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Take an open covering U of X, whose elements meet only finite
o0
number of members of § and a o-discrete closed refinement G = J G,

m=1
of I, where Gn, are discrete for m =1, 2, ... The sets On = G satisty

our assumptions.

Added in proof. Eric van Douwen has independently obtained our Theorem 2.
His paper will appear in Indagations Mathematicae.
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Further results on the achromatic number
by
Demnis Geller and Hudson Kronk (Binghamton, N. Y.)

Abstract. We investigate: (1) the effect on the achromatic number of removing
points or lines, (2) exact values for the achromatic numbers of paths and cyeles, and (3)
general bounds for the achromatic number and similar but tighter bounds for the
achromatic numbers of bipartite graphs.

A coloring of a graph (1) G is complete if for every two colors ¢ and j
there are adjacent points » and o, colored i and j respectively. The
achromatic number y = (&) is. the largest number n such that G has
a complete coloring with » colors. The achromatic number was
introduced in [4] as the largest order of the complete homomorphisms
of @. Later results appeared in [1] and [3]. In this paper we investigate
the effect on the achromatie number of removing points and lines from @,
find the values w(C») and u(Py), and develop bounds for the achromatic
number of any graph and for the achromatic number of any bigraph.

TarOREM 1. For any graph G and point e G,

(@) = p(GF—u) = p(¢)—

Proof. If p(G—u)=n, then G has a complete n-coloring unless
each of the n colors is assigned to some point adjacent to », in which case
@ has a complete (n--1)-coloring. Thus p(6) = »(G—u).

On the other hand, if (@) = #», consider the coloring of G— u induced
by a complete n-coloring of @, in which u is assigned color 4. If this-
coloring is not complete, there is some color j not adjacent to any point
colored 4. If all points of G—u which are colored ¢ are recolored j the
result is a complete (n—1)-coloring, so that y(G—u) = p(&)—1.

COROLLARY. If p(G—u) = w(@) there is a complete p(&)-coloring of G
which induces a complete y(G)-coloring of G—u

Proof. Suppose that y(G—u)= 9 (G) = n. If no complete x-color-
ing of @ induces a complete n-coloring of ¢—u, then in every complete
n-coloring of G—u every color appears on some point adjacent to w,
in which case (@) = 1+y(G—u) as shown above.

(1) Definitions and notations are those of [2].
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CoroLLARY. If H is an induced subgraph of G, then w(@) = w(H),

THEOREM 2. For any graph G and line ,
(1> p(G—2) =p(@)—1.

Proof. Let z = wv and suppose that (@) = n and p(G—a) = n+%
>n+1. Note that in any complete coloring of ¢—w with more than »
colors » and » must be assigned the same color. Color G—a with n+%
colors, assigning color 1 to both w and ». If there is & color ¢ such that
no point adjacent to v is colored ¢, we first recolor » with #. This ig a color-
ing, but may not be complete, as there may have been colors j; such
that the only points colored j; which were adjacent to points col-
ored 1 were in fact adjacent to v. Congider one such color j,. Recolor
all points colored 1 with j;. Since » and v now have different colors, this
is a complete coloring of G with n+k—1 >n = p(@) colors.

On the other hand, if in the complete (n-%)-coloring of G—» each
of » and v is adjacent to a point of every other color, recolor » with g new
color n+ k1. This yields a complete coloring except that colors 1 and
n-+k+1 are not adjacent, so that if we replace line & we get a complete
coloring of G with n+4k+1 >n = (@) colors.

As shown in [4], if (@) = n there is a homomorphism from & onto
the complete graph K,. Thus, for some line y of K, there is a homo-
morphism of G—g onto K,—y, which in turn has a homomorphism onto
K, ,, defined by identifying the endpoints of y. The composition of
these m appings is a homomorphism from G—z onto K, _; thus p(G—n)
= n—1.

For an example of a graph for which the upper bound is achieved
consider the cycle (.

COROLLARY. If o= wv is a line of G for which P(G—2) = (@)1
then p(G—u) = yp(@).

Proof. Since G—wo—u=G—u, (&) =p(G—u) = p(G—ur)—1
= p(@)
'COROLLA_'R.Y. If p(G—uv) = p(G)—1, then P(G—u) = p(@)—1.

It is known that for any independent set § of points of a graph G,
the chromatic number y(G— §) satisties 2(@) = x(G—8) = 3 (G)—1. In
contradiction to what might be expected from Theorem 1, a si.inila,r result
does I}ot always hold for the achromatic number. Tt § is & set of points all
of which receive the same color in some complete y - coloring of @ then indeed
p(G—8) = y(F)—1. That the achromatic number can drop an arbitrary
amoupt upon removal of an independent set of points will follow from

the next set of results in which we determine the achromatic number
of the cycle (.
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Levua 1. If ¢ (Cp) =n and k > 2, then P(Cpyy) = n.
Proof. Consider the points of C, ., labelled as wy, us, ..., Upey,s BOA
assign to each point uy, ..., 1, the color it receives in a complete n- color-
ing of Op. It then suffices to assign colors from 1,2, ..., n to the points
Upyys ey Upyp SO thab ’rhe~ result is a valid complete coloring. Suppose u, is
assigned color ¢ and u, i3 assigned color 8. If & is even assign « to Uyiry
Upygy ey Upogey y A0A B0 U poy Upyyyy oy Upyy - IE X s 0dd assign a to u,,,,
Upigy ey Upigay P TO Upios Upiyy ey Upyp 5, and any other color to
Uprgoe
. n—1

Lemya 2. If (Cp) = n, then p=n (-

Proof. Since each color must be adjacent to each of the other (n—1)-
colors, and each point has degree 2, each color must be assigned to at

n—1 n—1
least {n_‘)_} points, so that p>=n jT} .

—1 n(n—1 . .
Note that if » is odd, then = {W S }: L(n,) ), while if n is even,
—1 2 —1
then n {n2 = 'n,(n‘) ). Thus in either ease we are also assured

that there are enough lines for every pair of the n colors to be adjacent.
Furthermore, if # is even, some adjacency between a pair of colors will
oceur twice.

LevMA 3. For n > 2 and even, let p = in?. Then yp(Cp) = p(Cy.,) = n.

Proof. For n == 4 the cycle (g has a complete 4-coloring determined
by coloring the points, in eyclic order, with colors 1,2,3,4,1,3,2, 4.
We proceed by induction. Suppose that ¢(Cp) = » for p = in*, and con-
sider the case p’ = % (n--2)% Note that i (n+2)*— in* = 2n+2. Let Cp be
colored with n colors, such that the adjacency between the colors as-
signed to points u, and u, is repeated elsewhere in the cycle. Let u; be
colored 1 and up be colored n. Obtain the cycle O, by inserting 2n-2
points, ., ..., %, on the line u,u,. Choose two new colors a and .
Assign colors in the following manner, beginning at u, and working
down to w,.;: @,2,8,3,a,4,8,..,0,n,8,1. Since u, is adjacent
to . this adds all adjacencies between the colors 1,2,..,n and the
colors a and §. Then, assign a to u,,, and § to u,.,,, adding the adjacency
between colors a and f.

That ¢ (C,,,) = p(Cyp) for p = i follows in a similar manner. There
is a line uv such that v (Cp— uv) = p(Cp), so that we can introduce a new
point 2w, colored differently from u and v, and replace line uv by lines
ww and wv.

LEMMA 4. For n=38 odd, let p= sn(n—1). Then y(Cyp)=n, but
y"(ap-i—l) = n—1.
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Proof. Again, we proceed by induction. If n = 3, then in(n—1) = 3,
and v(C;) = 3. Suppose that for p= jn(n—1), »(Cp) =n. Let p’
= }(n+2)(n+1), and note that p’—p = 2n--1. Given a complete n- color-
ing of Op with u; coloved 1 and u, colored n, ingert 2n--1 points Tt
Uy ey Upyy, a0 color them n,a,1,8,2,a,3,8,...,,2—1, a, p. This
replaces the 1—n adjacency, and adds the a— g adjacency as well ag
all adjacencies between «, # and colors 1,2, ..., n.

n(n—1)

Suppose that for p = 3 3 9 (Cpy)

= n. Since p+1=n {??’—;I_;_ 1,

f

n—1] . —
n—1 colors appear {—9—} times, and one color, say a, appears 1-- {M}
2 ’ 9
times. Then « must repeat an adjacency to some other color, but there
is no color available which could be adjacent to «. Thug P(C0p) = n—1
To summarize,

n—1 e
THEOREM 3. If p=n {-—2—}, n 2= 3, then p(Cp) = n. For p between

n {%} and (n-1) {g}, p(Op) = n unless n is odd and P =
in which case p(Cp) = n—1.

CoROLLARY. For every % there is a graph G and an independent set S
of points of G such that p(G)—w(G—8) = k.

Proof. Let # > k+1 be even. Then p — in? is even, so that ¢, is
bipartite. The points w,, s, ..., t,_, form an independent set S such
that Cp— 8 is totally disconnected. Thus P(Cp)—p(0p—8) = n—1 > k.

COROLLARY. For every k there is a graph & such that P(@)— (@) = k.

Let P, be the path with p points.

LemuMa 5. If » >s, then (P)) = p(Ps).

Proof. It is sufficient to show that (L) = p(P,). Let u, be an
eqdpoint of P, and let u, be at distance 2 from 2. Then, ideuntifying w,
with u; defines a homomorphism from Loy 10 Py, 50 p(Py,) = p(P,).

frn—1
I

N . n—1 .
THEOREM 4. For n > 3 let P = M{T}' If n is even, P(Lyey)

<9(Pp)=n. If n is odd, p(Py) < p(P,,,) — .

Proof, We first examine the equalities. If » is even,
and some adjacency is repeated. Thus, since Pp= Cp—u p(Py) = n.
It is 0dd, we obtain a complete n-coloring of P, from o’ne j’:orj Op by
removing some point «, adjacent to points vy and v,, and then adding
new points u, and u, and lines Uy 0y and uy0,. .

By assigning to w, a
“ : signing 0y, and. u,
the color assigned to %, we obtain & complete 7 -coloring.

) For the inequality in the even case,
ing of P,_, gives rise to one for ¢,

then (0p) =n

we note that a complete 7 - color-
—1 if the endpoints of the path are
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colored ditferently, and one for C,_, if they are colored the same. Each
of these would violate Theorem 3. When # is odd, P, has only in(n—1)—1
lines, whereas at least {n(n—1) would be required if the graph were to
have a complete n-coloring.

Let H be a subgraph of I, ,; we adopt the notational convention
that m > n. Denote by I the relative complement K,,,—H. If the bi-
partition of V=V (K,,,) is defined by V = V,|V,, where |V;| = m, then
for 2 = 1, 2 let 7; be the variable which has the value 1 if there is at least
one point of V; which is adjacent to every point of V,_,, and 0 otherwise.
TFinally, let k(H) denote the number of non-trivial connected components
of H.

THEOREM b. If G is o spawning subgraph of K, ., then nt+1 2 p(@)
> 7+ T+ E(G).

Proof. In a y-coloring of & at most one color can appear only in ¥V,
and at most one color can appear only in V,. Let » be the number of colors
appearing only in V. Then there can be at most n-r colors; this takes
its maximum when 7 = 1. N

For the lower bound, let k¥ = k(&) and let the non-trivial components
of '@ be H,, H,,.., Hy. Find a maximal complete bipartite subgraph
B; C H; and color all of its points with color ¢; note that B; may just be
the line XK, = K, ;. For i s j, let uie Bi ~V; and v; e B; 0 V,. Since s
and v; are in different components of @ they are adjacent in @. Thus,
this coloring yields all adjacencies among the colors 1,2, ..., k. Since
the subgraph induced by the points colored 1, ..., & has a complete k- color-
ing, it follows from Theorem 1 that & has achromatic number at least k.
If v;=1 and 7, ;= 0, then there exists at least one point in V; which
is adjacent to every point of V,_;. We color this point with the color k41
and again apply Theorem 1 to see that @ has achromatic number ab
least k1. Finally, if 7, = 7, = 1, then yet another application of Theo-
rem 1 shows that @ has achromatic number at least k+2.

Tor our last result, we let 7(G) be the number of points of degree p—1.

THrOREM 6. For a graph G with p points, p = p(G) = K(&)+(6).

Proof. The upper bound is obvious. Let k = k(G) and let the non-
trivial components of G be Hy, Hy, ..., Hx. Choose a clique B; C H; and
color the points of B; with color 4. As in Theorem 3, we are guarax.lteed
that it 1< i< j<k, colors 4 and j will be adjacent a.nd. there wﬂl- be
10 i—4 adjacency. The tv(G) points of degree p—1 are 1s-01a,tec1. points
of G and hence have not yet been colored. We color these points W.mh (@)
additional colors. The subgraph induced by all the colored points has
a complete %(G)-+T(6G) coloring. Thus, by Theorem 1, the graph G has
achromatic number at least k(G)+ ().


GUEST


D. Geller and H. Kronk
References

[11 R. P. Gupta, Bounds on the chromatic and achromatic numbers of complementary
graphs, Recent Progress in Combinatorics, New York 1969, pp. 220-285.

[2] F. Hararvy, Graph Theory, Reading 1969.

[3] — and 8. Hedetniemi, The achromatic number of a graph, J. Cormbinatorial Theory
8 (1970), pp. 154-161.

[4] 8. Hedetniemi, and G. Prins, An dnterpolation theovem for graphical homo-
morphisms, Portugal. Math. 26 (1967), pp. 453-462.

SCHOOL OF ADVANCED TECHNOLOGY
STATE UNIVERSITY OF NEW YORK AT BINGHAMTON

Regu par lo Rédaction le 5. 4, 1973

icm°®

The undecidability of the existence of a non-separable
normal Moore space satisfying the countable
- chain condition

by
T. Przymusinski (Warszawa) and F. D. Tall (Toronto)

Abstract. It is shown that Martin’s Axiom plus the negation of the continuum
hypothesis implies the existence of a non-separable normal Moore space satisfying the
countable chain condition. The consistency and independence of the existence of such
gpaces follows.

In [22], M. E. Rudin constructed a non-separable Moore space (*)
satisfying the contable chain eondition (2). The importance of her example
lay in showing how far removed Moore spaces can be from metrizable
gpaces. Any such example cannot be locally metrizable, cannot have
a dense metrizable subspace, and cannot be completed (3), indeed cannot
be densely embedded in a Moore space satisfying the Baire category theorem
[1, Theorem 3.31). In [17], Pixley and Roy constructed a much simpler
example, which in addition is metacompact(*). In this note we construct
a subspace of their space with the same properties, which, moreover, is
normal, if Martin’s Axiom [16], [31] plus the negation of the continuum
hypothesis is assumed. These assumptions are consistent with the usual
axioms of set theory, e.g. Zermelo-Fraenkel, including the Axiom of
Choice [25]. Some swch assumption is necessary, since in [26], the second
author established the consistency of the assumption that every countable
chain condition normal Moore space is metrizable, and hence separable.

(*) A Moore space is a regular Hausdorff space X having a sequence of open
©oveLs {fn}n<, such that for each » ¢ X and U open containing z, there is an n such that
J{gelu: mzeg}CT.

(®) Le. every collection of disjoint open sets is countable.

(*) There are several different notions of completeness and completability for
Moore spaces. The reader is referred to [1] for details.

() The Proceedings of the 1971 Prague Topological Symposium have just reached
the second author, who is probably responsible for A. V. Arhangel’skil’s incorrect dis-
cussion [5] of the Pixley—~Roy example. No special set-theoretic assumptions are needed
to construct their (completely regular) space.
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