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Abstract. This paper consists of two somewhat unrelated investigations. The
well-known theorem (due to Kuratowski and Sierpingki) that every real Darboux func-
tion of Baire class 1 on [0, 1] has a connected graph is strengthened in two ways: firstly,
by weakening the hypothesis, and secondly, by strengthening the conclusion. An ex-
ample is given to show that these cannot be accomplished simultaneously. In order
%o aid in the proof of the above results, a theorem is proved which, in a general topological
setting, relates the pointwise convergence criteria of Baire to new criteria due to
C. 8. Reed. ‘

1. Introduction. For real functions f with domain I = [0, 1], con-
sider the following definitions (no distinetion is made between a function
and its graph):

A: (almost continuous) every open subset of R? containing f contains
2 continuous function with domain I.

C: (connected) f is a connected subset of B,

D: (Darboux) if X is a connected subset of I, then f(X) is a con-
nected number get,

B: if 2¢[0,1), the point (z,f(»)) is a limit point of f(z,1], and
if we(0,1], then (@, f(z)) is a limit point of £|[0, »).

- By, Ry, and Jy: f is the pointwise limit of a sequence of functions
which are continuous, continuous on the right, and jump functions,
respectively. ¢ is a jumyp function if g(0-), g(1—), g(z+), and g(z—)
exist for all z (0, 1). '

It is easy to see that A—O—D—E. but B+4D. It is also true that
D40 [7] and O-5A [8], [5], [10]. Reed, in [9], characterizes B,, Ry, and J;
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and shows that B,—R;—dJ, but J;/R;/B;. Kuratowski and Sierpiiski
have shown, [8] that DB,—C (“D” can easily be replaced by “E”). It
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is the main purpose of this paper to strengthen this theorem in the-

following two ways:
TEEOREM 1. ER,—C.
TEEOREM 2. EB,—A.

T4 will also be shown that “B,” eannot be replaced by “R,” in Theo-
rem 2 because CR,/A. Also, “R,” eannot be replaced by “J,” in Theo-
rem 1 becauge DI,/ C. Theorem 2 supplies the answer to a question raised
by Kellum in [6].

To aid in doing the above, it is convenient to use characterizations
of properties R, and J, which are similar to Baire’s condition for B;.
These characterizations will follow as immediate corollarieg to the results
of Reed and Theorem 0 of Section 2, which compares Baire’s condition
and Reed’s condition in a general topological setting.

2. Baire’s and Reed’s convergence criteria in Fp; spaces. Most of the
topological properties and notations nsed here are as given in [4]. Consider
the following two conditions for real valued functions f defined on a to-
pological space (X, T):

(1) (Baire) if M is a perfect subset of X, then f|lM is continuous ab
gome point of M,

(2) (Reed) if a>p, UC{z| f()=a}, and VC {# f(o)<§f}, then
either U & CL(V) or V & CL(T).

Both of the conditions have been related to

(0) f is the pointwise limit of a sequence of continmous functions de-
fined on X.

TaEOREM 0. If (X, T) is a topological space, then (1)—(2) for real
valued functions defined on X, amd (2)— (1) if and only if (X, T) is an
Fyy space.

Proof. Suppose f is a real valued function defined on a topological
gpace (X, T'). Suppose f does not satisty (2). Let a, 8, U, and V be as in
“not (2)”. Let M = CL(U). M is perfect, but f] M hag no point of continuity
because U and V are both dense in M.

Now, suppose (X, T) is an Fy; space and f is o real valued function
defined on X. Suppose f does not satisty (1) and let M be a perfect sub-
set of X such that f|M is totally discontinuous. Let g = f|M. For each
positive integer u, let

My = {x in M| limpupg—liminty >1/n},
z K]
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where
limsupg = inf{ sup [g(3)]| D is open in M and contains a}.
z yinD

and liminfg is defined similarly. Since M is 2-nd category in jtself, there

x
is & positive integer = such that M, is 2-nd category in M. For each z
in M, let ¢z be a number between limsupg—1/2s and liminfg-+1/2n.

. z z
Since My is 2-nd category in M, there exist mumbers « > § such that

a~f<1/2n and H = {z in M,| < t;< o} is 2-nd category in M. Thus,
there is some set @ open in M, in which H is dense. For each subset D
of @ which is opexi in M, let u;, and v, be elements of D such that g(up)
>a>p>g(vp). Let U= {uy| DCQ is open in M} and V= {v,| DCQ
is open in M}. Then U CCL(V) and V C Cl(U) and f does not satisty (2).

Now, suppose (X, T) is not an Fy; space and let M be a perfect sub-
seb of X which is not 2-nd category in M. M = N, u Nyu ...; where
each N; is nowhere dense in M. Let H,, H,, ... be such that

Hy= Cl{N,u Ny U ... U Np)

for each n. Bach Hy, is closed, nowhere dense in 3, and a subset of H,,,,
and M = H, v Hy w ... Assume H, is a proper subset of H,,, for each n.
Let f be the function defined on X such that f(z) = » if « is in H,,,— H,
for some positive integer #, and f(#) = 0 if # is in H, v (X—M). Since
f1M is nnbounded on every set which is open in M, f|M must be totally
discontinuous, so f does not satisty (1). But suppose a, , U, and. V are
as in (2). If V contains a point of X— I/, then it is not a limit point of U,
which would be a subset of M. Suppose V contains no point of X— 3.
Then V is a subset of H; v Hyu ... w H, for some n, and U contains
a point of H, ., v H, ,u.., which would not be a limit point of V.-
Thus f satisfies (2).

Remark 1. It is well known that the property of a space being
an Iy space is intimately related to condition (1) for the real valued
functions defined on X. Hausdorff [4], shows in Theorem V, p. 287, that
if the (metric) space 4 is a Gy set, then every function of the “first class”
(which is equivalent o (0) in metric spaces) is pointwise discontinuous
(i.e. continnons at each element of a dense subset .of A4). He uses this
to deduce in Theorem VI, p. 288, that if 4 is an Fn set and f is a function
of the first- class, then every mon-empty closed set M contains a point
of eontinuity of f|M. It is stated on p. 288 of [4] that “a flat converse
to Theorem V, in the sense that pointwise discontinuous functions are
of the first class as well, is out of the question, if only becanse of con-
siderations of cardinality”. Actually, the true converse of Theorem V,
D. 287, does hold, as well ag the converses of Theorem VIII, p. 289, and
"
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Theorem VI, p. 205, and pavtial converses of Theorem VI, p. 288, and
the theorem on p. 296. These converses can be summarized as follows:
If (X, T) is any perfecily normal topological space which is not an P space
(respectively, not o Gu space), then there exists o function f which satisfies (0)
and a closed sot M (respectively, an open set M) such that if N is dense in M. s
then fIN is totally discontinuous. To prove this, consider the function f
constructed in the last paragraph of the proof of Theorem 0 (if M is open,
then the sets Ny, N,, ... must be specially chosen so that H; v Hyu ... = M),
If N is dense in M and @ is open in I, then @ intersects H, ,—H, for
infinitely many #, so f|@ is anbounded. Therefore f|N is totally discon-
tinuous. However, f does satisfy (0), for construct f, fo, ... as follows:
Let 0y, 0,, ... be a monotonic decreaging sequence of open sets with
intersection M, and for each positive integer j let 0y, O, Oy, ... be
& monofonie decreasing sequence of open sets with intersection H;. For
each n, let Ko, H,,, Hy,, ..., Hun be the finite sequence of mutually
exclusive closed sets defined by K, = X— 0y, H,, = H,, and Hy = H; ~
ANX—0;_y,)forj=2,3,...,n Let f, be a continnouns function defined on X
_ for each positive integer # such that fu(w) = 0 if # is in K, and fu(e) = j—1
if ¢ is in Hy,. Then fi, f;, ... converges pointwise to f, and f satisfies (0).
Remark 2. Reed, in [9], gives characterizations of B;, R,, and J,,
respectively, which are surprisingly similar to each other. On the inter-
val I, let T, T,, and T, be the ordinary relative line topology, the relative
topology generated by the basis of all left sects [xz,¥), and the relative
topology generated by the basis {b|% is an open interval minus a countable
set}, respectively. Reed shows that B,, Ry, and J, are equivalent to (2)
in (I, Tv), (2) in (I, T), and (2) in (I, T;), respectively. It is not surprising
that the characterizations for B, and R, are so similar, because B, and R,
are just (0) in (I, 7)) and (0) in (I, T,), respectively. However, it is sur-
prising such a similar characterization for J; is possible, because J; is
certainly not just (0) in (I, T,). In fact, (0) in (I , Ty) is the same as By,
because & function i ;- continuous on all of I if and only if it is T,-con-
tinuous on all of I. So, (0) and (2) are not equivalent in the space (I , Ts).
Notice that (I, T,) is not metrizable, and (I, T;) is not even 1st
countable or normal, but én all three spaces, I is an T set. Notice also
that a set is Ty-perfect if and only if it is T,-perfect.

COROLLARY. For real valued functions defined on I, R, is equivalent
to “every T,-perfect set M contains a point at which f| M is T,-continuwous”,

and J; is equivalent to “every T,-perfect set M contains & point of which
fIM is Ty-continuous™.

3. Proof of Theorems 1and 2. To avoid confusion, the following notation
will be used: A' denotes the interior on the line of a number set A, and
" denotes the interior in the plane of a planar set 7.
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Lemwva. If f satisfies Ry, then f is Dointwise discontinuous.

Proof. If f is totally discontinuous on some subinterval J of I, then
there would be some open subinterval K of J and numbers « > f such
that U= {#] f(#) > a} and V= {»| f(x) < } are both T,-denge in K.
Then U and V are also T,-dense in X, and f does not satisfy Reed’s con-
dition for R;.

Proof of Theorem 1 (R,E—C). The outline of the proof that
B,D—C which appears in [2] will be followed. Suppose f satisfies R,
and B but not C. Let @, and @, be- mutually exclusive open sets such that
FCQ v @, Let A= {u| (z,f(2)) is in Q,} and let B= {al {z,f(2)) is in
Qz}, and let K be the boundary of A (= the boundary of B). K is perfect
because f satisfies B. Simce f is pointwise discontinuous, 4°w BY is
denge in I,

Now, let K’ be the seb of all points of K which are T,-limit points
of K. Let # be a point of K’ and [#, y) be a left sect containing #. There
is an element a of K’ between 2 and y. Suppose & is in A. Then there is
an element b’ of B between a and «. If b’ is not itself in K’, then it would
be the left end of or an element of some component W of Bi. Then
the right end b of W would be an element of K’ ~ B between » and ¥.
Then, an element of K’ ~ A could he found between « and b, so in any
case, [z,y) intersects both XK'~ A and K’ ~B. Thus f|K' cannot be
T,-continuous at any element » of K’, and f does not satisfy R;.

Exawrre 1. It is not possible to strengthen Theorem 1 by replacing
“R,” by “J,” in Theorem 1. For consider the funetion f constructed in
Example 2 of [1]. f satisties D but not C and is continuous on the comple-
ment of the “middle third” Cantor set M. f is also constant on M’ ~
~[0,1/2] and on M’ ~[1/2,1], where M’ is the set of all points of M
which are not end points of M. f also satisfies J, because otherwise there
would be a T,-perfect set N such that f|N is not T,-continuous at any
point. Then & would have to be a subset of the Cantor set M. Let « be
an element of M’ ~ N, assume << 1/2. Then f|N is T;-continuous at =
because Q@ = M’ ~N ~[0,1/2] is Ty-open in N and f|Q is constant.

Proof of Theorem 2 (B,E—A). Suppose f satisfies property B
and property B, but not property A. Let @ be an open subset of B2 con-
taining f such that no continuous funetion with domain I lies in Q. Let
@, = {P in R? P belongs to a continuous function which lies in @ and has
domain an interval containing 0}. @, is open, for suppose P is an element
of @,. Let T-be a vertical rectangle (includes the interior) with center P
such that 77C@. P belongs to some continnous function g which lies
in @ and has domain an interval containing 0. Assume P hag abscissa > 0.
Then there is a vertical rectangle U with center P such that U?C T?
and ¢ intersects the left edge of U. It follows that U' C Q,.
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Now, let Q= @—CL(Q). Let A = {w] (@, f(@) is in @}, B= {n|
o, f(a)) is in @}, and O =I—(4 v B).

Every element of O must be a limit point of A from the right and
o limit point of B from the left, for suppose @ is an element of ¢ and 8 is
an open interval containing @. Leb T be a vertical rectangle with center
(e, f(#)) such that T7C @ and T has X -projection lying in 8. TT contains
a point (2, f(2)) such that 2 > a. Let U be a vertical rectangle with center
(¢, f()) such that U C I” and the X-projection of U does not contain .
T7 intersects Qy, so it follows that (2, f(2)) is also in @ and 2z is in 4 A 8.
7 glgo containg a point (y, f(y)) such that y < «. v is not in 4 or else »
would be, too, If y were in ¢, there would be a point of ¢, in TT with
abscissa between y and #, which would mean that & is in A. Therefore,
y is an element of B n 8.

AU Bt is dense in I, for suppose S is an open subset of I. Since f is
pointwise discontinuous, f is eontinuous at some element  of §. Consider
a vertical rectangle 7' with center (z, f(#)) such that 77 C @, the X -pro-
jection (a, b) of T7 lies in 8, and for every ¥ in (a,b), (¥, f(y)) is in T%
Then, if # is in' A, the open interval (z, b) is a subset of At~ 8, and if o is
in B or O, the open interval (a, #) is a subset of Bf~ 8.

Let A° be the collection of all eomponents. of 4° and B® be the col-
lection of all components of BY. It is important to observe that if & is
in A° then the right end of a is in A, and if b is in B°, then the left end
of b is in B. . ) .

Let K denote I— (A BY). K does not have to be perfect (some
points of 0 may be isolated), but it will be shown that K contains a Cantor
get N in which A and B are both dense. Zero is in A; if zero is nejther
an element of nor the left end of an element of A°w B?, let o= zero;
otherwise zero would mnecessarily be an element of or the left end of an
element o of A°, Then let a be the right end of a. In either cage 0 < a<< 1,
and o is an element of A ~ K which is the left end of no element of 4° v B,
Similarly, a number § can be determined such that 0 < a<<f<« 1 and g
is an element of B ~ K which is the right end of no element of A° . B,
Since there are elements of B to the right of (and close to) a, and there
are elements of 4 to the left of (and close to) B, numbers o' and ' can
be determined such that e<< g’ << o' < B,p is an element of B K
which i the right end of no element of A° v B, and o' is an element of
A ~ K which is the left end of no element of 40w B°. Continuing in. this
faghion, a sequence

Lay By [, 1w [a'y B1, [y BT W [0, BT o [y BT Lo, BT e

of sets iy determined which closes down on a Cantor set N in which A
and B are both dense. f| N could have no point of continuity, so f does
not satisfy B;.

icm®
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ExAMpLE 2. It is not possible to combine Theorem 1 and Theorem 2
by replacing “B,” by “R,” in Theorem 2 because R,C->A, as is shown
by the following example (which is constructed in a manner similar to
that used in [5]). Let g be an increasing real function defined on I such
that g(0) = 1/3, g(1) = 2/3, g is continmous from the right, but g is dis-
eontinuous at each rational number in (0,1). Let M = Cl(g). Let K be
the middle third Cantor set, and let ¢, %, ... be a listing of the components
of I— K. For each component t = t, = (a, b), let g; be a continnous fune-
tion with domain [a, b] and range I which does not intersect M and is
such that g:(b) = 0 and 0< g«a)—g(a) << 1/n (this last requirement is
included only to make f a @, set). Now, let f be the function such that
F) =1, f(®) = ge(#) if # is in CL(#), for some component  of I— K, and
f(@) = 0 if @ is any other element of I. It is easy to see that f satisfies C
but not A. f also satisfies R, for suppose there is a Tp-perfect set J such
that f|J is nowhere /I, - continuous. Then J must be a subset of the set K’
of all elements of K which are T,-limit points of K. Bub f| K’ is constant.
Therefore, f must satisfy R;.

Remark 3. Notice that the funetion of Example 1 and the function
of Example 2 are both @, subsets of R2. This rules out the possibility
that J,6,D—R, or R,G;C—B;.

Remark 4. Theorem 2 was conjectured to the author by B. D. Garrett.
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