Clumps of continua *
by
H. Cook (Hobart, Tasmania)

Abstract. A nondegenerate collection G of continua is called & clump provided
that the sum of all the continua of & is a continuum and there exists a continuum C
which is a proper subcontinuum of every element of G and is the intersection of each
two elements of G.

Various structural conditions which may be imposed upon clumps are studied
leading to theorems indicating under what conditions the sum of the elements of a clump
of tree-like continua is itself tree-like.

The purpose of this paper is to study conditions under which a con-
tinuum which is the sum of tree-like continua is itself tree-like.

A continuum is & closed, compact, and connected subset of a metric
space. A mapping is a continuous transformation. A non degenerate
collection G of continua is called a clump provided thab G* (the sum of
all the contintia of the collection &) is a continuum and there exists a con-
tinuum ¢, called the center of G, such that ¢ is & proper subcontinuum
of every element of G and is the intersection of each two elements of G.
A radiation is a clump G of arcs with a degenerate cenfer whose point
is an end point of each arc of the collection @. A clump (or radiation)
@ is said to be decomposable if, and only if, there exist two proper sub-
collections H and K of @ such that & = H v K and H* and K™ are both
closed; otherwise, G is said to be indecomposable. Recall that an inde-
composable continuum is a nondegenerate continuum which is not the
sum of two of its proper subcontinua and note that, if G is a clump of
continua, whether decomposable or indecomposable, then G* is not an
indecomposable continuum.

A clump @ of continua with center C is said to be upper semi-continu-
ous provided that, if Py, Dy, Pay .- ADA Gy, oy Gy oo ATE two sequences of
points of @ converging to points p and g, respectively, of ¢*\C and,
for each 4, p; and g; belong to the same element of @, then p and g belong
to the same element of @. Clearly, any clump H which is a subeollection
of an upper semi-continuous clump @ is itself upper semi-continuous.
A clump @ is said to be fully decomposable provided that, for each two
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elements # and % of @, there exists two subcollections H and K of @ such
that ¢ = H w K, & is not in X, % is not in H, and H* and E* are both
closed. Recall that a continuum M is said to be fully decomposable
provided that, if 2 and y are two points of M, then If is the sum of two
continua, one not containing # and the other not containing ¥; but note
that the sum of the ares of a fully decomposable radiation need not be
fully decomposable.

The author’s conversations with Professor W. B. Johnson, while
this research was in progress, have been of inestimable value. Indeed,
the example described in the proof of Theorem 18 (though he described
it differently) is due to Johnson. )

It is clear that every finite clump is decomposable. It may appear
that every clump is decomposable, but this is not so.

THEOREM 1. There exists an indecomposable radiation @ such that G* is
the one point compactification of the plane.

Proof. Let §= E*v {co}, the one point compactification of the
plane, E?, by the ideal point oo. If p is a point (p;, p,) of F* with p, an
odd integer, let g, be the arc from p to co consisting of oo, all points of
the closed interval pg, where g is the point (g,, p,) with p; << ¢; < p,+2 and
P, = tan(g, #/2), and all points (g, ¢,) with ¢,<< p,. Let @ be the col-
lection of all arcs g, for all points p of E* whose abscissa is an odd integer.
The intersection of each two elements of & is {co} and @* = §, hence
@ is a radiation.

Suppose that ¢ is the sum of two proper subeollections H, and H,
such that Hy and Hy are closed. Then there exists an integer i « {1,2},
& decreasing sequUence i, fy, fg, .. of odd negative integers, and, for
each positive infeger r, an increasing sequence m,,, m,,, My, ... of positive
integers such that, for each positive integer §, if p is the point (ny, mrs)
of E*, then g, H;. Thus, for each positive integer » and each positive
integer j, each point with abscissa n,+-2j is in H 1, and, thus, for each such
point p, gp € H;. But then, H; = G, contrary to the supposition that H is
a proper subcollection of @.

(The proof given here that & is indecomposable becomes superfluous
with our later Theorem 9, but the author feels that its inclusion may
shed some Iight on the structure of indecomposable clumps.)

TeEOREM 2. Suppose that @ is a clump of continua in ihe plane, B,
with center' C, such that no element of G separates the plane, and, if g is an
element of G, g\C is connected. Then @ is decomposable.

Proof. Assume that G has more than two elements. Let D = FAG .
Then D is connected, [8, Theorem 122, p. 250]. Let 8 denote the boundary
of D. If § were a subset of an element g of G, then E*\D C g and ¢*C g,
a contradiction. Hence, there exists an arc zy lying, except for its end
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points # and ¥, wholly in D such that  and y ave points of two different
elements of G. Denote by g, and g, different elements of @ containing x
and y respectively. Then g5 w g, does not separate E2, and BN v gy )
is the sum of two mutually exclusive connected open sets D, and D,,
{8, Theorem 131, p. 263]. :

Suppose that D, contains a point of ¢*. Then there exists an arc Pq
lying, except for its end points p and g, wholly in D, ~ D such that p is
a point of G*\(gz v gy) and g is a point of the are oy distinet from & and y.
Let gp denote the element of @ containing p. Then, [8, Theorem 131,
p. 2631, D\(g» v Pq) is the sum of two mutually exclusive connected
open sets I, and I, with no point of g;\C in I,. But every element of @ is
a subset of one of the two point sets I, v gz u gy and I, v g, u gy- Let H, be
the collection of all elements of @& which are subsets of I, w g, u g, and
H, be the eollection of all elements of ¢ which are subsets of I, U gy u gy.
Then g is not in H,, gy is not in H,, H; and H} are closed, and
@ = H,w H,. Thus & is decomposable.

Similarly, if D, contains a point of G*, then @ is decomposable. But
@* intersects one of D, and D,, so G is decomposable.

THEEOREM 3. A clump G of continua is upper semi-continuous ‘if, and
only if, it is fully decomposable.

Proof. Suppose that the clump & of continua is upper semi-continu-
ous, C is the centre of &, and h and k are two elements of . Let D,, D,,
Dy, ... be a sequence of open subsets of G* such that (" D; = C and, for

>0
each 4, D;,., C D;. For each i, let @; be the collection of all point sets g’
such that, for some element g of @, ¢'= g ~(G*\D;). For each i, @; is a col-
lection of mutually exclusive. closed and compact point sets filling up
G*\D:. Let H,,H,, H,, ... and K, K,, Ky, ... be sequences such that,
for each 4, are subcollections of @; containing h ~ (G*\Ik) and En (G*\D:)
respectively, H; and K are open relative to G}, Hj, and K; are mutnally
exclusive, Hy C HY,, and K:C K},,. Let H denote the collection of all
elements of @ which do not intersect { J K7 and K denote the collection
i>0
of all elements of G which do not intersect | J H}. Clearly, % is not in
i>0
K,%is not in H, and & = H v K. Suppose that p is a point of G"\H".
There is a positive integer ¢ such that p is not in Di and p e K;. Then
E* ~ (@*"\D;) is an open set containing p but no point of H*, Thus, H* is
closed. Similarly, K* is closed. So & is fully decomposable. Now, suppose
that @ is a fully decomposable clump of continua with centre ¢ which
is not upper semi-continuous, » and k are two elements of G, p and ¢ are
points of ANC and k\C respectively, P, D, Dsy ... a0d 1, Ga) Gs) - ATE
two sequences of points of @* converging to p and ¢ respectively.such
that, for each 4, p; and ¢; belong to the same element of . Now, @ is the
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sum of two collections H and K such that % is not in K, % is not in A,
and H* and K* are cloged. Then G*\H* and G*\E* are mutunally exclusive
open subsets of G* containing ¢ and p respectively and, for some Ty Gn
e @ —H* and p, ¢ @*—K*. Then the element of G which contains both
Pn and‘qn is in neither H nor K, a contradiction. Hence, every fully de-
composable clump of continua is upper semi-continuous.

From the following theorem, it is evident that, in Theorem 2, we
could not have concluded that G is fully decomposable.

TeEOREM 4. There is in the plane, B?, o radiation which is not upper
Semi-continuous.

Proof. For each number #, 0 < z < 1, but g; denote the semi-circle
in the upper half plane with centre (z/2,0) and radius #/2 and let &,
denote the collection of all such semi-circles g;. For each number y,
—1<y<0, let g, denote straight line interval from the origin to the
point (1, y) and let G, denote the collection of all such intervals g,. Then
G, G, is a radiation.

For each positive integer n, let p, and g, denote the points of I—qijm
with abscissae § and § respectively. Then p;, p,, ps, ... converges to the
point (0, §) of g, and ¢, ¢, gs, ... converges to the point (0, 2) of Togse
Hence, G is not upper semi-continuous.

THEOREM 5. There ewists in the plane, B2, an indecomposable clump K
of continua whose center is a simple closed curve C such that, if & is in K,
kNG is conmected and such that K* is the sum of C and its bounded com-
plementary domdin.

Proof. There exists a homeomorphism % of E® onto the interior
of a simple closed curve C. For each element ¢ of the collection & deseribed
in the proof of Theorem 1, let %, denote % (\{c0}) U € and let K denote
the collection of all such continua %,. Then K is an indecomposable radi-
ation with center ¢/ such that K* is ¢ plus its interior.

THEOREM 6. There exists in the plane, B2, an indecomposable clump @
of continua with degenerate center such that no element of @ separates B

Proof. Consider the unit circle §' with center at the origin. Let
K, Ky, Ky, ... denote mutually exclusive finite subsets of §* such that,
for each =, each point of &' is at a distance less than 1/n from K,. For
each n, let gn denote the sum of all straight line intervals from the origin
to & point of K,. Let & denote the collection to which @ belongs if, and
only if, for some #, g= g, or, there exists a point P « '\ Ky such
that g is the interval from the origin to . Clearly, @ is a Exojmp with
center {(0, 0)} such that @* is §* plus its interior. Suppose that G is the
sum of two proper subeollections H, and H, such that H, contains in-

Clumps of continta 95

finitely many of the continua g,, g, gy, ... Then Hj = ¢*. Hence, & is
indecomposable.

It G is a clump of continua, the clump H of continua is said to be
a refinement of @ if every element of H is a subcontinuum of some element
of @, and H is said to be a full refinement of G it H is a refinement of G
and H* = G*.

TEEOREM 7. Suppose that G is a clump of continua such that every
refinement of @ has a decomposable full refinement, and f is an essential
mapping of G onio the circle, 8*. Then there emists an element g of G such
that H, is essential.

Proof. Suppose that, for every element g of @, f|g is inessential,

Let 3 denote the collection to which H belongs if, and only if, H is
a clump which is a refinement of @& and f|H™ is essential. Let ¥ denote
a subcollection of J& such that, (1) if K; and K, are in X, then one of them
is a refinement of the other, and (2) if H is in J\X, there exists an ele-
ment K in J such that neither H nor K refines the other. There exists
a collection L each element of which is a continuum such that (1) if M e L
and K e X, there exists a continuum ke K such that M Ck but M is
not a proper subset of any other such continuum, and (2) L* is the inter-
section. of all continua K* such that K e X. Then f|L* is essential.

It L is degenerate, there exists an element g of ¢ such that I*Cg
and, since f|L* is essential, then f|g is essential, a contradiction. Then
I is nondegenerate. But then, L is a clump which refines G and L is the
only full refinement of L. Then there exist two proper subcollections Iy
and I, of L such that L = L, v L, and L} and L; are closed. If L, is de-
generate, there exists an element g of @ containing I} and, hence, f|L7,
is inessential. If I, is nondegenerate, it is a refinement of I and L} is
a proper subcontinuum of L*, so f|If is inessential. Hence, f|I], is
inessential and, similarly, f|Ls is inessential. But L} » L is a continuum,
so fI(LF o L;) is essential, a contradiction. Thus, there iz an element g
of @ such that flg is essential.

That the full hypothesis of Theorem 7 is needed can be seen from
the example of Lelek and Mohler, [7], of a radiation ¢ such that
dim (@*) = 1 and ¢* contains a simple closed curve. Such a continuum.G*
can be mapped essentially onto & though no are can be. The radiation
G is not upper semi-continuous.

THEOREM 8. If @ is an upper semi-continuous cump of cont.inua,
and f is an essential mapping of G* onto the unit circle, &, then there is an
element g of G such that f|g is essential.

Proof. Suppose that @ is an upper semi-continuous clump of
continua, f is an essential mapping of ¢* onto §', and, for each ge G,
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flg is inessential. There is a subcollection H of G such that H* is cloged
and f|H* is essential but, if K is a proper subcollection of H and K* is
closed, then f|K* is inessential. Since H is nondegenerate and upper
semi-continuous, it is the sum of two proper subcollections K, and K,
such that K} and K are closed. But f| Ky and f|K, are inessential ang
K ~nK} is a continuum, so f|(K; v K;) is inessential, a contradiction,

THEOREM 9. Suppose that G is a clump of contimua such that (1) G* ig
the two dimensional sphere, 8%, (2) no element of @ separates S*, and either (3)
the center of G does mot separate 8 or (8') G has more than two elements,
Then @ is indecomposable.

Proof. If (1), (2), and (3’) are true, then (3) is true. Suppose that
(1), (2), and (3) are true and @ is the sum of two proper subcollections H,
and H, such that H} and H; are closed. Then H, ~ H, is a clump such
that no element of H, ~ H, separates §* but (H, ~ H,)" does separate S2.
But this is contrary to [8, Theorem 122, p. 250].

A continuum M is said to be tree-like provided that, for every positive
number & there exists a mapping f, of M onto a finite tree T such that,
for each point ¢ of T, f7*(¢) has diameter less than e. A continuum M is
hereditarily unicoherent provided that, for each two points p and ¢ of M,
there is only one subcontinuum of M irreducible from p to ¢. Every tree-
like continuum is hereditarily unicoherent. A dendroid is an arcwise
connected, hereditarily unicoherent continuum. A 2-dendroid is an he-
reditarily decomposable, hereditarily unicoherent continuum. Every
dendroid and every A-dendroid is tree-like, [5]. Indeed, one can charac-
terize a dendroid as an arcwise connected tree-like continutum and
3 A-dendroid as an hereditarily decomposable tree-like continuum.

THEOREM 10. If G is a clump of continua, G is hereditarily unicoherent,
and M is an indecomposable subcontinuum of G, then there exists an element
g of @ such that M is a subcontinuum of g.

Proof. Suppose the contrary and let (' denote the center of @. For
each element g of & such that M intersects g\C, let h, denote the con-
tinuum g » M. Let H denote the collection of all such continua hy. If By
and h; are in H, then ,yn €=M~ (=R~ 0=h, ~}h, and, hence,
H is a clump with center M ~ C. Now H* = M and the composant inter-
seeting ¢ of M is all of M, a contradiction, [8; Theorerns 138 and 139, p. 59].

THEOREM 11. Suppose that @ is a clump of tree-like continue such
that Aim (G*) = 1 and every refinement of & has a decomposable full refine-
ment. Then G is tree-like. )

Proof. Suppose that ¢* is not hereditarily unicoherent. Then there
exists an essential mapping f of G* onto &7, and, by Theorem 7, an ele-
ment g of G such that f|g is essential, contrary to [3, Theorem 1]. Thus

©
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@* is hereditarily unicoherent. And, by Theorem 10, if M is an inde-
composable continuum lying in G*, M is a subcontinuum of some ele-
ment of @ and is, therefore, tree-like. Then [5, Theorem 1], G* is tree-like,

CoROLLARY. If @ is a clump of dendroids (4-dendroids), dim (%) =1,
and every refinement of G has a decomposable full refinement, then G* s
a dendroid (A-dendroid).

TEEOREM 12. If G is an upper semi-comtinuous clump of tree-like
continua and Aim (G*) = 1, then G* is tree-like.

The proof is the same as that for Theorem 11 except that we appeal
o Theorem 8 instead of Theorem 7 to establish that (G*) is hereditarily
unicoherent.

CorOLLARY. If @ s an upper semi-continuous clump of dendroids
(A-dendroids) and dim (G*) = 1, then G is a dendroid (A-dendroid). .

TEEOREM 13. If G is a clump of tree-like continua in the plane and
dim (6%) = 1, then G is tree-like.

Proof. If G* is not treelike some subcontinuum of G* separates
the plane [1, Theorem 6], and, hence, &* separates the plane, contrary
to [8, Theorem 122, p. 250). v

CoroLLARY. If @ 4s a clump of dendroids (1-dendroids) in the plane
and Am (G*) =1, the @ is a dendroid (A-dendroid).

TEEoREM 14. If @ is a countable clump of hereditarily umicoherent
continua, then G* is hereditarily unicoherent.

Proof. Suppose that # and y are two points of 6%, g, is an element
of G containing #, ¢, is an element of & containing y, and M is a sub-
continum of G* irreducible from x to y, but M is not a subcontinuum
of gz g,. Then (g, g,) ~ M is the sum of two mutually exclusive
closed ‘point sets U and V, containing # and y respectively. Let M’ de-
note a subcontinuum of M irreducible from U, to V,,. Suppose that M’ is
decomposable, then M’ is the sum of two proper subcontinus H, and H,
intersecting U, and V, respectively. Let Z be a point of H, n H,, let H
be a subcontinuum of H; irreducible from U, to Z, and let H, be a sub-
continuum of H, irreducible from Z to Vy, and let gz denote the element
of @ containing Z. Then M’ = H,; v H,. Now, the composant containing
Z of Hy is the sum of countably many continua Oy, i, Oy, ... each
containing Z and, for each 4, Cy; does not intersect g, w gy; and the com-
posant containing Z of H, is the sum of countably many continua Cy,
0On, Cy, ... each containing Z and, for each 4,,; C does not intersect g, v gy.
For each 4, C); w 0, C gz, for 0, v O,; does not intersect XK, the center
of @, and, hence, if it intersected two elements of G, would be the sum
of countably many mutually exclusive closed proper subsets, contrary
to [8, Theorem 56, p. 23]. Thus, ¥ = | J (Cy; v Cp) Cgzand ¥ = M’ Cygz.

>0
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But g, v gy v gz 15 hereditarily unicoherent, [5, Lemma 2], and, hence,
M’ ~(gsv gy) is a proper subcontinuum of M’ intersecting both 7,
and Vy, a contradietion. Thus M’ is indecomposable. No composant
of M’ intersects both U, and Vy, thus, [4, Theorem 3] there is a composant,
L, of M’ which does not intersect U, v V. Then I is the sum of countably
many continua €y, C, C, ... having a point p in common. Now, for
each 4, C; does not intersect K, so C; is a subset of g,, the element of @
containing p. Then ¥ = |JC;C gy, and, thus, Y= M'Cg,. Bub g, o
>0

v gy v gp 18 hereditarily unicoherent and M’ ~(gy v gy) is' a proper sub-
continuum of M’ intersecting both U, and Vy, a contradiction. Thus,
M C(gzwgy) if M is an irreducible subeontinuum of @ from = to 4.
Now, since g, gy is hereditarily unicoherent, there is only one sub-
continuum of g, v gy irreducible from # to y. Thus, if # and -y are two
points of @, there is only one subecontinuum of G* irreducible from z
to ¥, ie. G* is hereditarily unicoherent.

TarOREM 15. If G is a countable clump of tree-like continua, then G* is
tree-like.

The proof is the same as that for Theorem 11 except that we appeal
to Theorem 14 instead of Theorem 7 to establish that G* is hereditarily
unicoherent.

CoroLLARY. If @ is a countable clump of dendroids (A-dendroids),
then @ is a dendroid (A-dendroid).

A rational continmuum is a continwum I such that, if p is a point
of M and 0 is an open set containing p, then there is a domain, D with
respect to M containing p and having a countable boundary with respect
to M such that D is a subset of 0.

THEEOREM 16. If @ is «-clump of continua such that G* is a rational
continuum, then G is countable.

Proof. If & were uncountable, @* would contain uncountably many

mutually exclusive nondegenerate subcontinua, contrary to [6, Theo-
rem 1.3].

TurorEM 17. If G is a clump of tree-like continua and G* is a rational
continuum, then G is a A-dendroid.

Proof. Since @ is countable, @* is tree-like. Since each indecomposable
continumm contains uncountably many nondegenerate subcontinua, each
rational continuum is hereditarily decomposable, [6]. Then G* is a 4-den-
droid.

No indecomposable radiation can be embedded in the plane. Borsuk,
[2], has given an example of a radiation, H, such that H* cannot be
embedded in the plane but every refinement of H is decomposable.

icm®
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TeEoREM 18. There exisis a countable decomposable radiation.

Proof. For each nonnegative integer n, let T, be the closed interval
in the plane from the origin, 0, to the point (1, n); let by, be 0 and ay,
be (1, 0); and, if >0, 166 0 = by <<y, < by < By < By << oo < gy < by
= (1,n) be 2n+1 distinet points, in that order, of T,. For each 7, let

X, = L"j T;. For each positive integer n, let r%** be a retraction of X,

onto i,,n_l such that, for each positive integer ¢ < », the intervals by 1O
and @nibn are mapped by r,_, homeomorphically onto the interval b
gy @0d 70y (Gni) = Gy o

If ¢ and j are nonnegative integers with ¢ < j, let /= i yorile..
.. o1ttt Let X, denote the inverse limit of the inverse mapping system
X,,7i. For each nonnegative integer n, denote by g, the subset of X
congisting of the point (0,0,0,..) and all points (my, ay, ,, ...) of X,
such thabt oz = #, if, and only if, k= n. Let g, be the set [X. gl u

120

n—-1,0

v {(0,0,0,..)} Clearly, for each 4, g; is an arc (it is homeomorphic to T;),
gingi= {(07 0,0, )} if 4+j, and g Ny = {(07 0,.0, m)}‘ Let @ de-
note the collection consisting of g, and all sets g; for all nonnegative
integers 4. Then G* = X, and G is countable.
Suppose that @ = (%, &1, @, ...) 15 a point of X, and, for some
n

N, & # By, DUL @ is N0t in k_%) gn». Then there exists an integer k> n
i
such that ax # @, but, if n<i< ¥k, ;= 2,. Then x is a point of X
gma;pped by 7%_, to @, and, hence, mx does not belong to byya,, since
%k >mn-+1. Then, for each integer 8 >k, zg= 2y ;= ;. Then zegz.
Thus, g, is the inverse limif of the increase mapping system
{bip @iy, ¥l byo @}t
each coordinate space of which is an arc and each bonding map of which
is a homeomorphism. Then g, is an arc and & is a radiation.

Suppose that H is an infinite subcollection of & such that H* is
closed. Then there exists an increasing sequence iy, 7y, ¥, ... 0f nonne-
gative integers such that, for each i, ¢, < H. Let » be a nonnegative
integer and & = (2, @y, %,, ...) be a point of g, such that zn € (bu @ \{Dyod)-
For every integer 4 such that n; > n, there exigts & point &, in T \bpyo O
such that r¥_(s,,) = @, and a point y* = (47, ¥, Vs, ) 10 g, such that
Yi,—,, and, thus, if 0 < 8§ <, then yh= 2. Then, if n; >n, the se-
quence 57, y'+1, 472, ... converges to  and & ¢ H*. Thus, for each 7, gi ¢ H.
Let o = (;, @, @, ...) be & point of g, distinet from (0,0, 0, ...). For
every nonnegative integer ¢, g; contains a point Z* whose ith coo:'dmate
iy o. Then the sequence Z° Z%, 7, ... converges to #’ and &' ¢ H". Thus
H is G. Then & is indecomposable since it is not the sum of two proper
subcollections H, and H, such that HF and Hj are closed.
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Boolean-valued selectors for families of sets *
by

B. Weglorz (Wroctaw and Nijmegen)

Abstract. Let X = (X ,<, be a family of sets. We say that I has a selector if
there is a set S such that |8~ X, =1 for every a < x. X has partial selectors if for
every f < x the family XL '8 = {Xy>acp has a selector. Let E(x, ») denotes the follow-
ing statement: For every family X = (X >,<, of sels of powers < 1, if L has partial
selectors then XL has a selector. In this paper we prove a theorem on the invarianee
of E{x, x) under some generic extensions, namely: Lei |B| = 4, B satisfy o-c6 and
1% < w. Moreover, suppose that for each ZF-formula @ with parameters from V we have
1D} {0, 1}. Then E(x, %) implies |E (%, )| = 1 in VB,

This paper is a continuation of [3]. For the readers’ convenience
we repeat the main notions and results of [3]. )

I X = (X, is a family of sets then X has a selector if there is
a set § such that |8 ~ X | = 1 for every a< ». We say that & has partial
selectors if for every f<Cx the family X[ §= <X, has a selector.
In [3] the following statement, denoted by E(x,A), has heen studied:
“For every family X = (X, ),., of sefs of powers <1 if X has partial
selectors then X has a selector”.

The main results of [3] can be presented as follows:

TEEOREM. (2) E(x, %) implies that » is regular.

(b) If x is weakly compact then E(sx, x) holds.

(e) E(zx, x) implies that » has the tree property.

(d) [GCH]. E(x, %) if and only if » is weakly compact.

In this paper we give a theorem about the invarianee of the property
E(x, %) under some generic extensions. We shall work in the Boolean
version of forcing; thus for the readers’ convenience we recall the main
notions and notations concerning the Boolean-valued universe 7@, For
more information see e.g. [2].

Let % be a complete Boolean algebra. We say that $ satisfies o-co
(o-chain condition) if every family of non-zero disjoint elements of & has

* The main part of this paper has been presented at the Eighth Dutch Mathe-
matical Congress, Groningen 1972.
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