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A wild Cantor set in E» with simply connected
complement

by
D. G. DeGryse and R. P. Osborne (Fort Collins, Colo.)

Abstract. It is well known that the complement of a fame Cantor set embedded
in B% n > 3, is simply connected. The converse of this statement is false. In fact there
is an example of a wild Cantor set in 7 whose complement is simply connected, due
to A. Kirkor. However, no example was known in dimensions greater than three, since
it was not clear how to generalize Kirkor’s construction to higher dimensions. Using
solid tori we construct a wild Cantor set in F®, whose complement is simply connected.
This construction generalizes to E#, n > 3. This rgsult is then wused to construet
wild cells and spheres in B* with simply connected complements.

In 1921, L. Antoine [1] constructed a wild zero-dimensional subset
of 8. This set was proven to be wild by showing that the fundamental
group of its complement in §* was non-trivial, [3]. Tn 1951, W. A, Blan-
kenship [2] extended Antoine’s construction to n-dimensions giving an
example of a compact, zero-dimensional set 4 C B, whose complement
was not simply connected. In 1958, A. Kirkor [5] gave the first known
example of a wild zero-dimensional subset of §® whoge complement was’
simply connected. This set was constructed by entangling ares in S5,
Since it is not clear how to generalize Kirkor’s econstruction to 7 -di-
mensjons, we will give & different construction in B® which can be gener-
alized o #-dimensions, » > 3.

A Cantor set in. ™ will be called tame if there exists a homeomorphism
of " onto itself which maps the Cantor set into a straight line segment.
A Cantor set which is not tame is wild.

The following is our principal theorem.

“ TEROREM. For n > 3, there emwists & wild Cantor set A™C E" whose
complement is simply conmnected.

COROLLARY 1. For n >3 and 0<k<m, there emists wild k-Dbails
in B" with simply connected complpments.
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COROLIARY 2. For n=>8, 0< k< n—3, there ewists wild L-spheres
in B with simply conneoled complements. There also ewists wild (n—2)-
spheres in B whose complements have infinite cyclic fundamental groups,
and wild (n—1)-spheres in H™ whose complementary domains are simply
connected. ‘

The paper will be divided into five parts. In part I the Cantor set
A3C FP® is constructed. In part IX, we prove that A® is wild by showing
that w(T8— A®%) is not what it would be if A® were tame (I is the canonical
solid three-dimensional torus). In part IIL, we show that the complement
of A% in H® is simply connected. In part IV we generalize the construction
and results to A™in B, n > 8, and in part V we shall prove the two corol-
laries following the prineipal theorem.

1. The construction of the Cantor set A3. We first give an intuitive
construction of A3

DeriNiTioN 1.1. Let J be a polygonal simple closed curve in HE,
Given &> 0, denote by N,(J) a regular neighborhood of J in B°* such
that d(z, J) < e for all @ e N,(J). J will be called the ceniral simple closed
curve of N (J).

The Cantor set A3 will be the intersection of a decreasing sequence
of non-empty compact sets, 43D A}D 43 ... The sequence of sets will
depend on the two standard models shown in Figure 1.

In Model 6, J* is the central simple closed curve of the solid un-
knotted torus T3 in B® and T, T, are solid tori embedded in T% go that
they are entangled as shown in the figure. This embedding will be ac-
complished in such a way that if J* is eut into two ares J, Jy at the points
iy, 1y, then given 8 >0 and points pe Ty, p' e Ty,

(i) d(p,J7)< 6, and

(i) a(p’, Iy < é.

Model § is considered to be the torus Th with T, and Ty as subsets
of T3 and will be denoted as the pair (T3, T, v Ty).

In Model ¥, % is a solid torus embedded in T5 as shown. in Figure 1.
Model F is considered to be T with F® as a subset and will be denoted
as the pair (1%, F®).

To obtain 4* we must construct a decreasing sequence of non-empty

compact sets. To obtain the first set we will construet a set D? in T¢ which
will be defined in detail later.

To construet D2 in T we will start with Model 5. We will use iter-
ations of a mapping which sends Model § onto each of the tori in the pre-
ceding step. For example, the first step will be the mapping of Model &
-onto each of the tori already embedded in T%. These mappings will be
continued until each of the tori in the intersection of the images of T, v Ty

im(@ Wild Oantor set 11

in TG have diameters less than a given & > 0. It is this part of the con-
struction which will give us the zero-dimensionality of the set 42,

After the diameters of each torus is less than a given ¢ >0, we will
then map (T5, F®) onto each of the tori. This step will be instrumental
in proving that the complement of A% is simply connected. A® ig then
constructed by iterating these two processes.
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In proving = (#°— A3) is trivial and in proving w(T5— A%) is not what
it would be if A® were tame, we will use a direct limit argument on the
fundamental groups.

Now we will go into the detail of constructing 4% In constructing 4°®
we must be sure thab

(i) the diameters of each of the tori become as small as we want,
to insure the zero-dimensionality,
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(i) m(T%— 4% # Z, to insure the wildness of 4%, and

(iii) m(BP—A4%) is trivial.

First of all, we will congtruet a set, D?, consisting of disjoint solid
tori. D? will be the intersection of images of T, T, in Tj. These tori
will have diameters less than s. D} will be used in the definition of A3,
the first set in the sequence of decreasing setis used in defining A3,

TEEOREM 1.2. Given & >0, we can construct o set D° of solid tori
in Ts such that

(i) the diameters of each of the tori comprising D are less than e,

(i) these tori are unknotted and unlinked in B°, and

(ili) Dyt m(dT3)—m(To—Df) is a monomorphism, where $y is induced
by inclusion.

To prove this theorem, we shall nge the following lemma.

LemmA 1.3. Let J be a polygonal simple closed curve in HE. Let P be
a plane in BP. And let ¢ > 0 be given. Define P to be o “thickening” of P,
i6, P= {v e B d(e, P)< &} Define P, and P_ to be the boundary com-
ponents of P. Define B, and B 1o be the spaces “above” P, and “below” P_,
respectively, such that B%, B and P are pairwise disjoint but % o B} U P
= 8. Let Ny(J) be a regular neighborhood of J. Then

(1) there ewists a minimal set M consisting of an even nwmber, 2k of
distinet points in J ~ P such that between any two consecutive points, J lies
entirely in B U P or B2 U P, and

(ii) after i stages of the construction, involving o suitable homeomorphism,
mapping Model & onto Ny(J), each of the tori embedded in Ny(J) will lie
entirely in B w P or B o P. '

Prootf. Part (i) is easily proved by routine methods. The proof of
part (i) will be by induction on %. For % = 0 the conclugion is clear. As-
sume it is true for k= m—1.

Consider the 2m distinet points in M. Pick one of them, call it .
Proceed around J in a clockwise fashion and order the points &y, oy, ..
woy Bpy weny By 0F M a5 we encounter them. Consider », and @y - Define
our homeomorphism a: (T5, Ty Ty)—N,(J) such that

1° a(l) =,
2° a(ty) = ty,y,, and
3° a(J*) =J.

Such & homeomorphism clearly exists. Since a is a homeomorphism
of a compact set onto a compact set then « is uniformly continuous.
Hence, given &> 0, there exists 6 >0 such that, given points p ¢ T,
and 7 eJ} such that d(p,r) < 8, then ala(p), a(r)]< e. The same holds
true for points g e T, and s e J7.

icm°
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Now we have two tori a(T,) and «(T,) embedded in Ny(J) by & suit-
able homeomorphism. Their central simple closed curves ave J, and Jy
respectively. The minimal sets for each of J, and J, then contains two
fewer points than the minimal set for J. The lemmsa follows inductively.

The set D? will be the intersection of a decreasing sequence of non-
empty compact sets ) .

8D 08D..0 (5.

Detine Cf to be T,u T, in T2, By “cutting” T3 with planes one
at a time and by using the suitable homeomorphisms we ean construct ¢%,

&
1 <9<k, in such a way that the tori contained in [ (% lie in cubes with
i=0 .

%
diameter less than e D} will then be equal to [ 0% Notice DC 78.
=0
Proof of Theorem 1.2,

(i) It is clear ‘that since E® can be partitioned into cubes with
diameter less any given s >0 and by Lemma 1.3 that given any & >0
the tori in D2 have diameters less than e.

(i) To prove this part we need only remark that at each stage of
the construction the tori are unknotted and hence unlinked in F° In €3
we have two tori. It is well known that since the central simple closed
curves of T, and T, bound non-singular disks, 7, and T are unknotted
in F°. Hence the tori in OF are nnknotted in H®. We proceed inductively
and arrive at the result. :

(iif) The third part will be proven later in the paper (Lemma 2.4).

A® will then consist of the intersection of a decreasing sequence of
non-empty compact sets

43D 43D 43 ...

A} will be defined to be D?. A2 is the subset of A3 equal to the union
of the images of F® obtained by homeomorphically mapping (T3, F®)
onto each of the tori in 4]. 43 is the subset of A% equal to the union of
the images of D, obtained by mapping (T3, D) homeomorphically
onto each of the tori in A}, Here, 0 is a function chosen so that when
(T3, D) is mapped onto. each of the tori in A2, the images of each
of the tori in D, have diameters less than .

In general, 43, ¢ # 0, i = 2§, is the subset of A%, equal to the union
of the images of D, obtained by mapping (T, DY) homeomorphic-
ally onto each of the tori in A% ,, and 4%, 4 odd, is the subset of 4,_,
equal to the union of the images of F° obtained by mapping (I%,F")
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homeomoxphically onto each of the tori in A% ,. We then define 4° to
be ﬂ AS.

§=0
It is & routine matter to show that 4% is a Oantor get.

IL A% is wild. In this section we will prove that A® is wild by fivst
noticing that given a tame Cantor set X, w(I§—X)= n(T}) = Z, the
free group on ome generator, Whereas :rz(T" A®) # Z, hence proving
Ab iy wild. ]

Now to show that = (15— A®) # Z we will need the following theorem,

All homomorphisms given below are taken to be those induced 1w
inelusion.

TamoreM 2.1, Let A and B be open arcwise oonwoted subsets of A w B
such that A ~ B is arcwise connected. If the homomorphisms ¢,: (A ~ B)
—m(A) and gy n(d ~B)—>n(B) are monomorphisms, then v m(A)
—a(d v B) and ;2 w(B)—m(A v B) are monomorphisms.

Proof. m{d uB) is the free product of n(4) and =(B) with
@fn(4 ~ B)) and gyfm(4 ~ B)) amalgamated [6], sec. 4.2.

The following lemmas are immediate consequences of [8], Theorem 2.

Levma 2.2, & w(0T5)—n(Te—F®) is a monomorphism.

Luvuma 2.3, £% n(ali”’)—m(l’g—l?’“) i8 @ MOnomorphism.

Fig. 2

The two lemmag given below are both proved by similar methods.
We prove only the last of them to illugtrate the technique.

IrmwuA 2.4, n: w(2Ts)—n(To— (T, v Ty)) is' a monomorphism.

0
LeMMA 2.5, 7*: w(dT,)—a(Th— (T, Ty)) i8 @ monomorphism.
Proof. Let n(0T,) = <a, b[a, b] = 1), where a and b are as indicated
in Figure 2.
Now consider ™" e z(3T,). We show that z*
if m=n=0. Congider the commutative diagram,

(0™b™) = 1 if and only "

icm
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0
7 (0T,) —> a(E T,)
L /

“(Tg_(Ta e Ta'))

Now a(a™b"™) is non-trivial unless m = 0. It follows that 5*(a™d") is
non-trivial unless m = 0. Next consider the commutative diagram,

(0T > w(T3—1T,)

N
7 \ ,
a(To— (T v Ty))

Since a*(a™b™) is non-trivial unless » = 0, it follows that *(a™d") is
non-trivial unless » = 0.

THEOREM 2.6. Given any of the sets A3 in the construciion of A%, the
map p: w(To— A —n(To— A},,) is a monomorphism.

Proof. To prove this we must consider two cases.

Case 1. ¢ is even.

In this case T3— 43 is the complement in T} of many images of T,
and 7T, entangled in the manner set forth in the construetion. A%, is
the subset of A% obtained by mapping (T3, F®) homeomorphma]ly onto
each of the solid tori in .A‘3

Set Tt—A%= T3— U T,, where % is the number of tori com-
n=1
prising A%. Now, if we can show that by mapping (T3, F®) onto one of
the Ty's, say T;, the map ‘

vt w(Th— U )-—>:m[.’!’3—(UT v 91
n%i

is & monomorphism, then after % such maps we have that yp: m(T5— 4%
—n(Ty—A3,,) is a monomorphism.

Let y; be defined by the inclusion and consider the following Van
Kampen diagram.

z(0T';)
£ \E

kE o
a(T—UT,)|  a(T—F)
n=1

Nt

ﬂ[T”—(UT v F})]
=
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By Lemmas 2.2 and 2.5 we know that & and &* g.‘re monomorphiﬁ_;mg,
Hence, we can apply Theorem. 2.1 and conclude y; is a monomo,rphmm.

Therefore, y: w(Lf—A)—n(Ti—A%,,) is a monomorphism when
7 is even.

Case 2. 4 is odd.

Again, when ¢ is odd, T§— A} is the complement in 7% of many solid
tori. But this time the solid tori are images of F® entangled as preseribed
in the construetion. I5—A},, is the complement of A%, in T8, where
A}, is the subset of .4} obtained by mapping (7%, DF) homeomorphically
onfo each of the tori in A}. Remember that D? is the union of many
homeomorphic images of Model 4.

m
Congsider T5— A3 to be T3 — | J T, where m is the number of tori
S
in A% Now if we can show that by mapping (7%, D?) onto one of the Tys,
say Ty, the map

m m
852 w(Lo— U Tp) = T4— (U T, v D2,)]
n=1 :,‘L;;.
is & monomorphism, then after m such, maps we have that y: o (I)— A%

—n(Ti—A},;) is a monomorphism.

To show 4; is a monomorphism it suffices to show that py;: m(0Ty)
—n(T;— D) is & monomorphism. An application of the Van Kampen
theorem completes the proof. Recall that D%, is the homeomorphic image
of Df and that D? was constructed by successively mapping the pair
(T3, Ty T,) into its subtord. Again using the Van Kampen theorem
and Theorem 2.1 we see that we can reduce our problem to one of showing

0
that 2(81%)— (T — (T, u T,)) and 7 (0Ly) — (T8 — (T, T'y)) are mono-
morphismgs. But this is exactly Lemmaas 2.4 and 2.5,
The preceding theorem gives us our inductive step in showing that
w(T3—A4%) + Z and hence A® is wild.
THEOREM 2.7. m(T%— 4% = Z.

=
Proof. Since az(Tﬁ——A%:limn(Tﬁ——A%), it soffices to show thatb
i->c0

N .
there exists a subgroup of limz (73— 4% which could not possibly be
=00
& subgroup of Z. -
It is clear by using Lemms 2.4 that # (815~ (T8 — A2) is a mono-
morphism. Since we have also proven that at every stage in the congstiue-

tion, the map y: n(Tﬁ—Aﬁ)—m(Tﬁ—A‘;H) is a monomorphism, then we

can say that the inclusion map 7 (8To)—n(T3— A4%) is a monomorphism.

icm°

Wild Cantor sei 17

Since 7(013) = <a, Blafap~, the free abelian group on two ele-
ments, and @ (015) > (Ts— 4% is a monomorphism, then n(T%— 4% hag
a free abelian subgroup on two elements.

Therefore, 7(T—A%) # Z and hence A® is wild in %,

L. E*— A% is simply connected,

THROREM 3.1. 7(E*—.A43%) is trivial,

Proof. By Theorem 1.2 we have that in the construction of D: all

the tori comprising it are unlinked and tmknotted in B°. Hence
(B — Af) = <ay, a, ..., az>

the free group on % elements, where % is the number of tori in A%, At
the next stage.of the construction, we map (T3, F*) onto each of the tori
in A3 homeomorphically. The union of the images of F® in A3 is A2,

Congider this mapping and the map B: =(B°—A})—a(E—43)
induced by inclugion. Let 8 w(E*— T})—u(E*— F%) be the map induced
by inclusion. We know that

(8) m(EP*—Ty) = <as), and

(b) “(—Es“Fg) = by, bzlblbz_l =1,
where #(H*—F%) is calculated from Figure 3.

by

Fig. 3

Now B <a>—<by, by by b7 = 1> and Bya,) = b,b;* = 1. Hence g
takes all of the generators of m(H®— A}) to the identity in n(E“—_A}).

Repeating this argument we see that every other map in the direct
limit that gives = (B°— 4% is the trivial map. Since

o (BP— A%) = hEa'z(E“— 43
00

we can use a direct limit argument and conclude that givel.l any gener-

ator in one of the groups in the direct limit, that generator is eventually
> .

mapped to the identity. Hence n(H'—=4%) = lin;(E”— A% is trivial,

2 — Fundamenta Mathematicae T. LXXXVI :
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One should note that the above argument would fail if at any stage
of the comstruction any of the solid tori encountered were knotted. Tf
this happened, the two tori obtained by mapping model & onto this knotted
torns would be linked and the subsequent groups would mot be free as
asserted above.

This completes the constrmetion of a wild Cantor set A3 in F* whose
complement is simply conpected.

IV. A generalization to B". Using onr construction of A% in IP® we
will generalize to A™ in B" by an inductive argument. The following lemma
and definition will be useful in the construction.

Levwa 4.1, Let X = X, X X, X Xy, where X4 18 a compact melric space,
i=1,2,3, and X, =X, Suppose A and B are subsets of X,x X;. Let
he XaX Xg>—>A be a homeomorphism. Define a “switching map” s: X—X
so that = 8 X sy* X1, where 83 X;=»>X, is o homeomorphism. Then
given & > 0 there emisis a 8 > 0 such that if diam{4) and diam(B) are less
than 8, then dism[(1x h)s(X X B)]<e.

The proof of this lemma is a simple point set topology argument.

DEFINITION 4.2. We define T% to be the unit disk in H* and define 17
0 be (8Y)*2x T2, where (8"~ denotes the (n— 2)-fold Cartesian product
of the one sphere, S*. An n-tube is a gpace homeomorphic with Ig.

Henceforth, all unlabeled maips are induced by inclusion.

A™ will be the intersection of a decreasing sequence of non-empty
compact gets, A7 D ATD A% ..., where each A% iy the union of disjoint
n-tubes. In the construction of A™ we must be sure that

(i) the diameter of each n-tube in A% approaches zero ag &k goes
to infinity,

(i) 4™ is wild in B*, and

(iii) B*— 4" ig simply connected.

To construct A™ we will use two basie sets, D? and ™ in T7§.

THEOREM 4.3. Given & > 0, we can construct a set D¥ in T consisting
gjj j:lsjoim n-tubes with the following properties:

(i) the diameter of cach n-tube in D} is less tham e,

(i) w(@T})—n(T3— D7) is a monomorphism, and

(iii) the m-tubes in DY are h-unlinkable in T%. (For the definition of
h-unlinkable and the proof of (iii) see 4.8 and following.)

Proof. In the previous seetions we showed how to construct D3
in T% for: every choice of 6. > 0. Assume inductively that we can construet
D;~* for each choice of-8 >0 satistying (i), (ii), and (ili). D™ consists
of disjoint (n—1)-tubes I}, ‘4= 1, 2,..., % Now §'x Di~C §x I8t

+ Wild Oantor” set : 19

. Let kg Ty~*>—>T7" be a homeomorphism. Define- s: 8% % §* x i
—»S‘x 8t T"“2 as in Lemma 4.1, thensdefine

= _U [(} X By)s(8*x DY) C T,

By Lemma 4.1 the diameter of each component of D will be less than e
if ¢ is small enongh. This establishes (i).

In order o establish (ii), consider.the following Van Ka.mpen diagram.
‘ 7 (0T7)

a8 x (T3~ D) | n((lxhi)s(ﬁ’lx(T{,‘“—_D},‘"l)))- ‘
N\
N

k
w(Tp — (U T (1 hs(8 X D))
o
Note that =(0T3")—m(T3~*—D3") is a monomorphism for each .
choice of 5. From this it follows that
m(017) = (o (8 x T3 (8 x (T3*— D3
is a monomorphism. Thus,

a{(1x ho)s(0T5) )) = = (6T ._,,,( (1 Bg)s (8% x (T3 — Dn.'l»}

is a monomorphlsm Notice that it also follows inductively that w(0T%)
a8 X (T3~ DY) is a monomorphism. Thus, by Theorem 2. 1,

k
(S (T3~ D))= To— (U T3 © (1 By)s(8 x D))
i=i
is & monomorphism. And hence,

k&
(@)~ (T | T3 o (1x B3 (8*x D5 )
ot
is a monomorphism. It follows mduc‘mvely that =(0Th)—n(Ty— D7) is
a monomorphism.
To construct F™ C T7, we consider ™! in T71 and define F* = §'x
Fn-—l C Sl Tn-—l n
All we need to do now is deflne the sets Ay D A} D ... Similar to the
three-dimensional case, we define Ay to be D} and in general A%, 1 # 0,
%= 2j to he the subset of A%, equal to the union of the images of Digariys
obtained by mapping (T3, Dy, homeomorphically onto each of the

o
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n-tubes in A7_,. And A%, ¢ odd, is the subset of A7, equal to the union
of the images of ™, obtained-by mapping (17, F") homeomorphically

onto each #n-tube in A% ,. Then A™= poA'{.
Tt is a routine matter to show that A™ is a Cantor set.
Now we need to show 4™ ig wild in B

TaeorEM 4.4. Let X be o tame Cantor set in T™. Let T™ be an n-tube
such that X lies in the interior of T™. Then w(I"— X) = w(I™).

The proof of this theorem is easy enough to justify omission.

LEdvA 4.5, The maps n,: w(0T%)+n(T5—F%), gn: w(@T)—s o (Tt~

k »

-U 10’;‘,‘), and B n(@Th)—n(Te— \J Th) -are monomorphisms induced by
m=1

m=1
inclusion.

This lemma is easy to prove using a standard inductive argument.
We will omit the proof.

THEOREM 4.6. Given any set A%} in the construction of A", the map
p: n(T"-—Ai)—m(T — A%,,) is a monomorphism.

Proof. Consider two cases.

Case 1. 4 iy even.

In this.case 4} = U T3, the union of & n-tubes, A%, is the subse

m=1
of A} equal to the union of the images of 7™, obtained by mapping (%, I™)
onto each of the n-tubes in A%. If we can show that by mapping (1% ™)
onto one of the n-tubes in A}, say T7%, the map

w(T5— U T )—m[T"—(U I% v )]
maéj

induced by inclusion, is a monomorphlsm then v is & monomorphism
for ¢ even.

Consider the following Van Kampen diagram.
7 (917%)
w \
e

w(Io—UT7) | «(T7—F7)

"N s/
Nt
alTe— () Ty v I

m=1
m¥]

Wild Cantor set 21

By Lemma 4.5 we know that 7, and %) are monomorphisms. Hence

by Theorem 2.1, y; is & monomorphism. Therefore, v is a monomorphism
when 4 is even.

Case 2. 7 is odd.

In this case again A} = U , the mnion of p n-tubes. But this

time A%,, is the subset of A} equa.l to the mnion of the images of D* ob-
tained by mapping (17, D}) onbo each of the n-tubes in AT If we can

show that by mapping (Ty, D?) onto one of the n-tubes in A,, say T%,
the map

»
0 w(Th— U Th) —z»n[T”—(UT” vDinl,
m=1
m%J

indnced by inelusion, is a monomorphism, then 4 is a monomorphism,
for ¢ odd.

Consider the following Van Kampen diagram:

7 (917)
4’:/ \¢n
e N

w(Tp— )y | a(m—Dr)

\‘f\w/

n[Tg-—(Ujm U'De,g)]

‘m#:ﬂ

By Theorem 4.3(ii) and Lemma 4.5, we know that &, and &) are
monomorphisms. Hence by Theorem 2.1, §; is & monomorphism. There-
fore, ¢ is a monomorphism for 4 odd.

THEOREM 4.7. n(Th— A") # «(T}).
-
Proof. Since n(Tj— A™) = limn(Tj— A%) it suffices to show that

-
there exists a subgroup of lims(Th;— A7) which could not possibly be
=00

n—2

" a subgroup of a{IM = @ Z.

i=1
‘We know that @,: n(815)—n(Tr— AY) is a monomorphism by Theo-
rem 4.3(ii). We also know by Theorem 4.6 that at every stage in the
construction the map w: w(Th— A%)—n(Th—A%,,) is & monomorphism.
Hence we can say that mm(8T7)—m(TP—A™) is a monomorphism.
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n—1 v " n-—1
Smce :n:( I = @ Z, the'n az(.’l’" A") has a subgroup of the form & Z,
.o i=1 {=1

But this implies that z(Ty—4") # @ Z

{=1

Therefore, A® is wild in E"

We now consider the problem: .of showing that E"— A" is simply
connected. All maps not labeled are induced by inclugion or are the compo-
sition of matural quotient maps following maps induced by inclugion.

The concept of geometrically unlinked 3 - tubes used in the construction
of A3 in B® proved to be very cumbersome to generalize. Because of the
difficulties involved we have extracted the algebraic properties necessary
to show that when T% is embedded in B" nicely we have that A"— A" iy
simply connected. '

DEFINITION 4.8. Let {I7%, i=1,2, o &} be a collection of disjoint

0
U T% such that P ~ 8T} is a single

i=1
point for 4= 0,1,2,...,k Lt K,= ker(z(8T%)—x(T?)) and let &, be
a subgroup of n(aT") such that K @ G = m{0T7%). Denote by H, the

n-tubes in T%. Let P be a tree in Tj—

smallest normal subgroup of m(If— U 1"”) containing

=1
-
i (Gy— (T — UIT?)) .

The n-tubes {T% i+=1,2,..,%} are h-unlinkable in Ty if for every
t=1,2,..,% :
. E o
6 C ker[w (8T —( Ti— | T%)/Hy)
J=1
E o
and n(P u‘U1 oI —a(Ty— \J TH/H, is an eplmorphlsm
= i=1

Levwma 4.9, If {17 i=1,2, 7(;} 48 h-unlinkable in Ty and

{Ty i ="%+1,..,m} is h- 'ml'mkable in T%, then {T%, i=2,3,...,m} i8
h-unlinkable in Ty,

. X m 0
Proof. Let P, be a tree in T7— | J I% such that P u P, is connected

t=k41 ’
and P, ~aT% is a single poi.nt for ¢ = k41, ..., m. Let H, be the normal

subgroup of o (T7P— U T” ) gemerated by 1m(G —a(TP— L"J T) end
fm=l1 F=k-1

let H; be the normal subgroup of n(To— U’l",‘) generated by
. ' =2
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m 0 :
i (G —a (T2— ) T7). It is not difficult fo see that since
: i=2 -
. ‘k .0
@, C ker[#(eT})—n(Th— \U T7)/H]
i=1
for j=1,2, .,k and GyoH,—Hj for j = k+1,...,m, we have

@; Cker[w(2175)— 7 (T5— UT’”)/H‘,] for j=2,3,4,..,m

0
T is generated by

Cs

By the Van Kampen theorem =(Tg—

o
]

S:Ci‘ i

i o (T — O T s (T2 ) %) and. im(x(T7—

i=2 =

0
T})—m(To— p T’:))
1
ko m 0 m o
Since n(PuU@T")qn(Tg—UT@‘ [Hyand n(Pyo | TH—a(Ty— U ITHH,
i=1 i=1 i=k+ =R+l
are epimorphisms and

A

m 0 m 0
im (Hy—n(Tp— | T)C Hy  ond  im (. lﬁn(lm—umr;)czz;,

1,=2 i=2

it follows that =(P v Py v U Tty —m(To— U T" VHg is an ejplmorphlsm
=2

The following lemma follows easily from the definition of h-unlinkable.

LevwmA 4.10. If {I% i=1,2,..,k} is h-unlinkable in 17, then
{8*x T? i=1,2, ..., k} is h-unlinkable in §'X T = et

Note that we have previously shown that {T}, T3} are k-unlinkable
in T3, as is F® in T%. Using Lemmas 4.9 and 4.10 we can prove

THEOREM 4.11. A’,; consists of h-unlinkable n-tubes in- TI7.

Tmmwa 4.12. Let H™ be the normal subgroup of m(Ty—F") generated
by im(Gy—>m{Tp—F"). Then n(@Tﬁ)—)n(T{,"—F")/H" is the trivial homo-
morphism.

Proof. Tt has already been proven that m(8T5)—m(To— F®)/H? is the
trivial homomorphism. Suppose now that (2 oI s a(To ' — F ) H
is the frivial homomorphism. Simee TP—F"= 8'x (T3 '—F""") and
oT" = §*x oI5~ we have that =(217) == n(;S”) x (205 ~"). We note that
" contams im((8)—n(Te—F") and H" contains Im{z(@T™)
—q(T2—F™), thus H™ contains im(x(9Ty) )—sa (To—F").

TamorEM 4.13. If {I% i=1,2,..,k} is h-unlinkable in Ty and

% o0
fi: T—T7 are homeomorphisms for i=1,2, ..,k then m(Tp— \UJT7)
=1
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iom°

(T U F.(7) )/H" is the trivial homomorphism, where H,' is the normai

subgroup generated by lm(Ho—).ﬂ(Tz’— plfi(lm )) (Hy as defined in 4.8.)

The theorem follows inductively from the previous lemma.

Now let h: T;—I" be an embedding such that G Ckerm(h(917))
— (B h(IF)). Such an embedding can be obtained by rotation of an
embedding of T7~* in E*' about an (n— 2)-dimensional hyperplane.
Using . Theorems 4.11 and 4.13 we can show inductively that m(H"— 4%
—m(B"— A%, ;) is the trivial homomorphism for & even. Since (H"— 4"
is the direct limit of n(B"— AY)—a(B"— A})—n(B"— A%)—... it follows
that = (B"— A™) =1 and hence B"—A" i simply conne(/ned

V. Proof of the corollaries.

DreriniTioN 5.1. Let .A C E" be a Cantor set. A sequence {42} of
compact subsets of B™ will be called a defm'mg sequence for A if lt hag
the following properties:

(i) A% is a polyhedral »-manifold in E",
(il) A= ﬂ Ar

M=l
(m) An,, CAn,

(iv) There are fm1tely many components of A%, each of which has
diameter less than 1/m,

(v) E"— A4, is connected for every m.
It is an easy exercise to show that every Cantor set in " has a defining
sequence.

DEerINITION 5.2. Let {A%} be a defining sequence for 4 C B* and
suppose that for each % >1, BE is a k-ball in B" with the following
properties:

() BgnC-Em _'Av;n.:

(ii) B, is a polyhedron in A",

(ili) BE ~ A" is the union of finitely many disjoint (k— 1)-halls,
each of which lie in 84% ~ 2Bk,

(iv) A%, v BE is connected,

(v) BE,,—BECA"

(vi) BEC B!

m+1e

n
'A'm+17

Then U Bk = B* i5 a k-ball (see [7]) called an osculating k- ball for A

m=1

and the sequence {B} is called a defining sequence for B* with respect
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to {A7}. An osculating 1-ball (arc) is an are containing 4 in the boundary
of an osculating 2-ball. The existence of osculating balls for every Cantor
set is guaranteed by the results of [7].

It is not difficult to see that B* = ﬁ (BE © A™).

m=1
TeaEOREM 5.3. Let A CE™ be a O'cmtor set and let B be an osculating
k-ball for A. If n = 4, then n(B"— A) = = (B"— B).
Proof. Let {B,} be a defining sequenee for the osculating »-ball B®
with respect to {A%}. Then z(F"—A)= h'm:z(E“-— A%) and = (E"— B"™)

— —

—h'm:z(E"— (4% v By)). Let Qn'=08Bh—a4%. By our hypotheses,
Q%1 is an (n—1)-sphere with holes. Now eons1der the following Van
Kampen diagram.

=€)

/\

a(Bm— (4%, Bp))  a(BY)

N/

w(B"— A")

Since #(@p ™) =1= n(B%) (n=4), it follows that a(B"— (47, v BY))
—n(B"— A7) is an isomorphism., Furthermore the diagram

w(B"— (A%, w B, n)) —> m(E— (A% u B
"

!

a(Br— A%) — 7 (B*— A

mt1)

commutes. (All maps are induced by inclusion.) Tt follows that
- -
limz(E"— (A2, U B)) = Imxm (B"— A%) .

Now an osculating k-Dall, B* for 4, in BE" can be obtained by the
intersection of a nested sequence of osculating n-balls, the complement
of each n-ball having the same fundamental group as E"— A. Agam by
direct limits, it follows that =(H"— B¥) = = (H"— A).

Corollary 1 for = > 4 follows immediately from Theorem 5.3. For
n=23 it can be shown that an osculating ball for a Cantor set with
simply connected complement has a simply connected complement.
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Txamples are known.of wild balls in B® with ‘simply corinected
complements [4].

DEFINITION B.4.. The boundary of an osculating -ball for 4 ig-

_called an osculating (k—1L)-sphere.

THIDOREM 5.5. If 8% is an osculating T-sphere for A, then n(E“ 8%
— a(B"—A) for 0< k< n—2 and for b= n—2 there is a shmt exaot
sequence 1—>Z~+n(L’”—~ 87~2) s (H*— A)—1.

Proof. Let (" be a polyhedral #-ball in B"— 4 with the property
that 20" ~ §* is an unknotted, polyhedral (k—1)-sphere in 8C™, Clearly

§F— 0" = B* iy an osculating &-ball for 4 in H" Furthermore (70"—~ g

has the homotopy type of §n——(-D~1— gn=k=1 ang clearly m(H"— (8*u O”))
= n(E"— 8%). Now consider the Van Kampen diagram

n(80"— 8%)

Z N

a(Br— (8% v 5’*)) (0%

NV
:n'((E"-—* sla) w On)

We have a(0") = 1 and @(00"— 8%) = #(8"*%) = 1 if n—k—1>1,

. P 0 . .
ie, n—2 >k We see that m(Z"—(S*u O™)—n((B"— 8% v " is an
isomorphism or z(B"— 8%)—n(B"— B*) is an isomorphism. Thus, by
Theorem 5.3, u(B"— §¥)—>m(B"— 4) is an isomorphism for n—k—1 >1.

0
If n— 2 = k, it is not difficult to see that & (20— §~2)— (B — (8"~ L (")
is a monomorphism and that & (80™— 8"~%)—x((B"— §*%) v O is trivial,
Thus, 1— Z->z(f"—= 8" %) —x(B"— B -1 is exact. Since w(Z"— B"?)
= m(B"— A), the result follows.
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