

By Lemma 5 the statement forced is Π_2^1 in constructible parameters and so must be satisfied by every non-constructible path through P. Since there is such a path, this contradicts our original assumption that < is a linear ordering, and establishes the claim.

It is easy to see that the only elements of B invariant under all automorphisms of B are 0 and 1. From this it follows that in L(S) all definable sets are constructible [11], [6, Theorem 6.8]. However it must also be valid that the first non-constructible element in the ordering < is definable and non-constructible.

References

- [1] H. Friedman, Minimality in the A2 degrees, Fund. Math. 81 (1974), pp. 183-197.
- [2] PCA well-orderings of the line, J. S. L. 39 (1974), pp. 79-80.
- [3] K. Gödel, The Consistency of the Continuum Hypothesis, Princeton, N. J. 1940.
- R. Mansfield, On the possibility of a Σ₂¹ well-ordering of the Baire Space, J.S.L. 38 (1973), pp. 396-398.
- [5] Perfect subsets of definable sets, Pac. Jour. Math., 35 (1970), pp. 451-457.
- [6] and J. Dawson, Boolean valued set theory and forcing (to appear).
- [7] D. A. Martin, Projective sets and cardinal numbers (to appear), J.S.L.
- [8] G. Sacks, Forcing with perfect closed sets, Proc. Sym. Pure Math. 13 A.M.S., Providence, R. I. (1971), pp. 331-335.
- [9] J. Shoenfield, Mathematical Logic, Menlo Park, Calif. 1967.
- [10] The problem of predicativity, Essays on the Foundations of Mathematics, Jerusalem, pp. 132-139.
- [11] Unramified forcing, Proc. Sym. Pure Math. 13, A.M.S., Providence, R. I. (1971), pp. 357-381.
- [12] R. M. Solovay, A model of set theory in which every set of reals is Lebesgue measurable, Ann. of Math. 92 (1970), pp. 1-56.

Reçu par la Rédaction le 9. 7. 1973

On longest paths in connected graphs*

b

Linda Lesniak (Kalamazoo, Mich.)

Abstract. It is shown that a connected graph of order $p \ge 4$ contains a path of length k, where $1 \le k \le p-1$, if for every integer j with $1 \le j < k/2$, the number of vertices of degree not exceeding j is less than j. Furthermore, a tree of order $p \ge 4$ has diameter at least k, where $3 \le k \le p-1$, if the number of vertices of degree one is less than $\{2(p-1)/(k-1)\}$.

A hamiltonian cycle (path) in a graph G is a cycle (path) containing every vertex of G. Pósa [1] proved that if G is a graph of order $p \ge 3$ such that for every integer j with $1 \le j < p/2$, the number of vertices of degree not exceeding j is less than j, then G contains a hamiltonian cycle. In this article, we establish an analogous result for graphs with hamiltonian paths and in fact for graphs containing paths of any specified length.

THEOREM 1. Let G be a connected graph of order $p \ge 4$. Then G contains a path of length k $(1 \le k \le p-1)$ if for every integer j with $1 \le j < k/2$ the number of vertices of degree not exceeding j is less than j.

Proof. Since G is connected and $p \ge 4$, the theorem is true for k = 1 and k = 2. Henceforth we assume $k \ge 3$. Suppose the length of a longest path in G is n where $2 \le n < k$. If P is a longest path in G, let S_P denote $\deg u + \deg v$, where u and v are the endvertices of P. Among all longest paths in G, choose $P: u_0, u_1, \ldots, u_n$ so that S_P is maximum. Suppose $\deg u_0 \le \deg u_n$.

Since P is a longest path, each of u_0 and u_n is adjacent only to vertices of P. If $u_i u_n \in E(G)$, $0 \le i \le n-1$, then $u_0 u_{i+1} \notin E(G)$; for otherwise the cycle

$$C: u_0, u_1, \ldots, u_i, u_n, u_{n-1}, \ldots, u_{i+1}, u_0$$

of length n+1 is present in G. The cycle G cannot contain all vertices of G since n+1 < p. Since G is connected, there exists a vertex w not on G adjacent to a vertex of G; however this implies G contains a path of length n+1 which is impossible. Hence for each vertex of $\{u_0, u_1, ..., u_{n-1}\}$

^{*} AMS (MOS) Subject classification (1970). Primary 05C05, 05C35 Key words and phrases: path, longest path, hamiltonian path, tree, endvertex, diameter.

adjacent to u_n , there is a vertex of $\{u_1,u_2,...,u_n\}$ not adjacent to u_0 . Thus $\deg u_0\leqslant n-\deg u_n$, so that $\deg u_0+\deg u_n\leqslant n$. Since $\deg u_0\leqslant \deg u_n$ and n< k we obtain $\deg u_0< k/2$, so, by hypothesis, there are fewer than $\deg u_0$ vertices having degree not exceeding $\deg u_0$. However, if $u_0u_i\in E(G)$, $1\leqslant i\leqslant n$, then

$$u_{i-1}, u_{i-2}, ..., u_0, u_i, u_{i+1}, ..., u_n$$

is a longest path in G and from the manner in which u_0 and u_n were chosen, $\deg u_{i-1} \leqslant \deg u_0$. Thus there are at least $\deg u_0$ vertices having degree not exceeding $\deg u_0$. This presents a contradication so that $k \leqslant n$. Thus G contains a path of length k.

The case k=p-1 gives a sufficient condition for a graph to possess a hamiltonian path. However, we can obtain a slightly stronger result by employing the previously stated theorem of Pósa. Suppose G is a graph of order $p \ge 3$ such that for every integer j with $0 \le j < (p-1)/2$, the number of vertices of degree not exceeding j is less than j+1. We construct a graph G by adding a new vertex v and new edges joining v to all vertices of G. The graph G has a hamiltonian path if and only if G has a hamiltonian cycle. However, G satisfies the hypothesis of Pósa's theorem (with p+1 in place of p) so that G is hamiltonian.

The results of Theorem 1 are, in general, not best possible. However, the result stated in the preceding paragraph is best possible. For example, if $p \ge 4$, let G be a connected graph with one cutvertex and the three blocks K_2 , K_{n+1} , and K_{p-n-1} , where $1 \le n < (p-1)/2$. Then G satisfies all the hypotheses with one exception: G contains at least n+1 vertices of degree not exceeding n. Furthermore, the graph G fails to contain a hamiltonian path.

The simplest connected graphs are the trees. In this case, one can give a sufficient condition for lengths of longest paths in terms of the number of vertices of degree one (endvertices) only. Since there is a unique path between every pair of vertices in a tree, the result can be expressed in terms of its diameter (the length of a longest path for a tree). We denote the diameter of a graph G by diam G.

We begin with two lemmas.

LEMMA 1. If a nontrivial tree T has m endvertices, where m is even, then there exist paths $P_1, P_2, ..., P_{m|2}$ satisfying:

(1) Each endvertex of T is an endvertex of exactly one of the paths P_i , $1 \leqslant i \leqslant m/2$,

(2)
$$\bigcup_{j=1}^{m/2} V(P_j) = V(T),$$

(3)
$$V(P_i) \cap (\bigcup_{j=1}^{i-1} V(P_j)) \neq \emptyset \quad \text{ for all } i \text{ with } 2 \leqslant i \leqslant m/2.$$

Proof. We employ induction on m. For m=2, T is a path and the result desired is satisfied by T itself. Assume the result holds for all trees with $m \ge 2$ endvertices, and let T be a tree with m+2 endvertices. With each endvertex of T, we associate a path of T in the following manner. Let u be an arbitrary endvertex of T. Now, $\deg u = 1$, where u is adjacent to. say, u_1 . If $\deg u_1 \ge 3$, let P_u be the trivial path: u. Otherwise, $\deg u_1 = 2$ and u_1 is adjacent to u and, say, u_2 . If $\deg u_2 \ge 3$, let P_u be the path: u_1, u_2 . Otherwise, $\deg u_2 = 2$ and u_2 is adjacent to u_1 and, say, u_3 . Continue in this fashion to obtain the path P_u . Since $m+2 \ge 4$, we can choose endvertices u and v of T so that $T^* = T - V(P_u) - V(P_v)$ is a tree with m endvertices, each of which is an endvertex of T. By the induction hypothesis. T^* contains a collection of paths $P_1, P_2, ..., P_{m/2}$ satisfying conditions (1)-(3). Let u' and v' be the final vertices of P_u and P_n , respectively. Then there exists a z-w path P in T^* where u'z, $wv' \in E(T)$. If we define $P_{(m+2)/2}$ to be the path P_u followed successively by u'z, P, wv', and P_v , the result follows.

LEMMA 2. If a nontrivial tree T has m endvertices, where m is odd, and diam T = k, then there exist paths $P_1, P_2, ..., P_{(m-1)/2}, P_{(m+1)/2}$ satisfying:

- (1) $P_{(m+1)/2}$ is of the form P_u (using the notation of the previous lemma) for some endvertex u of T and the length of P_u does not exceed (k/2)-1,
- (2) Each endvertex of T other than u is an endvertex of exactly one of the P_i 's for $1 \leq i \leq (m-1)/2$,

(3)
$$V(P_i) \cap \big(\bigcup_{j=1}^{i-1} V(P_j)\big) \neq \emptyset \text{ for all } i \text{ with } 2 \leqslant i \leqslant (m-1)/2 \text{ .}$$

Proof. Since diam T=k, the path $P_{(m+1)/2}$ clearly exists. Let $T^*=T-V(P_{(m+1)/2})$. Then T^* is a tree with m-1 endvertices, each of which is an endvertex of T. By applying the previous lemma to T^* , we obtain the desired result.

THEOREM 2. Let T be a tree of order p > 4 and let k be a fixed integer with $3 \le k \le p-1$. If diam T < k, then T has at least $\{2(p-1)/(k-1)\}$ endvertices.

Proof. Let m denote the number of endvertices of T. We consider two cases depending on the parity of m.

Case 1. m is even. By Lemma 1, there exist paths $P_1, P_2, ..., P_{m/2}$ with the three required properties. Since diam $T \leq k-1$, we have $|V(P_i)| \leq k$ for i=1,2,...,m/2. We wish to find an upper bound for p. Since $|V(P_1)| \leq k$, $|V(P_2)| \leq k$, and $|V(P_2)| \leq N$, we have

$$|V(P_1) \cup V(P_2)| \leq k + (k-1)$$
.

Moreover, since $V(P_3) \cap \left(\bigcup_{j=1}^2 V(P_j)\right) \neq \emptyset$ and $|V(P_3)| \leqslant k$, it follows that $|V(P_1) \cup V(P_2) \cup V(P_3)| \leqslant k + (k-1) + (k-1)$. Continuing in this fashion, we obtain $|\bigcup_{j=1}^{m/2} V(P_j)| \leqslant (m/2)(k-1) + 1$. Since $V(T) = \bigcup_{j=1}^{m/2} V(P_j)$, we have $p \leqslant (m/2)(k-1) + 1$ so that $m \geqslant 2(p-1)/(k-1)$. Thus $m \geqslant \{2(p-1)/(k-1)\}$ since m is integral.

Case 2. m is odd. By Lemma 2, there exist paths $P_1, P_2, \ldots, P_{(m+1)/2}$ with the four required properties. Since diam $T \leq k-1$, $|V(P_i)| \leq k$ for $i=1,2,\ldots,(m-1)/2$ and $|V(P_{(m+1)/2})| \leq (k-1)/2$. As above, we obtain

$$|\bigcup_{j=1}^{(m-1)/2}V(P_j)| \leqslant \left(\frac{m-1}{2}\right)(k-1)+1$$

and hence

$$|\bigcup_{j=1}^{(m+1)/2}V(P_j)|\leqslant \left(\frac{m-1}{2}\right)(k-1)+1+\frac{(k-1)}{2}.$$

Since $V(T) = \bigcup_{j=1}^{(m+1)/2} V(P_j)$, we have $p \leq (m/2)(k-1)+1$ so that $m \geq 2(p-1)/(k-1)$.

Thus $m \ge \{2(p-1)/(k-1)\}$ since m is integral.

The previous theorem may be restated as follows.

THEOREM 2'. Let T be a tree of order $p \ge 4$ and let k be a fixed integer with $3 \le k \le p-1$. If T has fewer than $\{2(p-1)/(k-1)\}$ endvertices, then diam $T \ge k$.

This result is best possible in the following sense. Given an odd integer $k \ge 3$ and integer $m \ge 2$, there exists an integer $p \ge 4$ and tree T of order p and diameter k-1 with $3 \le k \le p-1$, such that T has m end-vertices, where $m = \{2(p-1)/(k-1)\}$. The tree obtained by replacing each edge of the (star) graph K(1, m) with a path of length (k-1)/2 serves as such an example.

Reference

 L. Pósa, A theorem on Hamiltonian lines, Magyar Tud. Akad. Mat. Kutató Int. Közl. 8 (1963), pp. 355-361.

WESTERN MICHIGAN UNIVERSITY