa, b]lS

0 < My(2)—U(2) < &n .

Hence for ze[a,b]S, U(z) is the limit of a uniformly convergent
sequence of functions every member of which belongs to class U, and
so U(z) is continuous on [a, b]S and U(x) e Wy.

Let M(x) be a major function of f(z) on [a, b] such that

1) HB—)—Ub—) < ie

where £ >0 is chosen arbitrarily. Sinece M () is AC-w below on [a, b}
there exists a 6 >0 such that for any elementary system I = {(a;, a;)}
on [a,b] with |I|,< 6

@) DM (@)= M (@—=)} > — }e .
‘Then
DU @)= U=}

= M @A) =M (1)} 3T M (@)~ U (@)} (M (50— )= U (i )}]

> MM (@}+)—M(#;~)}—%e (by (1) and Th. 3.1)

>—e (by (2)).

Hence U(z) is AC-o below on [a, b]. The second part of the theorem can
be proved analogously.
Note 3.1. If f(#) is bounded on [a,d], then its upper and lower
integral functions are AC-w on [a, b]. For if :
Ag]’(m)gB, we[“;bly

then A{w(z)—w(a—)} and B{w(zr)—w(a—)} are respectively a minor
and a major function of f(2) on [a, b]. Let U(x) be the wupper integral
funetion of f(z). By Theorem 3.1 we get for « <[a, b]8

3) - U(@) = B{w(@)—o(a—)}+a),
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where 7(#) € Uy and is non-increasing on [a, b]8. Then from (3) it follows
that U(z) is AC-w above on [a, b] and so by Theorem 3.3, T (x) is AC-w
on [a, b].

In a similar way it can be shown that the lower integral funetion
is also AC-w on [a, b].

THEOREM 3.4. The upper integral function is a major function and
the lower integral function is a minor Sfunction.

Proof. We consider the upper integral function in detadl, the proof
for the lower integral function being similar.

Let U(2) be the upper integral funetion of f(x) on{a, b]. We show that
(4) DU, () = f(#) o-almost everywhere in [a,b].
Assume on the contrary that
f(#)—DU,(z)>0

on a set of positive outer w-measure. Since U.(z) exists finitely w-almost
everywhere in [a, b], there exists a positive number & such that

f@)—TU,z) > ¢
at the points of a set B C 8,4 D where

o*(B)> 0.
We first assume that
o (ES,) = p>0.

Let M(w) be a major function of f(z) such that

(5) Mp—)—Th—)< lpe.

E(z) = M(2)—U(2).
Then E(z) is in class U, and non-decreasing on [a, b]S and
B, (o) = M,(2)— U,
w-almost everywhere on [a, b]. The set B, C §; where
Mo(@)—TUi(z) >¢

is w-measurable and ¥, contains BS, with the possible exception of
a set of w-measure zero. Hence

[Bil, =D

4 — Fundamenta Mathematicae LXXXVII
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Let PC E; be a closed set with
1Py, > $p .

Let [a, f] be the smallest closed interval containing P. If x ¢ P, there
exists a null sequence {hs} (7;> 0,2+ ki e8) such that

(6) R (@+Tu)—BE(z) > e{w @+ hi)— o (@)} .

Let F denote the family of closed intervals [, z-+hs] thus associated
with the set P. Then by Theorem 1.1 [3] there exists a finite family of
pairwise disjoint closed intervals 4,, 4,, ..., 4, of F for which

n

(7) D 14iPl, > |Pl,~1p .

F=1
Write
Atz[mi,wi—l—k,-] (7;?‘—1,2,...,’)74).

‘We may suppose that

H<B<..<w and @=a, sthki=2F.
Then
ethi<w, ((=1,2,..,n-1).
We have

R(H—R(e) = Y {R(@it ki) — R(a)}

i=1
>&(|Pl,—ip) (by (6) and (7)),
> ipe,
which contradicts (5) because R(2) is non-negative and non-decreasing
on [a, b]S.
We arrive at a similar contradiction if we assume that ED is different
from a null set. The proof of the relation (4) is now complete. Obviously,

U(a—) = 0. Hence by Theorem 3.3, it follows that U(z) is a major fune-
tion of f(z) on [a, b].

§ 4. Modified Perron-Stieltjes integral and Lebesgue-Stieltjes integral.
If f(#) has major and minor functions and if L(z) and U () ave its lower
and upper integral functions on [a, b], then L(b-}) and U(b-+) are finite
and L(b+)< U(b+). If

Lb+)=Ud+),

we say that f() has modified Perron-Stieltjes integral on [a, b] which ig

icm
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equal to this common value. The integral is denoted by

b
(MPS) [ f(2)do .
a
More generally, we say that L(b4) and U(b-+) are respectively the lower
and upper MPS-integrals of f(x) on the closed interval [a, b]. We observe
that a necessary and a sufficient condition that f(#) should be MPS-inte-

grable on [a, b] is that to every & >0 there correspond a major function
M (z) and a minor function m(z) such that

Mp+)—mbdL)< ¢.

If the MPS-integral exists on [a, b], it exists on every closed subinterval
of [a,b]. If f(x) is MPS-integrable on [a,b], then the function G(x)
defined by
0 for z<a,

z
(MPS) [ f(tydw for we[a,d],

a

| &) for >0

G(x)=

I ——

is called the indefinite MPS-integral of f(#). In the next two theorems
we show that the MPS-integral is identical with the Lebesgne—Stieltjes
integral.

ToeorEM 4.1. If f(z) is summable (LS) on [a, b], then f(z) is MPS-
integrable on [a,b] and

b

b
(MPS) [ f(z)dow = (L8) [ f(a)dw .

Proof. Write

0 for x<a,
I () for wela,bdl,

F(b—) for z>b.

f
P S
5
&z
—
=
ES
e

Then F(x) is in class U, and is AC-w on [, b], and
F,(@) = f(a)

w-almost everywhere in [a, b] (cf. Section 2, [6]). Thus F(z) is both
a major and a minor function of f(z) on [, b] and so it is also the upper
and lower integral funetion of f(z). Hence f(z) is MPS-integrable on
o


GUEST


130 D. XK. Dutta

[e, b] and .
F(b+) = (MPS) [ f(a)do

So

b b
(M‘E’S)ff(m)dw: F(b+) = (1L8) ff(w)dw (cf. Th. 3.1, [4]).
a a
TenoreM 4.2. If f(x) is MPS-integrable on [a, b], then f(x) is summ-
able (LS) on [a, b] and the integrals in two semses are equal.
Proof. Since f(z) is MPS-integrable on [a, b], the upper and lower
integral functions associated to f(#) coincide at points of continuity
of o(x). Hence if we write :

{o for «<a,
| @
G(a) =1 (MPS) [f(1)dw for wela,D],
I a
{&0— for >0,
then '
G)=L(z)= U(x) for wela,d]S.
So, G(z) is in class Uy and is AC-w on [a, b]. Further, by Theorem 3.4

we get

@, (a) = f(x)

w-almost everywhere on [a, b]. By Theorem 1.1, G'(z) is BV-w on la, b]

icm

imd 80 G () is summable (LS) (Th. 6.3, [3]) on [a b] Hence f(x) is rmlso )

summable (LS) on [a, b]. Write

l 0 for z<a,
| @
F(z)={(18) [f(do for we[a,b],
l a .
| 7—) for 2>0.
Then
Fo(2) = f(2)

o-almost everywhere on [a, b]. Hence by Theorem 1 [6],
F(z)—G(@2)="% a constant on 8.
Letting & —»a-+ over the points of § we get K = 0. So

Gxy, welS.
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Therefore
b

(L8) [f(@)do = F(b+) = G(b+) =

a

b
(MPS) [ f(2)do .

a

This completes the proof.

The modified Perron definition helps in establishing the well known
properties of Lebesgue—Stieltjes integral very simply although we are
not carrying out the details here. When the upper and lower integral
functions U(x) and L(w) are such that

Uo+) #Lb+),

it is then natural in view of the establishment of the identity of MPS-
integral and Lebesgue—Stieltjes integral, that we denote U(b-) and
L(b+) as the upper and lower Lebesgue—Stieltjes integrals of f{z) on
[a, b] with the notations

—b b
U+) = [f@do, Lb+)= [fz)do.
a -

§ 5. Upper and lower Lebesgue-Stieltjes integrals. We now establish
certain properties of the upper and lower LS-integrals.

THEOREM B.1. If the funciion f(x
on [a, bl, then the function |f(x)
on [a, b].

Proof. It is sufficient to show that the funetion |f(#)] has major
and minor functions on [a, b]. Let U(x) and L(x) be the upper and lower
integral funetions of f(x) on [a, b] so that U(z) is AC-w below on [a, b]
and L(z) is AC-w above on [a, b].

Then by Theorem 1.3, U(x) and L(x) can be expressed in the forms

B(=z),
(z),

) has upper and lower LS-integrals
| has also upper and lower LS-integrals

U(z) = a(2)—

€ b
I(z) = O(a)— zela, b]S,

where each of the functions a(z), f(z), 0(z) and ¢(«) is in class Uy, and
non-decreasing on [a,b], and a(a+)=g(a+)= 0{¢+)=¢(a+)=0.
Then for w-almost all points in [a, b] we get

(8) a,(#) = U, (o) = f(@),
and

) o (@) = — L, (2) > —f(x) .
Write

M(2) = alo)+¢(®).
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Then from (8) and (9) we get

DM, (z) = |f(®)

for w-almost all points in [a, b]. Since M(z) is AC-w below on [a, b],
it now easily follows that M () is a major function for |f(z)| on [a, b].
The function m(2) = 0 is & minor function for |f(x)| on [a, b]. Hence
{f(z)| has upper and lower LS-integrals.
TaeorEM 5.2. If fi(») and fi(x) have upper and lower LS-integrals on
fa,b] and :
f(@) = fil@)+hi#),
then f(z) has upper and lower LS-integrals on [a, b] and

b

—b ~b
- (10) [ 1@< [f@dot [ fimdo,

b ] b
(11) [ $@do > [ fi@)do+ [ flo)do .
“a —a —a
If one of the functions fi(x) and fa(w) is LS-integrable on [a, b, then each
of the inequalities (10), (11) becomes an equality.
Proof. Let Uyx) and Uy(») be the respective upper integral functions
of fi(x) and fix) on [, b]. Write

M(z) = Uyw)+ Us(®) -

Then the function M (z) is in elass U, and is AC-w below on [a, b] and
M(a—)=0. Also

DM () > DUlm(w)+DUzw ) = filw) +fal@)

at w-almost all points in [a, b]. Hence M () serves as a major funetion
for f(#) on [a;b]: Similarly we can show that the function

Ly()+ Ly(x)

where L (#) and L,(x) are the lower integral functions of fi(w) and fy(x)
respectively is a minor function of f(x) on [a, b]. Therefore, the function
f(#) has upper and lower LS-integrals on [a,b] and

m(x) =

b

ff ) do-+ f fal@)do ,
a2 s
f fla)

z)ydw -+ jfz z)dw .

icm®
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Now suppose that fi(z) is LS-integrable on [a, ] so that
U@) = Liz), sela,b]s.
Henee Uy(#) is AC-w on [a, b] and

U (@) = fi(z)

w-almost everywhere in [a,b]. Denote the upper integral function of fl=)
by U(») and write

M(z) = Ulr)—Uz).
Then M (w) is AC-o below on [a, b] and for o-almost all points in [a, 5]
M(@) = U(@)—=Uso(@) = {fi(@) +fol@)}—fuls) = fu() .

It follows that M (z) is a major function of fy(z) on [a, b] and so

-b

—b
[ fwdo < [ flo

a

—b
(13) Yo~ [ i) do

Combining (12) and (13) we get

—b -b —b
[ f@do = [ fio)dw+ [ filz)do
a "3 a
The proof in the case of lower integral functions is similar.
For the next theorem we require the following notations:
For an unbounded function f(x) defined on [a, b] we introdnce the
functions fa(x) and f_,(z) for every natural number 7 by the rules

fal®) =

THEOREM 5.3. If the unbounded fumction f(x) has upper and lower
LS-integrals on [a, b], then its upper and lower integral functions are AC-w
on [a,b] and

-b

ff z)dw = lim ff% dw—llmff_n 2)dw ,

N0 g n—00 g

min{f(z), n} and f_.(z)= max{f(x), —n}.

and

ff #)dew = lim ffn 2)do = lim ff_n
n=—>+00 —
Proof. Let U(z) and L(x) be the upper and lower integral function
of f(z) on [a, b].
Case (i). We first consider the case when f(«) is bounded below
on [a, b]. Then the function fa(z) is bounded on [a, b] and so it has up per
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integral function Uy(x) which is AC-w on [a,b]. Now consider the se-
quence of functions

{Un@)y, wele,b]8.

Hvidently, the sequence is monotone increasing for U,.,(z) being a major
function of fu(z) for every =,

U'nr!-l(m)— U:,,,(QJ‘) =0

for every « ¢ [a,b]S and for every value of m. Again, the function U (x)
serves as a major funetion for fy(w) for every positive integral value of n,
and so
U (2)— Un(z)= 0
for every @ e[a,b]8 and for every value of n. Let
lim Uy (z) = X (%) .
n—>0

Then.

(14) Xx) < U@, =xela,b]s.
Since the difference
| Uppl@)—TUa(®)

is non-decreasing on [a, b]S for each positive integral value of # and ps
it follows that the function

Va(@) = X (2)— Un ()

is non-decreasing on [a, b]8. In fact if o and @, (> ,) are any two point,
of [@,b]S and if p be a positive integer such that

X(m) < Upypltn) -
where & >0 is arbitrarily small, then

Valw) = X (@)~ Un () < U, pp(:)— Un(ay)+- ¢

< Ui @) — Un{@:) 4 6 < X () — Uhltp) -+ &
Since ¢ > 0 is.arbitrary,
V() < Valay) .

It follows that the convergence of the sequcnce‘{Un(m)} to X () is uni-
form on [a, 5]8. Hence X () « Uy, and so V() is in class W, and is AC-w
‘below on [a, b]. So X (») is AC-w below on [a, b]. Arguing in a way similar

icm

Upper and lower Lebesgue-Stieltjes integrals 135

to that used in the proof of Theorem 3.3, we can show that X () is also
AC-w above on [a, b]. Now, for w-almost all points in [a, b]

Xy (0) = U, (@) = folo) .
Sinee this relation holds for all values of n, we get
X, (@) = f(w)
w-almost everywhere on [a, b]. Hence X (#) is a major function of f(x}

which implies that the sign of equality alone is admissible in (14). So
the function U(x) is AC-w on [a, d] and

U(2)=1lm Un(z), =xela,d]s.
Then _ .
b —b
(15) [ f(@)do =1m [ fu(@)de .

If we consider the sequence {L,(z)} of lower integral funetions of fu(x)
and proceed in an analogous way, it will follow that the lower integral
funetion L(z) of f(z) is AC-w on [a,b] and

0 b
(16) [ (@) a0 = lim [ fu@)de .

Case (ii). We now suppose that f(») is bounded above on [a, b].
Since the upper and lower integral functions of the funetion —j(x) are
respectively the negatives of the lower and upper integral functions of f(z),
if we proceed with —f(@) as in ease (i), we will get that both U(x) and
L(») are AC-w on [a, b] and

-0 b
an [ f@)do =lim [ f_(z)do,
and ‘
b b
(18) [ f(@)do = lim [ f-n@)do -

Cage (iii). We now consider the case when f(x) is neither bounded
below nor bounded above on [a, b].

Then fu(@) is bounded above on [a, b]. Since U(z) serves as a major
function for f,(x) and the upper integral function of |f(z)| is a major
function for — fu(@), it follows that the function fu(x) has upper and lower
integral functions, and by case (i), they are AC-w on [a, b]. If we now


GUEST


136 D. K. Dutta

proceed as in case (i) we will similarly get that the funections U(z) and
L(») are AC-w on [a, b] and that the relations (15) and (16) hold in this

case also. If — f(z) is considered in place of f(x) we again obtain the same .

property for U(zr) and L(») and the same relations (17) and (18) as in
case (ii). This completes the proof of the theorem.
A funetion f(x) can be represented by

f(@) = fi(o)—f.(@)
where f, (z) and f_(x) are two non-negative functions defined by the rules
fi(o) = max{f(z), 0} and f_(#)=max{—f(x), 0}.
Now, we prove the following theorem which is more precise than Theo-
rem 5.2,
THEOREM 5.4. If the function f(x) has upper and lower LS-integrals

on [a, ], then the positive part f,(x) and negative part f_(x) of f(x) have
upper and lower LS-integrals on [a, b] and

—b —b b
J1@)do = [ fu@)do~ [ (@)do

b b —b
[f@io = [ f.(2)do— [ f_ (@)do.

Proof. By Theorem 5.1, the function |f(x)| has upper and lower
LS-integrals on [a, b] and since

If @) = f (@) +f (=),

the upper integral function of if(#)| is a major function. of both f . (@)
and f_(z). Further m(z) = 0 is a minor function of both (@) and f_(x).
Hence both the functions £, (s) and f_(x) have upper and lower LS-inte-
grals on [a, b].

Let U(z) and L(») be respectively the upper and lower integral
functions of f(#) on [a,b]. By Theorem 5.3, both U(x) and L(») are
AC-w on [a,b] and so by Theorem 3.3 [4] these functions can be re-
presented in the forms

U(x)
L(2)

a
efa, 18,
bo)—plm), 0"

Il

where each of the functions a(x), B(=), 0(x) and @(z) is in class W, and
is AC-w and non-decreasing on [a , b], and

alet) = fla+) = 0(a+)=p(a+)=0.
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Denote U,(#) by u(x), and the positive and negative parts of u(z) by
u,(®) and wu_(z) respectively. Then we get (Theorems 3.1 and 3.4 (E3)]

U(z) = fu(t)dw s

a@ = [u,(do, zecla,b]s.

f2) = fxu_(t)dw ,
Then
fle) < Uy(@) = u(w)

w-almost everywhere in [a, b];vand 50
Fi(@) < uy(@),

w-almost everywhere in [a, b]. Hence

(19) fe@) <o), f(z)> )

o-almost everywhere in [a, b]. Evidently, a(z) is a major function of
fu(@) on [a, b] and we have

f@) = u_(z)

—b
(20) a(b+) = [ f,(5)do .
Similarly ¢

b
(21) Bo+) < [f_(a)dw .

Suppose the sign of equality of (20) does not hold and let

0 for z<a,
N(x)= ! fit)dw for a<z<b,
]N(b—) for x>0,

and
M(z) = N(z)—p(2).

Then letting 2—+b — over § we get
M(b—) = N(b—)—p(b—) = N(b+)—B(b—)
-b

= [ ful@)do—B—)< alp—)—p0d—),

a
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or

(22) Mb—-)< Ub—).

Now, M (z) belongs to the elass Uy and is AC-w on [a, b] and M (a—) = 0.

Also for w-almost all points in [a, b]

A (@) = fo(@)— Bu(@) = fo(@)—f_(x)  (by (19)).

Thus, M (x) is a major function of f(z) on [a, b1 which contradicts (22).

Hence
-5
a(b+) = ff+(m)dco .

Similarly we can show

b
B+ = [ f-(@)de,
b
0(b+) = [ fi(a)dw, and

-b
po+) = [f_(a)dw.

Therefore

—b —b b
[I@do = [ fL@)do— [ f_(2)do,

b b -b
[ f(z)do = [ (@) do— [f(@)do .

THEOREM 5.5. If the upper and lower LS-integrals of a function fl@)
on [a, b] are not equal, then f(z) is not w-measurable on [a, b].
Proof. We first consider the case when f(x) is non-negative on [a, b].

If possible, let f(z) be w-measurable on [a, b]. Then the functions Jal®)
defined by

Jul®) = min{f(z), n}, n= 1L,2,..

b
are bounded and w-measurable on [a, 8]. So, (LS) f ful@)dew exists for

all n. Since f(#) is not summable (LS) on [a, b], Weaget

b
(23) lim | fu@)dw = + oo .
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The function

z

mal@) = (LS) [fi(t)dw, 2 efa,b)

a@

belongs, for every fixed n to class U, and is AC-» on [a, b]. Further,
Ma(e—) =10 and m(r) = Jal2) < f(a)

w-almost everywhere on [a, b]. Thus, ma(z) serves as a minor function
for f(z) on [a,bd] and so for all values of #

b b
(24) [ falz)de < [ f@)do -

-a

From (23) and (24) we get
b
Jf@)do =
—a

which contradicts the fact that the lower integrar must be a finite numper.
Hence f(x) is not w-measurable on [a, b].

Now let f(z) be a function without any restriction on its sign and
let f, (¢) and f_(x) be the positive and negative parts of f(z). By Theo-
rem 5.4, at least one of the functions f + and f_ has upper and lower
LS-integrals on [a, b] which are not equal. Since both the functions fs
and f_ are non-negative, at least one of them is not w-measurable. There-
fore f(z) is not w-measurable on [a, b]. This completes the proof of the
theorem.

I am grateful to Dr. M. C. Chakrabarty for his kind help and sug-
gestions in the preparation of the paper.
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Abstract. We investigate four generalizations of the notion “algebraically cloged”
to a model theoretie context involving weak second order logic. Whereas in f‘irst order
Iogic the existence of algebraically closed structures of various sorts is proved by anatural
transfinite induction, in our context it is necessary to assume the existence of large
cardinals in order to prove the corresponding existence theorems for struetures. The
present; article is devoted to a relatively precise description of the relationship hetween
large cardinals and structures of the special types alluded to. In the final section some
examples are discussed.

1. Introduction. If X is a class of similar structures, several inequiv-
alent formulations of the notion of an “algebraically closed” structure
relative to the class X and the appropriate first order language have
been studied [4, 11, 13]. The concepts introdueed for this purpose may
be extended to more powerful languages, such as modal, higher order,
or infinitary languages; a detailed treatment of some aspects of the last
ease is given in [3].

We wish to discuss the algebraically closed structures relative to
a second order language I which permits quantification over all non-
empty subsets § of the domain of & given structure m such that the
cardinality of S is less than the cardinality of the domain of m and to
find necessary and sufficient conditions for the existence of such structures.
For example, concerning the analogue of Robinsor’s class G5 of the
infinitely generie structures [10] we will prove:

TaroreM. The following are equivalent: .

1. Bvery increasing function from the ordinals to the ordinals which
18 continuous at limit ordinals has regular fized point.

N 2. For any cass X of similar structures which is inductive (i.e. closed
under unions of chains). Gy is model-consistent with X (i.e. if m is in %
then m has an extension m’' in @s).

_—
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