

Homeomorphisms of inverse limits of metric spaces

by

W. Kulpa (Katowice)

Abstract. It is shown that for every homeomorphism $f\colon X{\to} X$ of a completely regular space X there exists an inverse system of metric spaces satisfying some additional conditions such that f is represented by homeomorphisms $f_a\colon X_a{\to} X_a$ of the spaces of the system.

In [3] (Example 2) J. W. Rogers has shown an example of an inverse limit of polyhedra and a homeomorphism between them such that the homeomorphism cannot be represented by maps between the spaces of the system. An example is also known (see e.g. [2], Example 7) of a compact space which cannot be an inverse system of polyhedra with bonding mappings onto. Thus the question whether every homeomorphism $f\colon X\to X$ of a completely regular space onto itself can be represented by homeomorphisms $f_a\colon X_a\to X_a$ of metric spaces X_a forming an inverse system with bonding maps and canonical projections onto becomes quite natural. In [1] it was proved that every map $f\colon X\to X$ of a completely regular space X may be represented by maps $f_a\colon X_a\to X_a$ of metric spaces X_a forming an inverse system. Using the same methods as in [1], we shall show that if f is a homeomorphism, then the maps f_a can be chosen in such a way that they are homeomorphisms.

In this note we use symbols and notations from [1]. To answer the question it suffices to prove a lemma:

LEMMA. Let $f: (X, \mathfrak{A}) \rightarrow (X, \mathfrak{A})$ be a uniform homeomorphism of a uniform space (X, \mathfrak{A}) . Then there exists a set M, directed with respect to inclusion, of pseudouniformities contained in \mathfrak{A} such that if $a \in M$, then

(a)
$$f^{-1}(\alpha) \subset \alpha$$
, $f(\alpha) \subset \alpha$,

(b) weight
$$a \leq \aleph_0$$
,

^{3 —} Fundamenta Mathematicae, T. LXXXVI

W. Kulpa

and, in addition, if dim $\mathfrak{A} \leqslant n$ and dweight $\mathfrak{A} \leqslant (\gamma, \tau)$, then

$$\dim \alpha \leqslant n ,$$

(e)
$$\operatorname{dweight} \alpha \leqslant (\aleph_0, \tau)$$
,

(f)
$$\operatorname{card} M \leqslant \tau$$
.

Proof. Without loss of generality assume that ${\mathfrak B}$ is a base of cardinality ${\ll} \gamma$ consisting of coverings of cardinality ${\tau}$ and of order ${\ll} n+1$. Let $P\in {\mathfrak B}$. Define $f^{-0}(P)=f^0(P)=P$ and $f^{-(m+1)}(P)=f^{-1}[f^{-m}(P)],$ $f^{(m+1)}(P)=f[f^m(P)]$. Put $W_1=\{Q\in {\mathfrak A}:\ Q=f^m(P),\ m=0,\ \pm 1,\ \pm 2,\ldots\}$. Assume that W_1,\ldots,W_k are defined. Define W_{k+1} as a countable family of coverings of ${\mathfrak A}$ such that for every $Q_1,Q_2\in\bigcup_{i=1}^kW_i$ there exists a $Q\in W_{k+1}$ and $Q\mathrel{{\searrow}}_{*}Q_1,\ Q\mathrel{{\searrow}}_{*}Q_2,\ f^m(Q)\in W_{k+1}$ for every $m=0,\pm 1,\pm 2,\ldots$ It is easy to see that such a family W_{k+1} exists.

Let α_P be the pseudouniformity induced by a base $\bigcup_{k=1}^{\infty} W_k$. It is obvious that the pseudouniformities α_P and a set $M' = \bigcup \{\alpha_P : P \in \mathcal{B}\}$ satisfy the conditions (a)-(f) of the lemma. Hence it is easy to see that for every α_P , $\alpha_{P'} \in M'$ there exists a pseudouniformity $\alpha \supset \alpha_P \cup \alpha_{P'}$ which satisfies the conditions (a), (b), (d), (e). Thus by countable operations we may choose a directed set M which has the required properties.

Consider the commutative diagram

The condition (a) of the lemma assures that the maps $f\colon (X,\alpha) \to (X,\alpha)$ and $f^{-1}\colon (X,\alpha) \to (X,\alpha)$ are uniform. From Lemma 1 of [1] it follows that h is a functor of the category of pseudouniform spaces onto the category of uniform spaces; hence $f_a^{-1} = (f^{-1})_a$, (the uniqueness of f_a and $f_a f_a^{-1} = f_a^{-1} f_a = 1_X$). Using the same arguments as in [1], we obtain:

THEOREM. Let $f: (X, \mathfrak{A}) \rightarrow (X, \mathfrak{A})$ be a uniform homeomorphism of a uniform space (X, \mathfrak{A}) . Then there exists

1. an inverse system $S = \{(X_{\alpha}, \alpha), \pi_{\beta}^{\alpha}, M\}$, card $M = \text{weight } \mathfrak{A}$, weight $\alpha \leq \aleph_0$ with bonding maps π_{β}^{α} and canonical projections onto,

2. a uniform embedding $g: (X, \mathcal{U}) \rightarrow (X^*, \mathcal{U}^*), (X^*, \mathcal{U}^*) = \lim_{\leftarrow} S,$ which is onto if \mathcal{U} is complete,

3. uniform homeomorphisms f_a : $(X_a, \alpha) \rightarrow (X_a, \alpha)$, $\alpha \in M$, inducing a mapping of the system such that the diagram

$$(X, \mathfrak{A}) \xrightarrow{f} (X, \mathfrak{A})$$

$$\downarrow \sigma \qquad \qquad \downarrow \sigma \qquad \qquad f^* = \lim_{\leftarrow} f_{\alpha}$$

$$(X^*, \mathfrak{A}^*) \xrightarrow{f^*} (X^*, \mathfrak{A}^*)$$

is commutative.

In addition, if dim $\mathfrak{A} \leq n$ and dweight $\mathfrak{A} \leq (\gamma, \tau)$, then dim $a \leq n$ and dweight $a \leq (a_0, \tau)$ for every $a \in M$.

COROLLARY. If $f\colon X\to X$ is a homeomorphism of a completely regular space X, then there exists an inverse system $S_f=\{X_\alpha,\pi_\beta^\alpha\ ,M\}$ of metric spaces X_α , $\dim X_\alpha \leqslant \dim X$, card M=weightX, with bonding maps π_β^α and canonical projections onto, and there exist a dense embedding $g\colon X\to X^*$, $X^*=\lim S_f$ and a family of continuous maps $f_\alpha\colon X_\alpha\to X_\alpha$, $\alpha\in M$, inducing a mapping $\bar{f}\colon S_f\to S_f$ such that the diagram

$$\begin{array}{ccc}
X & \xrightarrow{f} X \\
g & & \downarrow g & f^* = \lim \bar{f} \\
X^* & \xrightarrow{f^*} X^*
\end{array}$$

is commutative.

References

- [1] W. Kulpa, Maps and inverse systems of metric spaces, Fund. Math. (to appear)
- [2] Б. А. Пасынков, О спектрах и разпорности топологических пространств, Мат. Сборник 57 (1962), pp. 449-476.
- [3] J. W. Rogers, Inducing approximations homotopic to maps between inverse limits, Fund. Math. (to appear).

SILESIAN UNIVERSITY

Katowice

Reçu par la Rédaction le 6. 5. 1973