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By Lemma 5 the statement forced is JT} in constructible parameters and
so must be satisfied by every non-construectible path through P. Since
there is such a path, this contradicts our original assumption that < ig
a linear ordering, and establishes the claim.

It is easy to see that the only elements of B invariant under all
automorphisms of B are 0 and 1. From this it follows that in L(8) all
definable sets are constructible [11], [6, Theorem 6.8]. However it must
also be valid that the first non-constructible element in the ordering < is
definable and non-constructible.
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On longest paths in connected graphs *
by
Linda Lesniak (Kalamazoo, Mich.)

Abstract. It is shown that a connected graph of order p > 4 contains a path of
length %, where 1< k< p—1, if for every integer j with 1 < j< k/2, the number of
vertices of degree not exceeding j is less than j. Furthermore, a tree of order p > 4 has
diameter at least &, where 8 < & < p~1, if the number of vertices of degree one is less
than {2(p—1)/(k—1)}. ‘

A hamiltonian cycle (path) in a graph & is a cycle (path) containing
every vertex of @. P6sa [1] proved that if & is a graph of order p > 3
such that for every integer j with 1 <j<C p/2, the number of vertices
of degree not exceeding j is less than j, then @ contains a hamiltonian
cyele. In this article, we establish an analogous result for graphs with
hamiltonian paths and in fact for graphs containing paths of any speci-
fied length.

TEEOREM 1. Let G be a connected graph of order p = 4. Then G containg
a path of length & (L <k <p—1) if for every integer j with 1 <j < kf2
the number of vertices of degree not exceeding j is less than j.

Proof. Since @ is connected and p > 4, the theorem is true for k=1
and k& = 2. Henceforth we assume % > 3. Suppose the length of a longest
path in @ is » where 2 < n< k. If P is a longest path in @, let Sp denote
degu--- degv, where w and v are the endvertices of P. Among all longest
paths in G, choose P: g, Uy, ..., %s 80 that Sp iz maximum. Suppose
deguy, < degun.

Since P is a longest path, each of u, and u, is adjacent only to vertic.es
of P. If witin e B(G), 0<i<<n—1, then wuyuy, ¢ E(F); for otherwise
the cycle

01 gy Uy ony Uy Uy Upyy »ovy Yigay Yo

of length n--1 is present in G. The cycle ¢ cannot contain all verbices
of @ since n+1 < p. Since @ is connected, there exists a Yertefx w nob
on € adjacent to a vertex of ¢; however this implies ¢ contains a path of
length n--1 which is impossible. Hence for each vertex of {thyy Uy y erey Ygea}
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adjacent to ug, there is a vertex of {uy, u,, ..., %n} not adjacent to Uy
Thus degu, < n— degun, 80 that deguy+degu, < n. Since degu, < degu,
and n<<k we obtain degu,< k/2, so, by hypothesis, there are fewer
than degu, vertices having degree not exceeding degu,. However, if
wyui € B(G), 1< i< n, then

Ujmny Ugmng woey Ugy Ugy Ugyyy eaey Uy

is a longest path in @ and from the manner in which 4, and w«, were chogen,
degu;_, < degu,. Thus there are ab least degw, vertices having degroe
not exceeding degu,. This presents a contradication so that & = n, Thuy
@ containg a path of length %.

The case k= p—1 gives a sufficient condition for a graph to PORSess
a hamiltonian path. However, we can obtain a slightly stronger result
by employing the previously stated theorem of Pésa. Suppose @ is a graph
of order p > 3 such that for every integer j with 0 < § < (p—1)/2, the
number of vertices of degree not exceeding j is less than j+1. We construct
a graph G* by adding a new vertex » and new edges joining v to all vertices
of . The graph @ has a hamiltonian path if and only if ¢* has a hamiltonian
cycle. However, G satisfies the hypothesis of Pésa’s theorem (with p--1
in place of ) so that G* is hamiltonian.

The results of Theorem 1 ave, in general, not best possible. However,
the result stated in the preceding paragraph is best possible. For example,
if p >4, let ¢ be a connected graph with one cutvertex and the threc
blocks K,, K,,,, and K, ,_,, where 1 <n< (p—1)/2. Then G satisfies
all the hypotheses with one exception: & contains at leagh n--1 vertices
of degree not exceeding n. Furthermore, the graph @ fails to contain
2 hamiltonian path. :

The simplest comnected graphs are the trees. In this case, one can
give a sufficient condition for lengths of longest paths in terms of the
number of vertices of degree one (endvertices) only. Since there ig a unique
Dpath bebween every pair of vertices in a tree, the result can be expressed;
in terms of its diameter (the length of a longest path for a tree). We
denote the diameter of a graph @ by diam@.

We begin with two lemmas.

Levmua 1. If o nontrivial tree T has m endverti

L ces, where m s even,
then there exist paths Py, P,, ..., P satisfying:

(1)  Bach endverte of T is an endvertex of

exactly one of the paths Py,
1<i<mf2,

mi2
(2) ,l‘:l Vi) =v(T),
i—1
(3) V@) (UVP).# D for all 1 with o <i<m2.
f=1

icm°
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Proof. We employ induction on m. For m = 2, T i3 a path and the
result desired is satisfied by I' itself. Assume the result holds for all trees
with m > 2 endvertices, and let T be a tree with m--2 endvertices. With
each endvertex of 7, we associate a path of T in the following manner.
Let % be an arbitrary endvertex of 7. Now, degu = 1, where & is adjacent
to, say, u,. If degu, = 3, let P, bo the trivial path: . Otherwige, degu; = 2
and u, is adjacent to u and, say, u,. If degu, > 3, let P, be the path: %, u,.
Otherwise, degu, = 2 and u, is adjacent to u, and, say, u,. Continue in
this fashion to obtain the path P,. Since m--2 :: 4, we can choose end-
vertices  and v of 7' so that T = 7'—V (Py)—V (P,) is a tree with m end-
vertices, each of which is an endvertex of 7. By the induetion hypothesis,
T* contains a collection of paths P, Py ony Py satisfying conditions
(1)-(3). Let «’ and @' be the final vertices of P w and P, respectively. Then
there exists a e—w path P in I where w'z, wo' « B(T'). Tf we define Poioyp
to be the path P, followed successively by u'z, P, wo’, and P,, the result
follows.

Lmyva 2. If o nontrivial tree T has m endvertices, where m is odd,
and diam T = &, then there cxist paths Py, Py, ..., Py syins Pimsryn Satisfying:

A Ppniuye s of the form P, (using the notaiton of the previous lemma)
Jor some endvertex: w of T and the length of P, does not exceed (k[2)—1,

(2)  Bach endvertex of T other than w s an endvertes of exactly one of
the Pis for 1 <1 < (m—1)[2,
-1

(3) V(P) ~ (UT(Py) # O for all i with 2 <i < (m—1)2 .
F=1
Proof. Since dinm T =k, the path Py,,,,, cleatly exists. Let T*
= T~V (Pypypye). Then T* is a tree with m—1 endvertices, each of which
is an endvertex of T. By applying the previous lemma to T*, we obtain
the desired result.

TrmoreM 2. Let T be a trec of order p > 4 and let & be fimed integer
with 3 <k < p—1. If diamT <<k, then I has at least {2(p—1)(k—1)}
endwertices. '

Proof. Let m denote the number of endvertices of 7. We consider
two cases depending on thoe pavity of m.

Case 1. m i3 even. By Lenmna 1, there exist paths Py, Py, ooy Py
with the threc requived propertics. Since diam 7T < k—1, we have
V(P <k for i=1,2, .., m?2. We wish to find an upper bound for p.
Sinee [V(Py)| < &, [V(P,)| < by, and V(P,) n V(P,) # @, we have

(V(Py) v V(P < b+ (h—1) .
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2 .
Moreover, since V (P;) A UV (Py) # @ and [V (Ps)| < &, it follows that
j=1 . . .
[V{Py) v V(P,) v V(Ps)l <7k+(k—1)-|—(k—1). Oontinuin% in this fashion,
m: . m
we obtain |L2jV(Pj)l< (m/2)(k—1)+1. Since v(T) =.L{ V (Pj), we have
h e

p< (m/2)(k11)+1 50 that m = 2(p—1)/(k—1). Thus m > {2(p—1)/(k—1)}
since m is integral.

Case 2. m is odd. By Lemma 2, there exist paths Py, Pyy ey Poniyype
with the four required properties. Since diam T < k—1, |[V(Py)| <k for
i=1,2, ., (m—1)2 and |V (Pl < (k—1)/2. As above, we obtain

(m:—l)lz

v <(%57) G-n

F=1

and hence
(m+1)f2 —1 k—1
I U V(P;)i<(ﬂ2—)(k—l)+1+(—5—).
j=1
(m+1)/2
Sinee V(T)= U V(P;), we have p<(m/2)(k—1)-+1 s0 that
=1

m = 2(p—1)/(k—1) .
Thus m > {2(p—1)/(k—1)} since m is integral.

The previous theorem may be restated as follows.

TreorEM 2'. Let T be a tree of order p = 4 and let & be a fized integer
with 3 <k<p~1. If T has fewer than {2(p—1)[(k—L1)} endvertices, then
diam T > k.

This result is best possible in the following sense. Given an odd
integer % > 3 and integer m > 2, there exists an integer p > 4 and tree T
of order p and diameter k—1 with 3 < ¥ < p—1, such that T has m end-
vertices, where m = {2(p—1)/(k—1)}. The tree obtained by replacing
each edge of the (star) graph K (1,m) with a path of length (k—1)/2
serves as such an example.
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