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A non-Desarguesian space geometry

by
Zenas R. Hartvigson (Denver, Colorado)

Abstract. This paper gives a model of a space geometry in which all of Hilbert’s
axioms of incidence for space, together with two of his betweenness axioms hold but
in which Desargues’ Theorem is false. This model demonstrates that there is a sub-
stantial difference between the projective space incidence axioms® relationship to the
remaining axioms and the affine or Euclidean space incidence axioms’ relationship to
the remaining axioms.

The theorem of Desargues for projective geometry can be stated as:

Ij AABC and AA'B'C’ are two distinct triangles so thai the lines
determined by the vertices A and A'y B and B', and C and €’ have a commot
point, then the points of intersection of the lines determined by the sides AB
and A'B', AC and A'C', and BC and B'C’ are collinear, and conversely.

A very well known fact from projective geometry is that the axioms
of incidence for space are both necessary and sufficient to prove Desargues’
Theorem for projective geometry. In fact both Hilbert [1] and F. R. Moul-
ton [3] have proved that unless Desargues’ Theorem js @ theorem of
a given plane projective geometry, this plane geometry cannot be em-
bedded in a space projective geometry.

A form of Desargues’ Theorem for Euclidean geometry is given in
Hilbert’s Foundations of Geometry [2] as follows:

If two triangles are situated in o plane 80 that pairs of corresponding
sides are parallel, then the lines joining the corresponding vertices pass
through one and the same point or are parallel.

Conversely, if two triangles lie in a plane so that lines joining corre-
sponding vertices pass through one point or are parallel, and further, if two
pairs of corresponding sides of the triangle are parallel, then the third sides
of the two triangles are parallel [2, p. 2]

Hilbert observes that it is well known that this theorem can be proved
on the basis of his (i.e. Hilbert’s) space axioms of incidence and between-
ness together with an exfension of Buclid’s parallel axiom which postulates
existence as well as uniqueness of parallels [2, p. 72].

Hilbert has proved that if his planar incidence axioms, his between-
ness axioms, and the extended parallel axiom mentioned above are satis-
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fied in a plane geometry, then the validity of Desargues’ Theorem is
a mnecessary and sufficient condition that this plane geometry can be
embedded in s space geometry where his space incidence axioms, between-
ness axioms and the above mentioned extended parallel axiom hold
12, p. 881

The following is a model of a space geometry in which all of Hilbert’s
axioms of incidence for space, together with two of his betweenness
axioms, hold. Yet, in this space geometry, Desargues’ Theorem is false.
This model demonstrates that there is a substantial difference between
the projective space incidence axioms’ relationship to the remaining axioms
and the affine or Euclidean space incidence axioms’ relationship to the
remaining axioms.

In the subsequent discussion the letters w, », %,z will always be
used as real valued variables and the letters a, b, ¢ will always be real
valued constants.

DEFINTTION. A point is an ordered triple (z, v, k) where % is 0 or 1.

DEFINITION. A line is a seb of points of either of the following types:
I= {{z,y,2), (w,2, 1)}
or
m= {(z,y, k): [az+clf(a,b,y)+by=0, k=0 or 1 constant}
where we define )
. 1 if sft=0or =0,
f&,t, =11 i sfi<0and y<O0,
3 i sft<0and y>0.
fis a “kinking” function which takes ordinary lines with positive
slope and “kinks” them at the X -axis. The lines of type m are essen-
tially the lines used by F. R. Moulton in his model mentioned above.

{Note: These “kinked” lines will allow us to construet counterexamples
to Desargues’ Theorem in the planes of type @ described below.)

DEFINITION. A plane is a set of points of either of the two following

types:

@ = {(x,y,%k) k=0 or 1 constant}

or )

Y= {(w', ¥,3): [az+¢(5)1f(a, b, y)+ by = 0, ¢(j) a constant for each
j= 0. or 1}.

We ob:?erve that the two planes of type @ consist of the points of the
two Cartesian planes defined by the equations z— 0 and »— 1. These
two planes are in fact two “Moulton” planes. By contrast, the planes
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of type ¥ are just certain pairs of “parallel” lines of type m. In our model,
incidence is defined in terms of set containment.

DEFINITION. A point (z, ¥, k) is on a line I or on a plane = means
(@9, k) el or (@,y, k) e Tespectively.

Note. In this paper collinear and coplanar will be used in the usual
sense to mean on the same line or plame, respectively. Betweenness is
defined as follows:

DEFINITION. If P = (p, ]7,, _p”)r Q= (g, q’; g") and E= (?‘,‘1", 7'') are
distinet points, then @ is between P and R if and only if P, ¢, and R are
collinear and one of the following is true.

(1) ¥ p’ and r have opposite signs and (#'—p")/(r—p) >0, then
either p' < ¢' <t or << ¢ <p' is true.

(2) If p' and ¢ have the same sign or (r'—9')/(r—p)< 0, then there
is & real number ¢ so that 0 < t< 1 and g= pt+r(1—1) and ¢’ = p'i+
' (1—1).

At first this definition seems objectionable in that no account seems
0 be taken of the third coordinates of the points. However, recall that
the lines of type I have exactly two points so only lines of type m can
over contain three distinet points. By the definition of type m-lines,
one will always have p” = ¢ = ¢"" and we see that no special account
need Dbe taken of the third coordinates.

For the convenience of the reader, the incidence axioms (group I),
and Dbetweenness axioms (group II), are listed below. These are from
the tenth edition of Hilbert’s Foundations of Geometry [2).

I,1. For every two points 4, B there exists a line a that contains
each of the points 4, B. '

1,2. For every two points 4, B there exists no more than one line
that contains each of the points 4, B. :

1,3. There exist at least two points on a line. THere exist at least
three points that do mot lie on & line. .

1,4. For any three points 4, B, O that do _nf)t lie on the same line
there exists a plane « that contains each of the points 4, B, C. For every
plane there exists a point which it contains.

I,5. For any three points 4,B, ¢ that do not lie on one and the
same line there exists no more than one plane that contains each of the
three points A, B, C. .

1,6. If two points A, B of a line a lie in a plane a, then every point
of a lies in the plane a.

1,7. I two planes a, § have a point A in common, then they have
at least one more point B in common.
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I,8. There exist at least four points which do not lie in a plane.

IT,1. If a point B lies between a point A and a point C, then the
points 4, B, ¢ are three distinet points of 2 line, and B then also lieg
between C and A.

I1,2. For two points 4 and C, there always exists at least one point B
on the line AC such that C lies between 4 and B. )

I1,3. Of any three points on a line there exists no more than one
that lies between the other two.

II,4. Let A, B, C be three points that do not lie on & line and let
a be aline in the plane 4 B which does not meet any of the points 4., B, C.
If the line a passes through a point of the segment 4B, it also passes
through a point of the segment AC, or through a point of the seg-
ment BC.

The verification that this model satisfies the axioms I,1-8 and IT,1, 3
is essentially a textbook sort of exercise with the details mostly being
elementary though tedious. One of the more tedious jobs is to get a general
equation of the unique line incident upon two points 4 = (a’, a”, k) and
B=(b',b", k) where k is 0 or 1. One such equation is: ‘

[az+-c]f(a, b, y)+by =0

where
a=a"g(t")—b"ga"),
b= ({'"—a")g(b")g(a"),
¢ =a'db"g(a")—a"b g(b"")
with

g =fla”"—=b", b'—d', y) .

To show that A and B satisfy this equation in the desired way is straight-
forward except for one step. For example, when one substitutes .4 into
the equation one gets to the following equation by algebra:

{aa’+c)f(a, b, a")+ ba"
— all‘f(a'l_— b!!, blal, bll)(al__' bl)[f(a, b’ al/)%f(a’ll_bll, bl_ al7 all)] .

When & # o' one must czrefully examine the quotients

gz allg(bll)_bllg(all a,nd al'_b([
b (b—a)g(b)g(a” era

and the corresponding values of f to get the resulf that

fla, b, a0’y —fla"—b", bV—a'ya)y=0.
This will verify that 4 is on this line.
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Similar sorts of arithmetic will lead to verification of all the axioms
1,1-8.

Axioms IL1, 3 also require some tedious arithmetic to verify in the
case of points on lines of type m. For the two-point lines (i.e. lines of
type I) both axioms hold vacuously.

Even though the specific verification is rather tedious, once one
gains a “picture” of the points, lines, and planes, one can readily see that
the model does satisfy the stated axioms. Further, axioms IT,2,4 beth
fail to hold. This is readily seen if one considers lines of type L

What has been constructed is a model of a space geometry. Two
of its planes are “Moulton” planes and these are well known to contain
many examples showing Desargues’ Theorem to be false [ef. 2, pp. T4-75].
Hence, our space geometry is a non-Desarguesian space geometry in
which all of Axioms I,1-8 and Axioms II,1,3 hold, but Axioms II,2,4
fail to hold.

It is thus clear that, unlike projective geometry, in Euclidean geo-
metry one needs more than just the space axioms of incidence to prove
the appropriate formulation of Desargues’ Theorem. Recall that in pro-
jective geometry any plane geometry which can be embedded in a space
geometry has Desargues’ Theorem as a valid theorem. This provides
useful information conecerning the relationship between plane and space
geometries. Specifically, the failure of Desargnes’ Theorem in a plane
projective geometry will guarantee that this plane geometry cannot be
embedded in a space projective geometry. The model given above de-
monstrates that such an easy test is not available in 2 Euclidean or affine
geometry.
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