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Some properties of fundamental dimension
by

Slawomir Nowak (Warszawa)

Abstract. By a fundamental dimension of compactum X we understand the number
Fd(X) = min(dim ¥: Sh(X) < Sh¥).

The main purpose of this paper is to give characterizations of compacta with
fundamental dimension < n, where n is a positive integer or 0, and to apply these
characterizations to the study of some problems.

By a fundamental dimension of compactum X we understand the
number Fd(X) = min(dim ¥: Sh(X) < Sh(T)).
This notion has been introduced by K. Borsuk in [3] (see also [5],
p. 31). In the theory of shape it has a similar role to that of dimension
in topology. Therefore if is one of the most important invariants of the
theory of shape. T
The main purpose of this paper is to give characterizations of eom-
pacta with fundamental dimension <n (where n is a positive integer
or 0) and to apply these characterizations to the study of the following
problems:
(1) Suppose that all ecomponents of the compactum X have funda-
mental dimension <n. Is it true that Fd(X) < n?
(2) Suppose that X = lLm{Xj,pt™} and Fd(Xz) <n for every
k=1,2,.. Is it true that Fd(X) < n? :
. (8) Suppose that X, Y are compacta. Is it true that Fd(X v ¥)
< max (Fd(X), Fd(Y), 1+ FA(X ~ ¥))? .
(4) Suppose that X, A are compacta and X D A. Is it true that
Fd(X/4) < max(Fd(X), Fd(4)+1)?
(8) Suppose that M is a connected #-manifold and let X C M be
a compactum. Is it true that Fd(X) < n—1?% v
Theorems (2.1), (3.2), (4.1) and (4.18) give positive answers to
problems (1), (2), (3), and (4). Theorem (3.6) gives a partial answer to
problem (5). The above-mentioned characterizations are given in Theo-
rems (1.5), (1.7) and (1.9). The first section contains also Theorem (1.6),
which implies that Fd(X)= min(dim¥: Sh(X)= Sh(Y)). This result
was obtained by W. Holsztyriski as early as 1968.


GUEST


8. Nowak

Lo
=
Lo

By Q we denote the Hilbert cube [0,1]X[0,1]X ... and for every
k=1,2,.. we denote by 7z the natural projection

w2 [0, 1]1X[0,1]X ... = @[O0, 17
given by the formula .
Tu(@yy By ey Thy Bppyy ooe) = (Fy, Fay ooy Tp)
for (@1, @y ey Ty By, o) €Q

The expression 4 =~ B means that the.sets 4 and B are homeo-
morphie.

By a map we always understand a continuous function.

We now give the definition of a strong deformation retract. Let
X, Y be topological spaces and 4 CX and suppose that the maps
fos i X+ agree on A. Then f, is homotopic to f, relative to A (denoted
by fy=firel A) if there exists a map ¢: X x [0,1]— ¥ such that @z, 0)
=fu(#) and @(2,1)=fy(z) for z¢ X and @(z,1)=fy@) for e A and
t€[0, 1]. The subspace A of the topological space X is a strong deformation
retract of X if there is a retraction r of X to A such that sz~ jrrel A,
where ix: X— X is the identity and j: 4—X is the inclusion map.

I.would like to express my sincere gratitude to Professor K. Borsuk
for his gnidance and valuable remarks.

§ 1. Characterizations of compacta with fundamental dimension < . If
X, ¥ are compacta and f: X— Y is a map, we denote by w(f) the smallest
integer n such that there exists a map ¢: X—¥ homotopic to f and satis-
fying the condition: dimg(X)< n or co when there this number does
not exist. Let ¥ be a polyhedron and let f: X—Y be a map. Then o (f) < n
if f is homotopic to a map g: X—> ¥ such that g(X) lies in the combi-
natorial #-skeleton of ¥ (the combinatorial #-skeleton of ¥ is a homotopic
n-skeleton of ¥, see [1], p. 612).

8. Godlewski and W, Holsztyrhski have shown (see [8], p. 376) the
following:
) (1.1) TemorEM. Suppose that FA(X)<n and Y is a polyhedron.
Then o(f) <n for every map f: X—>¥.

Let us prove the following elementary lemmas: ,
(1.2) Limvema. Suppose that @ D Z, D Z, D ey ond Z; is a compactum for
o

each i=1,2,... Let X = [ Z. Let ¥, Y, be two ANR-sets such that

k=1
@3YDZ and YO Y, and let @: XX[0, 1] Y be ¢ homotopy satisfying
the following condition:

(a) p@,0)=2 and @@, 1), for each zeX .
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Then there exist a positive integer k', and a map p: Zx % [0, 11— ¥ such that

(b) FlXx[0,1]1=9,
(¢} o, 00=2 and @x,1)e¥, for each veZy .

Proof. Since Y, ANR, there exist a neighbourhood U of X and
a map J: U—Y, such that A(x) = ¢(x,1) for every xe U.

Let & >1 be a positive integer such that Z,. C U. Consider now
a map yz: Zp% {0,1}w XX[0,1]>Y given by the following formula:

7 for every e Z,. and t=10,
2@, ) = {p(x,t) for every (z,7) e Xx[0,1],
J(x) for every ¢ e Zg, and t=1.
Sinee ¥ ¢ ANR, there exist a neighbourhood T’ of Z,x {0,1} v X X
% [0,1] in Z, X [0,1] and a map 3: U'=Y such that
212 x 0,1} 0 X x[0,1]=y%.
Moreover, there exists a neighbourhood U of X in Zj. such that U X

x[0,1]C U'. Let k' > k'’ be a positive integer such that Z, C U".
Now let us observe that ¢ = y]Z, X [0, 1] satisfies (b) and (c).

(1.3) LEMMA. Let X = lim{X,, pk+'}, where X< ANR and pf™: X,

Xy is o map. If w(p,’;’*i)—g n for each k=1,2, .., then FL(X) < n.

Proof. Let ¢i*%: X,,,—X; be a map homotopic to p;™* and such

that dimp¥+ri(X,,,) < n. It is known (see [9], p. 1107, Theorem (3.6)) that
8h (X) = Sh (Lim{Xy, p§™}) = Sh(Um {Xy, ¢}

Let
X,

1

irde

: - fe+1
{®dim € hfn{-lka G C
This means that

@) = By € Xy = Y-

We infer that lim{X,, ¢i*'} = Im{¥;, ¢¢™*|¥,,,} = Y. Hence dim¥Y <=
(because dim Yk_< n for every k=1,2,..). It follows_ that Fd(X) < a.
This completes the proof. ) .
(1.4) Remark. From this prootf it follows that if X = 1331{2’,,, P
s = k1) < p for every k= 1,2, ...,

(where X e ANR for k=1,2,...)and w(p,h. )<
then there exists a compactum Y such that dim ¥ < # and $h(X) = Sh(Y).
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(1.5) TumormM. Let X = Lim{X,, p¥™*}, where X; is a polyhedron,
and pitt: Xy~ Xy is a map707‘ every k=1,2, ... Then the following

conditions are equivalent:
(i) Fd(X) < m, .

() w(pr) <n for every k=1,2, ..., where pr: X—Xy is the natural

projection,

(iil) for every k=1,2, ... there emisis a &' >F such that o(p¥) <.

Proof. Suppose that Fd(X) < n. Then we conclude from Theorem
(1.1) that w(pz) <n for every k=1, 2, ...

Suppose that (i) is satisfied. Let X be the n-dimensional com-
binatorial skeleton of the polyhedron Xj. From (i) we infer that there
exists a map @x: X X [0, 11— X such that

ou(@, 0) = pr(x) ou(w,1) e X for every we X .

Suppose that Xz C[0,1]* for every k=1,2,.. Let ¥Y;CThax
XIExIBX ... == Q Dbe defined as the set of all points (¥, ¥s, ...) € Xy X
X XX ... With g in X such that if j <k, then y; = pf(yx) and if j £ &,
then y; e I i arbitrary.

Let Y§)C ¥y be the set of all points (yy, ¥, -..) € [Ex T2 ... with
yr e X such that if j <%, then y; = p¥(ys) and if j £ %, then y; = 0.

Since Y or ¥ is the Cartesian product of a set homeomorphic
to Xy or X{¥, respectively, and an AR-set, we infer that ¥, ¥ ¢ ANR.

Let us observe that ¥, D ¥,,, and let ¢¢*': ¥, ¥, be the in-
clusion map for every k= 1,2, ...

and

It is clear that X = (M Y. Let 4,2 X ¥, be the inclugion map for
k=1
every k=1,2, f.
Setting
9 {y352) =Yz
and for every e Xy

for every {y,}2.c ¥,

jk(m) = {f’/;/};m:1 )

where y; = , y; = pi(z) for every j < % and y; = 0 for every j >k, we
get maps (see [11], p. 42) fi: Xp— Y and gr: Yr—>Xy; such that
f=(idy, fn) and g = (idy, gn) are maps.of the ANR -sequences {X,, by
and {Y,, ¢f™"} (idy is the identity of the set N of all natural numbers).

Let Y3 be the set of all sequences (Y1y Yoy +».) € ¥y such that y;=0
for each j > k. Let us observe that Y, is a strong deformation retract
of Y and a strong deformation retractions is a map rp: ¥Yi—Y; given
for every {y,}7>, ¢ ¥, by the formula

Tk({yi i) = {y;}?il ’
where y; = y; for j <k and y; = 0 for §j > k.

icm°
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Let us observe that

7xix(€) = fepr(w)

It follows hence by an elementary argument that

for every e X .

i~ fe Pk .
Since Pr is homotopic to a map p;: X— X; such that 2(X) C XM, we
infer that f,p4(X) C Y and if = fp, 6.
It is clear that
#(X) = oy X) C f(XP) C TP

Hence, using Lemma (1.2) in the case where ¥ — Yi, Y= TP,
Zy =Yy, Zy= Y 9, ..., Wwe conclude that there exist k' >% and
& homotopy y: ¥, X [0, 1]— X% such that

(T x {1}) C TP
and
p(y,0) =y for every y e Y, .
Then setting

M, t) = gky;(fk,(w), t) for every (,1)e ¥, %[0, 1],
we get a homotopy A: X, X [0, 1]-X; such that

A, 0) = gey(fy (), 0) = gu(fu(®)) = pE(z)  for every z e X,

and
Az, 1) = gkU’(fk'(m)y 1)
Since p(f(2), 1) ¢ TP, we infer that

‘ gk"/’(fk’('r)a 1) (TP C xg,

for every we X, .

ie.
o) <n.

Suppose that {X,, pi*'} satisfies condition (ii).

Then there exists
a sequence k; << k<< ... of indices such that ’

Py < for every i=1,2, ..

It is evident that X o lim {X,,, p’,ﬁ:“}. Therefore (by Lemma (1.3))
Fd(X)< n. Thus the proof of Theorem (1.5) is completed.

Remark. Since in the case where Fd(X) < every inverse sequence
{ ¥, 5} (where X is a polyhedron for every k=1,2,...) satisfies
sondition (ii) of (1.5), we get the following:

(1.6) TEROREM. If Fad(X) < n, then there emists o compactum ¥ such
that dim(Y) < n and Sh(X)= Sh(¥).
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The first proof (unpublished) of this theorem was presented by
W. Holsztyliski on Borsuk’s seminar, December 1968 — January 1969.

From Theorems (1.5) and (1.1) follows: . N

(1.7) CororLLARY. For every compactum X the following conditions
are equivalent: .

(i) Fd(X) < n, -

(&) o(f) < n for every map f: X—>W, where W is a polyhedron.

Let us prove the following: )

(1.8) Lgmm. Let U be an open %gighbomhood of & compactum X CQ
and dim X < n. Then X is contractible in U to a polyhedron X' of di-
mension < M. ‘ . 4

Proof. Tt is evident that X is contractible in U to 2 subset of P
=(0,1)x(0,1)x ...CQ whose dimension is <n. Hence we can assume

’

that X C P.
Tt is known (see [10], p. 111) that for every compactum X CP of

dimension <# and every & >0 there exist a polyhedron X, of dimension
<n and a map p,: X—>X, sueh that’

9(‘/‘”5 ps(w)) <e.

Since U ¢ ANR(9), there exist an g >0 and a homotopy x: X X
% [0,1]-U such that x(w,0)=x and x(=, 1) =.pso(a:) for.ejvery zelX.
Hence the polyhedron X' = X, satisties the required condition and the

proot of Lemma (1.8) is finished. . . .
The compacta lying in the Hilbert cube with fundamental dimension

<n are characterized in the following way:
(1.9) TumorEM. Let X be a compactum lying in the Hilbert cube Q.
Then the following conditions are equivalent:
(1) Fd(X) < n.
(o) For every neighbourhood U of X in Q there exists a homotopy g: X X
% [0, 1]-U such that . .

p(®,0)=x for ecach 2 X and dimp(XXx {1 < n.

(B) For every neighbourhood U of X in Q there exist a m@'ghbowhqod
VCU of X in @ and o homotopy ¢: Vx[0,1]1>U such that
@z, 0)=x for each z eV and dime(V X {1}) < n.
Proof. Let Xy, X,, ... be a decreasing sequence of closed neighbour-
hoods of X such that -

o0
X = r\, X,
k=1

for every k=1,2, ..
L4

X,p0 C Int Xy

icm
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and

Xy is a prism in @  for every k=:1,2, .., s
Le. there exist a positive integer I; and a polyhedron Wy C [0, 1] such
that X = r,;’(Wk).

It is clear that Wy X {0}X {0} X ... is a strong deformation Tetract
of Xy and the inclusion map X into X is homotopic {in X}) to some
map with values belonging to Wix {0} x {0} X ...

Suppose that Fd(X) < n. Let U be a neighbourhood of X in @ and
let & be such that Xz C U. Since the inclusion map X into X is homotopie
(in Xy) to some map with values belonging to Wix {0} X {0} x vy WE
infer from (1.1) that there is a homotopy joining in X3 C U the inclusion
with some map g: X— X3 C U such that dim, (X) < ». Hence (i) im-
plies («).

Suppose that X satisties (z). By Lemma (1.8) it follows that there
exist an m-dimensional polyhedron X; C X, where m < n, and a homo-
topy ¢: X x[0,1]—X,, such that .

¢z, 0)=1x for every ze X,

P(Xx {1}) C X},.

Hence, using Lemma (1.2) in the case where ¥ — Xiy YYo= X,
Zy = Xy4q, .-, we conclude that X satisfies (B).
Suppose that X satisfies (3). Then there exists a sequence B <k<..

of indices such that w({5i*) < n for every i=1,2,.., where by g

“we denote the inclusion map ¢f+: X b Xp,- Using (1.3) we infer that

Fd(X) < n. This completes the proof.

§ 2. Fundamental dimension of components of compacta. Let us prove
the following

(2.1) TurorEM. A compactum X has fundamental dimension <n if
and only if all its components have fundamental dimension <n.

Proof. Suppose that Fd(X) < n. Then there’exists a compactum
Y such that dim¥ < » and Sh(X) < Sh(Y). Moreover (see [6], p. 28),
for every component X, of X there exists a component A(X,) of ¥ such
that Sh(X,) <Sh(4(X,)). This implies that all components of X have
fundamental dimension <.

Suppose that every component of X has fundamental dimension <.
We can assume that X C Q.

Consider a neighbourhood U of X. Then by Theorem (1.9) for every
component X, of X there are an open neighbourhood 17',, ofﬁX , such that
its boundary is disjoint with X and a homotopy @ V,x[0,1]1-T
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.

such that .
gum,0) ==z for every we V,

and -
dimg,(V, X {1}) <n
Since X is compact, there is a finite system of indices g, fay vy Uk
such that .
=7 o U vV

F 3
is a neighbourhood of X. Setting
V=V, UV, for i=1,2,.,%k,

we geb a system of open and disjoint sets Vy, Vs, ..., Vi, such that the
k
set 7' =|J ¥, is a neighbourhood of X.

i
i=1

Setting
@'(,1) = @z, 1) -for every (z, 1) eV, x[0,1],
we geb & homotopy ¢': V'x[0,1]->T.
Let V be a closed neighbourhood of X such that VCV’ and let ¢
= ¢'|[Vx [0, 1].
Tt follows that V ~ ¥, is a closed subset @. Hence dump Tx{i}) <

and ¢lz, 0) = & for every V.
TUsing Theorem (1.9), we infer that Fd(X)< n and. the proof of

Theorem (2.1) is finished.

§ ‘3. Fundamental dimension of the inverse limit of compacta and of subsets
of manifolds. Let us prove the following:
(3.1) TuzorEM. Suppose that X, D X,D ... are compacta such that

Pd(Xp)<n for every k=1,2,...

Then FAd(M Xz) <n

k=1
Proof. We can essume that X, CQ. Take an arbitrary neighbour-

hood U of X = ﬂ Xy in Q. Let k be such thafﬁ X C U. From Theorem (1.9)

we infer that w(zk) n, where by i, we denote the inclusion ix: Xp—U.
Tt follows at once that o(i) < m, where by ¢ we denote the inclusion
i: X-U. From Theorem (1.9) we infer that Fd(X) <.
(8.2) COROLLARY. Suppose that X = ljlrl{Xk,p§+1}, where Xy, Xy, oo
_are compacta and Fd(Xz)<<n for every k=1,2,.. Then Fa(X)<n
Proof. Using an analogous argument to that used in the proof of
Theorem (1.5) one infers that there exists a sequence ¥;D ¥,D ¥3D ...
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of compacta such that ¥j is homotopically equivalent to Xj for every
oo

k=1,2,.. and X = () Y;. Hence
k=1

FA(Xy)=Fd(Tx)<n and FAUX)=TFUN T <n
k=1

A eonnected n-manifold ¥ is said to be regular provided for every
compactum X (; M there is a sequence Ny= M D N, D N,D ... such that
(3.3) Ny is an n-manifold with non-empty boundary for every k= 1,2, ...

o0
(3.4) X= M.
k=1

M. Brown and B. Cassler have shown (see [13], p. 94) that if ¥ is
a compact and connected n-manifold with boundary B, then there is
a map g: B—~R, dimR < n—1, such that the mapping cylinder C, is
homeomorphic to M. Therefore we have the following

(3.5) Lmmya. Let N be a connected and compact n-manifold with
boundary B # @. Then FA(N) < n—1.

Let M be a regular n-manifold and let X G M be a compactum.
Suppose that N, = M D N; D N,D ... is a sequence which satisfies (3.3)
and (3.4). Lemma (3.5) implies that Fd(Nz) < n—1 for every k= 1,2, ...
and conditions (3.3), (3.4) and Theorem (3.1) imply that Fd(X) < n—1.
Thus we get the fo]Jowmg

(3.6) THEOREM. If M is a regular n-manifold and compactum X g M,
then Fd(X) < n—1.

A PL n-ball is a polyhedron that is piecewise linearly homeomorphic
to an n-simplex.

A PL n-manifold is a polyhedron M such that for every « ¢ M there
is a subpolyhedrom N of M which is a neighbourhood of # in M and such
that it is a PL #n-ball.

It is known (see [15], Chapter IIT) that for every subpolyhedron W
of PL n-manifold M and for every neighbourhood U of W in M there
is a PL n-manifold P C U such that

(3.7) P is a closed polyhedral neighbourhood of W in M,
(3.8) P collapses to W.
We call P a regular neighbourhood of N.

It is known (see [15], Chapter IIT) that P is an n-manifold with
a non-empty boundary if W = M.

If M is a PL connected #-manifold and X g M is a compactum,
then for every open neighbourhood U of X, U = M, there are a polyhedral
neighbourhood WC U of X and a regular neighbourhood PC U of W
and we infer that M is a regular manifold.

2 — Fundamenta Mathematicae LXXXV
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(3.9) CororrARY. Let M be a PL n-manifold and let X G M be a com-

pactum. Then Fd(X)<n—1.

(3.10) CorornArY. Let the compactum X be a« subset of H". Then
FA(X)< n—1.

Remark. It is known (see [14], p. 70) that for n = 6 evéry - 1ani-
fold without a boundary is a handlebody. Using this theorem M. Stan’ko
has shown (unpublished) that every closed and connected n-manifold
is a regular manifold for every = > 6.

(8.11) ProBLENM. Suppose that M is a connected n-manifold and let X
be a compactum and M = X C M. Is it true that FA(X) < n—17

§ 4. Fundamental dimension of the union of compacta. Let us prove the
following:
(4.1) TaroREM. Let X Y be compacta. Then

FA(X v Y) < max(Fd(X), FA(Y), FA(X ~ Y)+1).

The proof of Theorem (4.1) based on four lemmas:

(4.2) LemMA. Let X be a polyhedron and let X,, X; and X, be sub-
polyhedra of X such that Xy= X, "X, and X = X, v X,. Then the set
XX {1} o Xyx[—1,1]u Xy x {1} is @ strong deformation retract of
Xx[—1,1]

Proof. Let T be a flxed triangulation of X such that 7' induces
triangulations of X,, X, and X,. It is evident that for every geometric
simplex ¢, the sets o X {—1} w X [—1,1] and oX {1} v e X [—1,1] ave
strong deformation retracts of o X [—1, 1], where ¢ is the boundary of o.
Let X™ be the n-skeleton of X and let

Ap =X x {—~1} U X, x {1} v (XM U X)x[—1,1] for n>=1.

We show that for each # > 0 the space 4, , is a strong deformation
retract of 4,. For each = —1,1 and for each geometric #-simplex
erX\X0 let ¢ (ox[—1,1])x[0,1]->0%x[—1,1] be a homotopy
satisfying the conditions:

PP, 5), 1) =
(ox[—1,1]) x {0} v

(2, 5)
for  ((,8),1) ¢ (¢ X [—1,1]uox {i})x[0,1]
and

#(#,8),1) eox {8} w ox[—1,1].
For n > 0 define a map

gt AnX [0, 1] 4,

icm
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by the conditions
@l (0 X [—1,1]) %[0, 1] =¢{  for an n-simplex ¢ C XX, »
el (0X [—1, 1) %[0, 1] =¢®  for an n-simplex o C X X, ,
and ‘
on(@,t) =2 for every (z,f)e A4, ,x[0,1].
Then ¢, is well-defined and continuous and a map
Tt A.,,—>A,l_1
given by the formula
7n(2) = ga(z, 1)

is a strong deformation retraction 4, to 4,_

for every ze 4,
;- Let my= dimX. Then
=X and A, =X X{—1} X x[-1,1]v X, x{1}.

Since 4; is a strong deformation retract of 4, , for every i= —1,
0,1,..,m—1, 4_, is a strong deformation vetract X = 4, and this
eompletes the proof.

(4.3) LimmyA. Let X, Y be polyhedra and let A be a subpolyhedron
of X. Let Ty, T, be fixzed triangulations of X and Y, respeciively, such
that Ty induces the triangulation Th) A of A. Suppose that f: X—¥ is a map
such that flA: A=Y is the simplicial map and o(f) < n. Then there exist
a map ¢: X X [0, 11X satisfying the conditions:

() (2, 0) =f(z) for we X,
(b) dime(X X {1}) < =,
(c) dimg(4 x[0,1]) < dim4+1.

Proof. It is known (see [12], pp. 126 and 128) that there exist
a positive integer N, and a simplicial map ¢g: X—Y with respect to the
triangulation T& of X homotopic to f relative to 4 (g is a simplicial
approximation of f). The assumptions of (4.3) imply that there exists
a map fi: X-+Y such that f;(X)C Y™ (by Y™ we denote the n-skeleton
of T,). We can assume that f; is a simplicial map with respect to T,
(where N, > N,;) and we can assume that g is a simplicial map with
respect to TW?. Sinee f,~g¢ and f,g arve simplicial maps, one infers
(see {121, pp. 131 and 132) that there exist Ny > N, and a finite sequence
yy Ogy wory ap: X—Y of simplical maps with respect to TU"® such that
@ =g, ag=f, and such that «; and «;, are contiguous for every
i=1,2,.., k—1. Tt is clear that dima,(4) < dim 4 for everyi=1,2, ...,

ou
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| &)
L
[35)

,k—1 and that for every ¢=0,1,..,%5—1 there exists a homotopy

Xx[3 ?—%—]—ﬁ’ such that

g, 0) = f(z)  and %(w,l)—g(m for weX
and

. S
®; (m, %) = a®) and qwi(w,z—;:——): a;4q(2) for every we X

‘and ¢=1,2,..,k—1
and
;i )
dime; (A X [%’%—D < dimA-41  for every ¢=1,2, .., k~1.
. 3 441
Setting ¢ (z, t) = p,(z, t) for every (z,7) e XX el we get a homo-

topy satisfying conditions (a), (b), (c) of (4.3). Thus the proof of the lemma
is completed.

(4.4) Levva. Let X = ]Lm{Zk, FEY, and let By, be o strong deformation

retract of Zy for every E= 1,2, ... Suppose that Zx, Br ¢ ANR, and
FEY(By1) C B for every k=1,2, ... Then

Sh(X) = Sh 11m{Bk,f'°“[Bk+1}) .

The simple proof of this lJemma may be left to the reader.

(4.5) LemMA. Let X, Y be compacta and Z = X o Y. Then there exist
inverse sequences {7, D), 75, @), {2, S5} and {Zy, vEFY such
that for every k= 1,2, .. the following conditions are satisfied:

(i) Zr= Z}c e Z%:: Zi:y ZEky Z(I)c = Z}ﬂ ~ Z%c are  polyhedra, (Z}u Z?c):
(Z3y Z5), (Zyy ZY)y (Zyy Z3) are polyhedral pairs and there ewists
a triangulation Ty of Zy which induces triangulations of Z3,, Z%,
78 and such that st is a simplicial map with respect to Ty
and Th,,.
(if) s5*'(2) =
(i) k() =

PE2) = ¢ii(2) = riTHR) for every zeZHH

""'1 2) for every ze Z% and vitY(z) = ¢ETY(2) for ever
% .

zeZ%,
(iv) dimsk(28,,) < FA(X A T),
() o(@f™) < FUX) and o(gi™) < FA(Y),
(vi) Sh(X)= Sh(lm{Z}, Pk},

Sh(Y)= 8h( hm{Z;, gy,

Sh(Z) = 8h 1’5&1{zk, YY) and

Sh(X ~ ¥) = Sh( (m {25, §*13).

icm°®
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Proof. We can assume that X o ¥ C Q. Then there exist a sequence
I; <1, < ... of positive integers and sequences {Z}}% ., {72}, and {23},
such that 73, 73, Z% = Z}, ~ Z; are subpolyhedra of [0, 1} and
Ty (Z1) O 0 (Zierd) O X

(4.6) e O
T, (Zi) 3 le+1(Tz;+1) oY ’

X= N2 and Y= NrNZ).
k=1 E=1
This implies that
(4.7) T2 D n(Zhy,) and XA Y = ) iZY).
k=1

Let Z, = Z}, v Z:. From (4.6) we get

oc
(4.8)  NZp) Dy (Zy) DX v Y and X o Y=\ \(Z,).

k=1
From (4.6), (4.7) and (4.8) we infer that for every k=1, 2, ... there are
m&PSPkH Zkﬂ_>zi.; aE VR spru Z% 123, and ;”ﬁﬂ: L=y,
such that

(4.9)  §Tz) = pEYe) = gFM2) = TiT2) for every zeZl,,,
FEY2) = @it i(z) for 2 e 22,
and
Sh(X (hm{zm PL M,
Sh(Y) = Sh(hm{zk AP
Sh(X o ¥) = Sh(Z) = Sh(im {Z,, 7+,

Sh(X ~ T) = Sh(lm{z2, §5H1}) .

(4.11)

By Theorem (1.3) we can assume that o(pi™) < FA(X), o (¢f*?) < FA(Y),
() < FA(X A T), o(E) < Fd(2). '

It follows by the simplicial approximation theorem that there exist
a triangulation Ty of Z which induces triangulations of Z{ for i= 0,1, 2
and simplicial maps sk*: 25,23 (with respect to T and Ty,,) homo-
topic to i+ and such that

dim&E(22,,) <FA(X ~ T) .

Using Borsuk’s homotopy extension theorem to the homotopy joining
§E4 with & in 2% C Z% for i=1,2, we infer that there exist maps

phtt: Zlﬂ->ZL, ¢ 3 —~Z% and 5V 7, —Zy such that conditions
(1)-(vi) of (4.5) are satisfied.
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Proof of Theorem (4.1). Suppose that Fd(X), Fd(Y), FA(X ~ T)
< oo, Let {Z},, p§*'}, {25, ¢, {2, si7) and {7, 757} be sequences
from Lemma (4.5). Consider the inverse sequence {Vy, Fit1l} where Vi

= Zyx[—1,1] and F*%: ¥y, V3 is & map given by the formula

P, 1) = (rEti@), 1) for every (z,1) e Vi, = Zp X [—1,1].
Tt is evident that Sh(X v ¥)= Sh 11m{Vk,rk+11) From TLemma (4.2)
we infer that the set V;, = Z, x {=1} v Z" % {1} w Z% x [—1, 1] is a strong
deformation retract of Vi. By Lemma (4.4) we infer that

Sh(X v L) = ShUm{Vy, F ™ Vi) -
Conditions (i) and (iv) of (4.5) imply that

(4.12) sETHZ5 1) C 4Ax

where by 4, we denote the Fd(X ~ Y)-dimensional skeleton of Z}
(with respect to Ty). Consider now the sequence {Uz, uktty, where U
= x{—1} v ZAx {1} v Agx [—-1,1] and wf*: Up,,—Us is given by
the formula .

Wt (e) = Ftl(z)  for ze Uy, .

(4.12) follows (compare the proof of Lemma (1.3)) that
m {V, 754V} = Hm{ T, w2}
Condition (i)-(vi) of (4.5) and Lemma (4.3) imply that for every
k=1,2, ..., there exist homotopies :
$ (D} {—1}) X [0, 1125 x {—1}

and
(251, {1}) x [0, 11+7, x {1}

such that V

—1), 0) = w2, —1) = (pi**(e), —1)

= (gF™(»), 1)

(4.13) for every ze Z},,

vz,

(4.14) ¥E((2, 1), 0) = uf" (e, 1) for every z e Z%,

(418)  Qimyf((Zhyy X {—13) X {1}), Amyf((Z,, x {1}) X {1})

< max(F4(X), Fa(Y)),
(416)  dimyH{(dy,, X {(—1}) %[0, 1)) < dimd,,,+1 < FUX ~ T)41,
(4.17) dimyh{(Ay, X {1} x [0,1]) < FAU(X A T)41.

icm°®
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3
Let a: [—1,1]x[0,1]=>[—1,1]x {0} v {-1,1}x[0,1]=
such that

L be a map

l!

(0,0),
(=11,
(

(

Il

( 1)
a(—1,1)
a(l, 1)
a(b, 0)= (b, 0)
a[—1,11X {#}—+L is a homeomorphic embedding for every te¢[0,1]:
Let

a(d,?) = (a(d, 1), axd, 1) L
Let v*: .U

141 X[0,1]1=U, be a map given by the formula

k(( » b)),y ) for ((z) b),t)e(ZIHX{—l}))([O,l],
((za b) ) for ((z, b), t) € (Zip x {1}) x [0, 1],
¥i{(z, —1)7 ay(b, t)) for ((z,d), 1) e (A, X [—1, 1])x [0, 1)

such that e (b, ?) = —1,
for ((z’ b): t) € (Ak+1 xX[—1, 1]) X [0> 1]
such that oy(b,t)=1,

for ((z: b)y t) € (—Ak-u X [-17 1)x fo, 1] )
such that |a(b,t)|<1.

H

1,19,

ll

for every be[—1,1],

for every (b,1)e[—1,1]x[0,1].

W;c((z) 1), ax(b, t))

(s572(2), ea(d, 1)

From (4.13), (4.14) and (4.15) we have
Y Upsr X {11 C A x [—1, 1] 9f((Zhsy X {—1}) X {1}) v
© gi((Zsa X {11 X (1) © (A X {~11 X [0, 1]}
O 9{(Apy X {13) % [0,1]) .
Conditions (4.13), (4.16), (4.17) imply that
dimy*( T, % {1}) < max(Fad(X), F4(Y), FA(X ~ ¥)+1
From this we infer that '
o (Ui < max(Fd(X), FA(Y), FA(X ~ ¥)+1) for every k=1,%, ...,
and from Theorem (1.5) we have ‘
Fd(X v Y) < max(Fd(X), Fd(Y), FA(X ~ ¥)+1).
This completes the proof of Theorem (4.1).

Remark. Easy examples show that the fundamental dimension of
the union of two compacta X, Y may be equal to max(Fd(X), Fd(Y))
and also to FA(X ~ ¥)-+1, and it can be less than either of these numbers,
as well.
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Using Theorem (4.1) one can obtain easily some theorems:
(4.18) TrRoREM. Let X, A be compacta and ACX. Then Fd(X/[A)
< max(Fd (X), Fd(4)+1). o
Proof. T. A. Chapman (see [7], p. 653) has proved that if 4,, 4,, B
and Y are compacta such that 4,,4,,CBCY, S]}(Al)f Sh(4,) a,n'd
Sh(B) = Sh({point}), then Sh(¥/4,) = Sh(¥Y/4,). Using this theorem in
the case where ¥ = (X x {0} uAx[0,1])/Ax {1} and 4,= B= a'(A e
X[0,1]), A, = {a,}, Where a,e 4, and a: Xx{0} v AX[0,1]>Y is the
natural projection, we geb
Sh(X/4) = Sh(¥/a(4 X [0, 1])) = Sh(¥/4,) = Sh(T)
(because Y/B = X/A). It is evident that
Fd(e(4 X [0,1])) = Pd(4;) =0
From Theorem (4.1) we infer
Fi(X/A) = FA(Y) < max(Fd(a (X)), Fd(a(X) ~ Al)grl)
= max(Fd(X), Fd(4)+1).

and  Fd(a(X) ~ 4;) = Fd(4).

This proves (4.18).

Remark. Easy examples show that the fundamental dimension of
the space X/A, where X and A are compacta and X D 4, may be equal
to Fd(X) and also to Fd(4)+1, and it can be less than either of these
numbers, as well.

' Suppose that (X, x,) and (Y, y,) are two pointed compacta. It is
clear that there exists a pointed compactum (Z, #,) such that Z = Z' v 72",
where Z' v Z' = {#} and there exist two homeomorphisms:

W (X, m)>(2' 2) B (X, y0)—> (2", %) -

and

It is evident that the topological properties of (Z, z,) depend only on the
topological properties of (X, z,) and of (Y, y,). Thus we can say (see [4],
D. 234) that the topological type of (Z, #,) is the sum'of the topological types
of (X, ) and of (Y, y,) and we write shortly: (Z, 2)) = (X, a:o)t—;(Y, Yy)-

(4.19) TEHEOREM. Suppose that X, Y are compacta and X ~ Y is of
trivial shape. Then FA(X u ¥Y) = max(Fd(X), Fd(Y)).

The above-mentioned result of Chapman implies that if 4 is a com-
pactum of trivial shape and 4D A4, then Sh(X)= Sh(X/4). Using this
theorem in the case where X, ¥ are compacta and X ~ Y is a compactum
of trivial shape, we conclude that

Sh(Xu Y)=8h(Xw ¥/X~Y), Sh(X)=Sh(X/X A Y),
Sh(Y) = Sh(¥/X A Y).

Hence, Theorem (5.1) is a consequence of the following

icm°
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(4.20) TrmoREM. Suppose that X, Y are non-empty compacta and
(Z; 20) = (X, &) + (¥, y). Then Fd(Z) = max(Fd(X), Fd(X)).
top

This theorem gives a positive answer to the question raised by Pro-
fessor K. Borsuk (see [4], p. 240).

Proof of Theorem (4.20). Theorem (4.1) implies that Fd(Z)
<ma.x(Fd(X),Fd(Y),l). Since the sets X, ¥ are retracts of Z, we
infer that Fd(Z) > max(Fd(X), Fd(Y)). Suppose that Fd(X)= Fd(¥)
= 0. Theorem (2.1) implies that we may assume that X , ¥ are continua
and it is evident that the one-point union of compacta of trivial shape
is a compactum of trivial shape.
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