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Proof. Implication (iii) = (i) is an immediate consequence of Theg-
rem 2.4 because if X is strong then ¥ is a normal property (ef. [5] Theo-
rem 1, or [9] Theorem 1).

‘We shall prove (i) = (ii). If B is a ring with identity and ¢ = e2 ¢ B
then Re is a projective R-module with the representation (R, e) and
Hom(Re, Re) = eRe. Thus

K (eRe) = K(Hom (Re, Re)) C Hom(Re, K (R)Re)
C Hom(R, K (R)R)= K(R).

To prove (ii) = (iii) let us consider a nil-ring 4 and let us put R = 4%

Of course A= K(R). We write ¢ = (3 g) eR,. It is easy to see that

¢= ¢t and that a ring ed,e isomorphic with 4 is a X-radical of a ring
eRye isomorphic with R. Hence

Ay = ByedyeB, = R, K (¢R,e) R, C B, K (Ry) R, CE(R,).

This means that a matrix ring 4, is nil for every nil ring A. In this case
the problem of Koethe has a positive solution, as was proved by J. Krempa
[7] and A. D. Sands [9]. m
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On shapes of topological spaces

by
Kiiti Morita (Tokyo)

Abstract. A new approach to shapes of topological spaces and its applications
will be given. ’

The notion of shape was originally introduced by K. Borsuk [1]
for the case of compact metric spaces. Since then, this notion has been
extended to the case of compact Hausdorff spaces by 8. Marde§ié and
J. Segal [12] (cf. also W. Holsztiynski [7]) and to the case of n.aetrie spaces
by K. Borsuk [2] and R. H. Fox [4]. More recently the notion has been
extended to the case of arbitrary topological spaces by S. Mardegié [11].

In this note we shall discuss shapes of topological spaces in the sense
of Mardegi¢ from another point of view. )

For any. category @, let us denote by Ob € the class of all ob;_ects
of €, and by fe €(X, ¥) we mean that f is a morphism from X to ¥ in G.

1. Let § be the homotopy category of topological spaces. Its objfacts
are topological spaces and its morphisms are homotopy classes of. continu-
ous maps; the homotopy class of a continuous map fi: XY will be. de-
noted as usual by [f]. Let 98 be the full subeategory of § whose objects
are all topological spaces having the homotopy type of a CW complex.
Throughout this paper, by an ANR we shall mean an ANR for t’h’e class
of metrizable spaces. The following result is known (cf. Mardeiié [11]).

TemmA 1.1. For a space X the following conditions are equivalent.

(a) X has the homotopy type of a CW complex. .

(1) X has the homotopy type of a simplicial compler with the weak
topology (or with the metric topology).

(6} X has the homotopy type of am ANR.

DeFINITION 1.2. Let {X,, [Du], 4} e an inverse system in t;e
category $ or B; thatis, 4isa directed set, continuous Maps Poqrt X o> ifu
are defined for any a, o with a<d, and [PuwllPee]= [P
a< o' < o''. We shall say that an inverse system {X,, [Poar]s A} In §H oOT

g%
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W is associated with a topological space X if there are continuous maps
Do XX, for « ¢ A such that the following conditions are satisfied.
(1) [Parl[Pe] = [Po]; i a< 2.
(ii) For any continuous map f: X—@ with Q « Ob (W) there exigh
aeA and a continuous map f,: X,—@ such that [f1= [f,1[p,]. )

(ifi) For aed and for two continuous maps f,, g,: X, —=Q with
Q <Ob(MW) such that [f,1[P.] = [9.][p.], there exists ¢’ € A with a< o
such that [f][Per] = [g.][Pur]- ' :

For any topological space X there exists an inverse system in 9B
associated with X. : ’

To prove this, let {W,| a € A} be the set of all locally finite normal
open coverings of X. If U, is a refinement of U, we write a < o’. Let
K, be the nerve of U, which we consider a simplicial complex with the
weak topology. Then for each a there is a continuous map p,: XK,
such that

7 St(u; E)C T

where u is a vertex of K, corresponding to the set U of the covering Ui
such a map p, is called a canonical map and any two canonical maps are
homotopic to one another. If a < o’ we have a simplicial map p,,: K,—~K,
such that p,(u)=v implies UCV where v and v are vertices of K,
and K, which correspond to the members U and V of U, and b, re-
spectively. Such a map p,. is called a canonical projection and any two
canonical projections are homotopic. Moreover, we have

Padlpa]l=1[p] # oa<ad'.

Thus, we obtain the following theorem from Morita, [16, Theorem 4.3].

TEEOREM 1.3. With the above motations, {K,, [Dar]y A} 18 an inverse
system in W associated with the space X.

In case X is mefrizable we have another inverge system in I3 as-
sociated with X,

For any metrizable space X, by & well-known theorem of Kura-~
towski-Wojdystawski there exists a metrizable space P which is an ANR
and contains X as a closed subset. More generally, let P be any ANR
such that X C P. Then the set {¢} of all open neighborhoods @ of X in P
forms an inverse system {&, iz} of ANR’s with inclusion maps fge a8
bonding maps, which will be denoted by U(X, P) and is called the com-

Plete neighborhood system of X in P (of. Fox [4]). In this case {@, [ige]} is
an inverse system in 8.

: TemormM 14. The complete neighborhood system U(X,P) of X in P
induces an inverse system in W associated with X .
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For compact Hausdorff spaces we have the following two theorems;
the first is known and the second is due to Mardedié [11].

TrroREM 1.5. For any compact Hausdorff space X ihere 48 an inverse
system of finiie polyhedra which has X as ils inverse limit.

THEOREM 1.6. Let {X,, Doy, A} be an inverse system of compact Haus-
dorff spaces with X as its inverse limit. Then the inverse system {X,, Lpua,], A}
in § is associated with X.

To obtain Theorems 1.4 and 1.6 simultaneously, we shall give the
following definition.

DeFINITION 1.7. Let {X,, ., 4} be an inverse system of topo-
logical spaces with X as its inverse limit; let p,: -X——>Xa, a e.A, be the
projections. We shall say that a covering U of X.u is proper (with respect
to p,) if VU is a locally finite normal open covering such that_the nerve
of 9 is isomorphic to the nerve of p;*(‘U) under the map 2; 1, In case
for any f <A and for any locally finite normal open coverings g of X
and 3 of X, there exist ¢ ¢ 4 with f< a and a proper covering QO of X,
such that p7 (V) refines § and U refines pj'(3), we call the inverse system
{Zay Poury A} proper ().

LevmA 1.8. The inverse systems described in Theorems 1.4 and 1.6
are proper. .

Proof. Let P be a metric space with a metric o containing X. To
each open subset ¢ of X we can coirespond an open s;xbset (@) of P such
that »(@) ~» X = & and such thatiﬁl @ = O implies Qlwp(G;) = @; indeed,
one defines p(@) = {p ¢ P] o(p, &) < g(p, X—&)}. This fact is due to

i [10, p. 122].
KUI?E:V g&b(g a:I’I. gpen Iileighborhood of X, and let § (vesp. %) be a locally
finite normal open covering of X (resp. V). Let {G,] % e A} be any locally
finite open covering of X which refines ¢ and ®nX; 'for zeX, let V(a?;
be an open neighborhood of # in X such that V(z) intersects at mos
finitely many sets &;. Let us pub wy(G:) = (G2 » Hog and
Up= U@V @) aeX}, U= U{p(@)n Tl ted},
where we assume Gy C H,p, Hog € . Then X CUCYV,U is open in P

and {py(@4) ~ U| 4«4} is a proper covering of U with respect to the

inclusion map X C T. ]

’ Next; 1e1I:) {X,, Poas A} and X be the same as In Tllxeorem 1.6. Let §
and be, any open coverings of X and of X, respectively. Then there
are a A with p < « and a covering U= {Ti|i=1,..,m} of X, by open

(*) T am indebted to Philip Bacon for ealling my attention to a defeot of the def-
inition of “proper” in the original version of the paper.
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F,-subsets such that U refines pz'(%) and p*(W) refines G. By [14,
Lemma 1] there are open F,-subsets Vi, ¢=1,...,m, of X, such thag
UinpX)=T;n p(X), V;C U, for each ¢ and such that {Vy} is similar
to {U; n p(X)}. As is known, there is a’ ¢ A with a < o’ such that P X )
C UV, Thus U= {p;(V,)} is & proper covering of X, which refineg
Di(%), and p7'(V) refines §. This completes the proof of Lemma 1.8,

In view of Lemma 1.8, Theorems 1.4 and 1.6 are direct consequences
of Theorem 1.9 below.

TEEOREM 1.9. Let {X,,p., A} be a proper inverse system of topo-
logical spaces with X as its inverse limit. Then the inverse system
{Xay [Par], A} 0 © is associated with X,

Proof. Let N denote the operation of taking the nerve of a covering,

Let 9, be a proper covering of X,. Then we can identify ¥ (p7%(%,))
with N (V). Let ¢,: X,~N(V,) be a canonical map. Then Dralat
XN (p7}(V,)) is a canonical map.

Let f: X—Q be a continuous map with Q €« Ob(W). Then by Theo-
rem 1.3 and the assumption of Theorem 1.9 there exist a e 4, a proper
covering VU, of X, and a continuous map fi: N (p71(0,))—>@Q such that
[f1= [£,]lp,], where ¢,; X—>N(p;}(V,)) is a canonical map. Since [e,]
= [#.llp.], we have [f]= [f,][p,] by putting f, = fip,.: X,—>Q.

Next, let a < o’ and let U, be a proper covering of X, which refines
P2A%V,), where VU, is a proper covering of X,. Let ¢,: X >N (Uy,) be
a canonical map and ¢}: N(U,)—>N(p;}(V,)) a canonical projection.
Then ¢,.p,, and ¢,¢,, are both canonical maps from X, to N (paHv,)).
Hence we have

1) 90l [Pawr] = [0} 1[g107] -

Suppose that fj, 9pt Xp—>@ are continuous maps with fed, [fa1lp4]
= [g51[p,] and that @ is a simplicial complex with the weak topology. Let
us put M = {8t(¢; Q)| ¢ ranging over all vertices of Q}. Then there exist
a4 with 8 < a and a proper covering U, of X, such that pJ 1(9,) refines
(FaPp) (M) andl (g,5) (), and U, Tefines (fypy,) (o) and (gyp)=(A0).

Hence by [16, Lemma 4.1] there exist continuous maps f,, g,: N (U,)>Q
such that

@ UePsl = [f1I00] s [9570] = [g.1[0,a] -

Since ¢,,0,: XN (V,) = N(p7%(%,)) is a canonical map, we have [f,1[p,]
= [g,]lg,] for any canonical map P X>N(p7Y(V,)).

Therefore, by Theorem 1.3 there exist o’ ¢ 4 with e < o’ and a proper
covering U; of X, such that Uy, refines p}(V,) and

3) [Flw] = [g1l#,
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where ¢l N(p7'(Uy))—N(p7(V,)) is a canonical projection. We note
that ¢* may be identified with ¢! defined before sinee U, is a proper
covering refining p77(V,). Hence, by (1), (2) and (3) we have

[fe} [ Peur] = 951 Dpe] -
This completes the proof of Theorem 1.9.

2. Following Mardegié¢ [11] we shall define the shape category & of
topological spaces as follows. The objects of S are topologiéal spaces.
Let X and ¥ be topological spaces. The morphisms of & are called shapings
(or shape maps). A shaping f: X—Y is a function which assigns to every
neH(Y,Q) with @ « Ob(W) a homotopy class f(n) e H(X, Q) in such
a way that for @ ¢ Ob (W), 7' ¢ H(Y, Q') and u e W(Q, Q') the equality
py =7 implies uf(n) = f{y").

" Y' f(n)/X
/ l" = // Lf(n')

Q—Q Q=@

If X, ¥, Z are topological spaces and f: X—7¥, ¢g: Y—Z are shapings,
then the composite gf: X7 is defined by (gf) () = flg(0)) for £ € $(Z, Q)
with @ € Ob(2B). The identity shaping 1x: X— X is defined by 1x(&)= &
for £¢ H(X, Q) with @ < Ob(2W).

Mardeié [11] proved that & is actually a category.

The shape functor S: $—G is defined as follows: S.(X )= X for
every space X, and if p: X— Y is a homotopy class of continuous maps,
the shaping S{p): X— ¥ is defined by S(g)(n) = ng for n¢ H(¥, Q) W}th
Q « Ob(2W). 8 is a covariant functor. Mardeiié [11] proved the following
theorems. _

TEEOREM 2.1. Let ¥ « Ob(W). If f: XY is a shaping then there is
& unigue homotopy class @: X—Y such that 8(p)= f.

THEOREM 2.2. If f: XY is a shaping and ne$H(¥Y,Q), Q¢ Ob (W)
then 8(n)f = 8(f(n)-

We shall now state the following theorem.

TeeorEM 2.3. Let X be a topological space and {¥g, [gss], B} an
inverse system in the category W which is associated fwit.h mfwther topqlogwa_ﬂ
space ¥; let qp: Y— ¥, B e B, be continuous maps satisfying conditions (i)
to (iii) én Definition 1.2. Then there is a one-to-one correspondence betwe;n
shapings f: X~ and systems of homotopy classes ;€ H(X, T), feB,
satisfying

[gplpp =95 Jor B, B with B<p".

The correspondence is given by S[q1f = 8(pg); B €B.
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Proof. In [11, Theorem 7] Mardeiié has proved this theorem for
the case where {¥;, ¢s, B} is an inverse system of compact Hausdorft
spaces ¥Y;e Ob(W) and ¥ = HE{I’ﬂ, Qps B}. His proof there is haged
upon Theorems 2.1, 2.2 and the fact described in Theorem 1.6. Hence

the argument in his proof is applicable to the present case and we have
Theorem 2.3.

Next, let {X,,[Por], A} and {¥p, [gs], B] be inverse systems in
the category 0. A system map from {X,,[p.], A} to {¥s, [gps], BY,
by definition, consists of & map p: B—4 and homotopy classes of maps
Jat Xy X, for B e B such that, if f< ' in B then

(9861 fo (Dotnal = Fol Dypal

for some a with ¢(f)< « and @(A') < a. Two system maps {p, f;, B}
and {y, gz, B} are said to be equivalent if for each B € B there exists a e 4
such that ¢(f) < a, 9(8) < a and :

FlPeeal = 96l Pypral -

Then the argument in Mardesi¢ [11, § 7] is applicable to the present case
by virtue of Theorem 2.3. Hence we have the following theorem.

TEHEOREM 2.4. Suppose that inverse systems {X,,[Dow], 4} and
{Y;, (4501, B} in W are associated with the spaces X and X respectively.
Then there is a one-to-one correspondence between shapings f: X—Y and
equivalence classes of system maps from {Xay [Dorl, 4} to {¥;, (4], B}.

Of course, to the identity shaping 1x: X—>X there corresponds the

equivalence class of the identity map {14 1x,, A} from {X,, [Par], 4}
to itself. Let

{‘nyﬁr B}: {Xm [Paxrdy A}“’{Ym [Qﬂﬂ’]: B} )
W 9,5 O {¥p, [gp], B}>{Z,, [7,1, 0}

be system maps in 8. Then the composite of these maps is defined by
{x, h,, O}, where y = gp: 0—>4 and by = g, foun X2, IE{X,, [pur], A},
{¥;s, [4pe], B} and {Z,,[r,,1, C} are associated with spaces X, ¥ and
Z respectively, then the composite of {p,f;, B} and {v,g,, C} corre-
sponds to the composite of shapings corresponding to these maps.
Therefore by using equivalence classes of system maps of inverse systems
in 93 associated with topological spaces we have another approach to
the notion of shapings.

. By ‘restricting the inverse systems under congideration to ones de-
seribed in Theorem 1.4 or 1.5, we have an approach to shapings in the
case of metrizable spaces or in the case of compact Hausdorff spaces.

'
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Such an approach is due to Fox [4] for the former case (%) and to Mar-

‘detié and .Segal [11] for the latter case.

In case there are shapings f: X—¥ and g: Y~X such tha?; gf =1x
and fg = 1y, X and Y are said to have the same shape and we write Sh(X)
= Sh(Y). Thus, we have

TeEOREM 2.5. The notion of shape in the sense of Mardedié coi'ncid.es
with that in the sense of Fox [4] for the case of metrizable spaces, and with
that in the sense of Mardesié and Segal [12] for the case of compact Haus-

spaces.
dwffoe second assertion in Theorem 2.5 is due 130 Mardegié [11].'It
ghould be noted that for the case of comp'ac“n metr.m spaees_ the notion
of shape in the original sense of Borsuk coincides with that in the sense
of Fox [4] or in the sense of Marde§i¢ and Segal [13], but that. two notions
of shape due to Borsuk [2] and Fox [4] for the case of metrizable spaces
are different (cf. Godlewski and Nowak [6]).

The following theorem i a direct consequence of Theorem 2.3..

THEOREM 2.6. Let {X,, (D], A} be an inverse system in 5)3 assoc.mted
with a topological space X. Then in the shape category S the object X is the
inverse limit of the inverse system {X,, 8((p.r1), 4}

topological space X, an Abelian group @&, and an integer
"= 3, :lE(-‘:’;rg:(}:X; g) (fesp. g’”(X ; @) be the ath Cech hom.olog.yt h(rgsiI;.
cohomology) group based on locally finite normal open coverings; that is,
with the notations in § 1, we have

H,(X; @) = B {Hy(E,; &), (Pardss 4} 5
HY(X; 6) = Him {H"E,; 6), ()’ 4} -

em 2.3 gives rise to )
ThenTET:]E?c(:;rEM 3.1. If' f: XY is a shaping, then f induces homomorg)siza(‘g
fot Ho(X; @) Ho(Y; G) and f* BHYY; G)—:H”(X; G).Hlvll'e;c.e,G)zf
= Sh(Y), then Hu(X; Q) = Ho(¥; &) and H“(.X; @) =~ HYY; . i
Tt is stated in [11] that the last assertion has been obtained by
" B;frieorREM 3.2. Lt {Y;, [gse], B} be an inverse system in the category I
which is associated with a topological space X. Then we have

BMX; G) o im {H™(Yp; @), (Qﬁﬁ')*, B},
Ho(X; @) 22 lim {Ha(¥p; &), (g),r B} -

icti i , but it
() For U (X, P) Fox [4] had made the restriction that § be closed in P, buw
was shown by Hyman [8] that this restriction can be removed.
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Proof. Let {K,, [P.], 4} be the inverse system deseribed in Theo-
rem 1.3. Then by Theorems 1.3 and 2.4 there exist two system mapg

D= {‘Psfﬂy B}: {Kay [Parls -A-}"{Yﬁ’ [Qﬂﬂ’]y B},
V= {"P; 9as A}: {Ym [%ﬁ’]: B}"’{Kav [Poarls -A-} ]
such that the composites WY@ and OF are equivalent to the respective
identity maps {la, lx,, 4} and {1z, 1yﬂ, B}. Hence we have the theorem,
Remark. If {¥;,[g], B} is an inverse system in the homotopy
category $ and is associated with X, then we have also H™X; @)
Lim{H"(¥s; &), (4)", B} by using [16, Theorem 6.2].

4. In our previous paper [16], the covering dimension of a topological
space X, denoted by dim X, is defined to be the least integer n such that
every finite normal open covering of X i3 refined by a finite normal open
covering of order <n--1; if there is mo such an integer n, we write
dim X = oo. Let us define the shape dimension of X, SdX, to be
Min {dim ¥| 8h(X) < Sh(Y)}. Here X is said to be shape dominated by ¥,
Sh(X) < Sh(Y) in notation, if there are shapings f: X+ ¥ and ¢g: Y—»X
such that gf = 1x. .

Since by [16, Theorem 6.7] every continuous map f: X->8" (8" being
an n-sphere) is inessential if dim X < n, we can prove the following theo-
rem similarly as in Godlewski and Holsztyniski [5].

TaeoREM 4.1. If SdX < n, then every continuous map f: X—8" is
inessential.

5. As is deseribed in [16], there exists a reflector r from the category
of topological spaces and continuous maps to the full subecategory of
Tychonoff spaces; that is, 7(X) is a Tychonoff space, a natural continu-
ous map @x: X—>7(X) is defined, and any continuous map f: X—@
with @ a Tychonoff space is factored through z(X) such that f
= 05"t (f) Px. Since t(XxI)=7(X)x I by Puppier [17] (cf. also [16,
Lemma 1.4]), f~g: X—@ implies 7(f)=~ v(g): 7(X)—>v(Q), where I is
the closed unit interval [0, 1]. ‘

If we let  range over all ANR’s and assign to any continuous map
f: X—@ the continuous map &7'=(f): 7(X)—@, then we have a shaping
y: o(X)—~X. It is obvious that S((Dx))y = l.x and »S8([Px])= lx.
Hence we have

TEEOREM 5.1. A topological space X has the same shape as 7(X).

For a Tychonoff space X let us denote by u(X) the completion of X
with respect to its finest uniformity. Then any continuous map from X
into a mefric space can be extended over #(X). Moreover, u(X xI)
= uX X I as was proved by Puppier [17] and Morita [15] independently.
Hence we have the following theorem similarly as above.
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TEEOREM 5.2. If X is a Tychonoff space, then X and u(X) are of the
same shape.

Since u(X)= $(X) if and only if X is pseudocompact ([15]), we
have the following corollary. »

COoROLLARY B.3. A pseudocompact space has the shape of a compact
Hausdorff space.

Added in proof. The first assertion of Theorem 2.5 was proved independ-

ently by 8. Marde$ié (Equival of two motions of shape for metric spaces, Bull. Acad.
Polon. Sei., Sér. Sci. Math. Astronom. et Phys. 21 (1973), pp. 1137-1142).
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