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(5.1) ProBreM. Does there ewist for every continuum X an §-stablg
continuum X, e Sh(X)?

(8.2) ProBrEM. Is it true that S-stable FANR-spaces are the same
as TR -stable FANR -spaces?
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An open-perfect mapping of a hereditarily disconnected
space onto a connected space

by
R. Pol and E. Puzio (Warszawa)

Abstract. In this paper the authors construet an example of open-perfect mapping
of a hereditarily disconnected space onto a connected space. Both of the spaces are
metrizable and separable.

The aim of this paper is to construct the hereditarily disconnected
gpace X and the open-perfect mapping f of X onto the connected space Y.
Both of the spaces will be separable metrizable. We should mention here
that 0-dimensionality and totally disconnectedness are invariants under
open-closed mappings in the class of metrizable spaces. The first of these
facts is obvious, the second was proved by Kombarov [3]. The basis of
our econstruction is the well-known Knaster—Kuratowski Broom, the
subspace of the plane with dispersion point (see [4], § 46, II). At the
end of this paper we shall prove the theorem related to this object.

Terminology and notation are as in [2] and [4]. In particular, the
word “mapping” and the symbol g: A—B mean continuous mapping,
the symbol g: A -+ B means that g(4) = B. By connected space we always
understand non-one-point space. For ¢ X and ACX we write xx 4
instead of {w} x 4.

1. We start from some auxiliary constructions in the Buclidean
plane R? with the standard metric o. The symbol B denotes the set of
all real numbers, N denotes the set of non-negative integers, I is the
interval [—1, 1] of reals, P and ¢ irrationals and rationals of T Tespectively.
For te R let §= (t,0) < R% "

Divide the set P into two disjoint, dense in P sets P* and @* such
that Q* = Np- Let

M=P'xPu@*xQ.
For 2= (z,, ) ¢ R* and real number o >0 we seb

Uz, a)= {y « Bo(y,a') <o, where & = (m,sFa)}vz},
and

E@,a)={y<Ble(y,®)<o}-
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Let Q* = {g;}2, be an enumeration of 9* and let us choose a strictly
decreasing, convergent to 0 sequence {ry)., of elements of P, such that
UG, rs) ~ UGy, 7s) = O for i # j. Denote Ji = g X [—7i, 7i]. Let {6‘,,},_1

be a sequence of open subsets of the plane such that &; D G,y and ﬂ &,
=(Ix0)v UJ; Such a sequence exists, because the set on the nght,.

hand side of the last equality is closed in R
Now fix k> 1. Fori < k let us choose numbers af < ¢; < f; from ¢
and define sets

E;;=[a,’i,;3;;]x[—r,-,0], F};:[afc,ﬁ,ﬁ]x[o,ri], Dk:E}ch;“
satistying conditions: )
DLADL=0, DiCG,, Uldyur)nDi=0,f i+j,4,j<bk

and DLC D{_, for i< k—1. It follows from geometrical considerations
that an inductive constructlon of such numbers and sets i3 possible.

Put Yy= (@*x0) v ( M\UJ:) Let us remark that

i=1

(1) for any point y # 7; of ¥, there exist k, and m, e N such that
1
K( ,m>n.D‘=!Z) provided i < k, k> ky,

@) i y= gy, then T(g;,r;,) ~Di=0 for iy, i <k, & # iy,

(3) Y,~ () Di= {7} .
=1

@K(k',f’)
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2. We start the construetion of our example by defining the space ¥.
Let (92 98)) = (02, 9o+ 20), T = 4(To), ¥/ = | Ty We define topology

n=0

in the set ¥ = Y’ v {o}, where w ¢ ¥’, by taking the family

1 o0
{U( ’E)n Y}m=1 for y=(qi,2n),

1 o0
Kly,—|~X for yeY and y+# (q1,2n), neN,i=1,2,...
m ?

M=l

and
mn
{Y\kU Y ey for y=o0
=0
as the neighbourhood basis of y.

The space Y constructed above is regular and has countable basis,
hence by the Urysohn theorem it is metrizable and separable. We may
also show it is connected; the proof of this fact is similar to the proof
that the Knaster-Kuratowski Broom is connected.

Now we define the space X. Let ¢ denote Cantor set. Lebt {a,}3,
be a sequence of all left ends of the contiguous intervals of the set C.
Take the space Z= Y’ X O XN with the product topology and set Z,
= Yo,xXx OXN. For z¢Z we write 2= (y,, Yas 0 ,j), where (y;,%,)e X',
ceC, jeN. Let

Ady={2eZ| —1<y, <0, j=0},
Ady={rcZ)| O0<y,<1,j=1},

Ay = (@ix Ox 20) v U (B}~ To) X a5 X 24) and
Aggpy = [@;% Ox (2i4+1) v U(Fin Ty x apx (26+1))  for i=1,2,...
k=1

We introduce the equivalence relation E, on the set X, = QOA, by the
formula '
2Ry 2 & [[2= (41,0, ¢, 20) A2 = (43,0, ¢,1))
Ve = (g1, — 11, 6, 20) A2 = (41, =71, , 0))
Ve = (41,0, ¢, 20-F1)A 2" = (41,0, ¢ 0))
V(e = (41, 71, 6, 204+1)A2" = (Y1, 75, €, 1))

Vie=2)], i>1.
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For n e N let tn: Zy—Z, be the mapping given by

Tﬂ((f’/l; Yas Gyj)) = (?/1’ (—1)"y,+2n, a"(c),j) )

where ¢ is the nth superposition of o: ¢i~1—c for ¢ ¢ 0. Let X, = 74(X}).
Let us extend the relation B, to the equivalence relation B on X'
= {JX,CZ (and equipped with the relative topology) by
n=0
2R 2 <« [2= 1a(2) A2’ = T,(2) A2, By 20] .

Let X = X'|R be the quotient space, ¢: X’ - X the natural quo-
tient mapping and p: Z - ¥’ the projection. The restriction g=plX"
X'~ ¥’ is constant on inverses of points under @, hence it determines

a mapping f: X -+ ¥’ such that g=fp. Let X, = o(X,) for nelN. ,

Let. the space X be the result of adding to X'* a closed set wx O
and taking as a basis of neighbourhoods at the point (w, ¢,) the family

m
{X\I RLJOX,‘ v g HC\D)T}, where U is a neighbourhood of ¢, in 0, me N,

and qgft)——- ¢ for 2= (w,0) or @ = (41,95, 0,4) e X’. The space
X =2X"0U (wx0) is regular and has countable basis; similarly to the

e ©
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cage considered before, it follows from the Urysohn theorem that X is
metrizable. We show that X is hereditarily disconnected. Let us remark
that the image of {a,}3., under o is the set of right ends of the contiguous
intervals of the set 0. It follows that for each ¢ e O the set g Y(e) is the
union of the point (w,c) and its open-elosed, hereditarily disconnected
subspaces, hence it is hereditarily disconnected. Since the mapping g of X
into € is continuous, a connected subset of X would be a subset of the
hereditarily disconnected space g'(¢) for some ¢ e ¢; this means that
X is hereditarily disconnected.
Let us extend f to a mapping of X onto ¥ by f((w, ¢) = w.

3. It remains to show that f is open-perfect.

The images of meighbourhoods of points «p((qi, 2, " (ax), j)) for
t<k and points different from ¢{(qi,2n,¢, 7)) are neighbourhoods of
images. Thus to show that f is open it suffices to remark that the set A
consisting of points of this form is dense in the inverse image f~(y) of
any point y ¢ ¥, ie. 4~ y) = fy). ,

We start the proof that f is perfect by showing that for each je N
the set .A; is closed in Z,. Let o™ = (43", 2, ¢™, §) for m e N be any se-
quence of points of A4; convergent to 2° = (33, %3, ¢" j). We may assume
Jj=2. I (yT, 93" = q; for infinitely many m's, then a* = (g, 0, ¢, j) € 4;.
If there exists % ¢ N such that infinitely many 2™s belong to the set
(Dix apxj) n4; then o e(Dixa,xj)~A4;. If none of these cases
holds, then there exists a sequence of indices %, < %,< ... such that
o' e D X a; X j; hence by (3) the sequence (y7,y2) converges to g
and a° = (g4, 0, ¢, j) € A;. Since for each n e N the mapping w.: Z,—>Z,
is a homeomorphism, the set z,(4;) is closed in Z,.

Now we show that the mapping fu = f|Xn: Xy » ¥, is perfect.
Since f,p|X, = ¢|X,, hence by [1], Chapter 1, § 10, Proposition 5 it
suffices to prove that the mapping g, = g|X,, is perfect. At first remark
that for each j ¢ I the mapping ga|ta(4ds) is perfect as the restrietion of
the perfect (by Kuratowski theorem) projection parallel to the compact
axis p|Z%y to a closed set. Thercfore the mapping g» is the combination
of the perfeet mappings galta(4s), where j e N. Thus to finish the proof
that the mapping gn is perfect we need only show that the family U
= {gTp(As)}52, is locally finite in ¥, and econsists of closed sets. Sinc.e
InTn(Ag; ¥ Aggpy) = A, (DY) for i=1,2, ..., hence the closedness of U is
obvious, Let us take y ¢ Yn. If ¥ 5 lu(g), then by (1) there exists
a neighbourhood ¥ of y and k¢ N such that V ~ A(Df) =@ for k& > k.
I y= A7), then T(X,(7i),7s) N 2(DE) =D for k>iy by (2). Thus

U iy locally finite.

Since both X and Y are metrizable, to show that f is perfect it suffices
to prove that
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(4) if {o™%_, is a sequence of elements of X such that f(a™)—y,,

then {#™%_, contains a convergent subsequence.
If 9, € ¥’, then (4) follows from perfectness of the mappings f,. Hence
let us assume that y,= o and #™= ¢((4" ¥3, 6™, ™) Let us choose
a subsequence {¢™}3., of {™};., convergent to some ¢®e U; then o™
~>(w, ¢*). This shows (4), and the perfectness of f follows.

4, REMARES. We finish with two remarks.

1° Suppose f is an open-perfect mapping of a Hausdorff space X onto
a connected space Y. Then the space of quasi-components of X ([4], § 46,
Va) is compact and each of quasi-components is mapped onto ¥ (Kom-
barov [3]). If X is hereditarily disconnected, then ¥ contains no continuum,

The following theorem and corollary give a further information about
that situation.

TrEOREM. If f: X — Y is an open, perfect and 0 - dimensional mapping
of a regular space X onto a connected and locally connected space Y,
then for every point 2 e X and arbitrary ordinal a the restriction of f to the
guasi-component Q(z) (1) of order a at the point x is open-perfect and
f (Qa(w)) =Y.

Proof. To begin with let us prove the following lemma.

LeMuA. Let § be a family of closed subsets of X such that finite inter-
sections of elements of § belong to § and for every T « & the restriction of f to
the set I is open and maps F onto Y. Then the restriction of f to the set
A=\T is also open and f(4)= Y.

For the proof of the lemma take a point #, .4, y, = f(%) and an
open neighbourhood U of x, in the space A. Let ¥V be an open neighbour-
hood of 2, in X such that

VAACTU and FrVaAfiy)=60.

Becanse ¥, ¢ f(FrV), we can choose an open, connected neighbourhood W
of y, such that
fEXV)AW=0.

Denote Vr=V ~ F and by B the boundary of VF.in the gpace 7. Then
we have

Frf(Vr) C f(Br) C f(FrV),

(*) Let Qy(z) = X and use transfinite induction to define @Qu(w) for cach ordinal a,

namely Qqy,(x) is the quasi-component of the space Q4(x) at the point x and Qp(x)
= nBQa(w) for limit B. ' ‘ P o
a<,

@ ,
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because f[I' is open and closed. Thus we obtain Yo € f(Vr) and Frf(Vy) ~
n W =@; it follows by connectedness of W that

fVr2W.
We end the proof of the lemma by showing that
oy aw.
Take an arbitrary ¥ ¢ W. Then for every F we have
B # fHy) " VeC ) ~ Ty

and the family {f~(y) “T’—p}zreg hag the finite intersection property,
hence by compactness of 7 Yy) also :

B AN AN TSI W oV n ACT )~ T

Now we derive the Theorem from the Lemma by induction. Take
an arbitrary 2 e X. For a=10 we have @ (2)= X and the theorem is
obvious. Suppose it holds for o< f. If § = y-1 then @,41(%) is the inter-
section of the family § of all open-closed subsets of Q,(x) that contain a,
Hence it suffices to use the Lemma. If § is a limit ordinal, then Qs(x)
= ﬂﬁ Q) and by virtue of the inductive assumption we can use the

a<

Lemma for § = {Q,(2)},cp-

CorOLLARY. Let f: X — Y be an open, perfect and 0-dimensional
mapping of a reqular space X onto a connected and locally connected
space Y. If there ewists a point y € Y such that f7'(y) is metrizable, then for
every @ e X there exists a < w; such that Q.,(z) = Q. ().

Proof. Take an arbitrary o« e X. For each ordinal « denote
F,=f(y) ~ Q,(x). Thus we obtain the well ordered family F,= f~}(y)
OF,2..0F,DF,.,D.. of closed subsets of the compact, metrizable
space f~'(y). Hence there exists ordinal a<C e, such that F,=F,
(4], § 24, IT, Theorem 2). We shall show that this is required ordinal.
By Theorem the restriction f|@,(#) = g is an open-closed mapping onto ¥.
By Kombarov’s remark it follows that ¢~'(y) intersects each quasi-com-
ponent of the space Q,(x). Suppose that Q,(2)\Q..1(%) > 4". Then @,.,(z') ~
NgTY) A G and  g7(y) = Qua) A T Y) = Fy = Foyy = Qona(2) ~ f 1Y)
= Qua(2) ~ g7 (y). Hence g7 y) C Qup(#) and we obtain a contradiction:
Qosa(®) M Quua(0) # .

In particular, from the above remarks follows that a hereditarily*
disconnected space cannot be mapped onmto locally connected space by
open-perfect mapping. :
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2° In our example both of the spaces X and ¥ are 1-dimengional,
hence they can be embedded into 3-dimensional Euclidean space. We
do not know if it is possible to construct an example of this kind taking
a subspace of the plane as Y. We do not know also whether ¥ would be
the Knaster-Kuratowski Broom.

We are deeply gratefull to Professor R. Engelking for suggesting the
problem. We are also indebted to Doctor J. Krasinkiewicz for interesting
discussions about the subject of this paper.

Added in proof. Recently the second of the authors showed, modifying the
present construction, that ¥ can be taken as a subspace of the plane. We have
also proved that if we replace in the construction of Knaster-Kuratowski Broom
the rational and irrational numbers of the m-axis by two disjoint subsets of irratio.
nals of the second category, then we obtain the space ¥ with a dispersion point
which is not an open-perfect image of any hereditarily disconnected space.
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The non-existence of >} well-orderings of the
Cantor set

by
Richard Mansfield (University Park, Pa.)

Abstract. It is shown the existence of a X% well-ordering of the Cantor seb implies
that all reals are constructible., This is the converse of a theorem of Godel.

Throughout this paper we assume the existence of a non-constructible
real. With that in hand, let us set forth some notation. A finite sequence
s is an extension of ¢ if ¢ iy an initial subsequence of s. A tree is a set of
finite sequences of 0’s and 1's containing every initial subsequence and
at least one proper extension of each of ity members. For « a function
with domain the set of non-negative integers, a(n) is the sequence
<a(0), a(1), ..., a(n—1)>. A path through the tree P is a function a such
that a(n) is in P for every n. [P] is the set of paths through P. It is easily
shown that [P] is a closed subset of 2% and that every closed subset of 2%
is the set of paths through a unique tree. The tree corresponding to a
closed seb is its code; a cloged set with a constructible code is con-
structibly coded. A closed set is perfect iff every sequence in its code has
at least two imcompatible extensions in the code.

Let B be the Boolean algebra corresponding to forcing with con-
struetibly coded perfect sefis ordered by the subset relation. B is a complete
Boolean algebra containing the constructible trees as a dense subset.
There are several ways to represent B; one is as the regular open sets
in the space 2¥—L with the topology generated by the constructibly
coded [P]'s. .

We are going to be using B-valued set theory. In that set theory
there is a canonical generic function 8 in 2V. (In the system presented
in [6], 8 is {¢R, P): VseP [length (s) < nVsy=1]}.) We are also going
to be using another Boolean extension of set theory M, in which every con-
structible tree P has a path generic over V with respect to B. The Truth
Lemma [11] states that for o generic and ¢ a formula in the forcing lan-
guage, V(o) satisfies ¢ iff there is a condition P with « ¢ [P] and P I g.
In interpreting the foreing language for ¥ (a), 8 is a name for a. Thus if
¢(z) is a X} or IT; formula with possible unlisted constructible parameters
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