Periodic actions on the Hilbert cube

by
Raymond Y. T. Wong () (Santa Barbara, Cal.)

Abstract. We study the conjugation problem of two periodic homeomorphisms of
the Hilbert cube. Typically we prove that if each has exactly one fixed point p and
is trivial at p, then they are conjugate. Some applications to the guotient spaces -
are iucluded. In particular we prove that the guotient spaces are Hilbert cube faetors.

§ 1 Let » >1 be a fixed but arbitrary prime number. Let @ denote
the Hilbert cube HJ‘, where J, = J = [—1, 1]. Writing @ as H D,,

=1

a product of 2- dlsks D; (in a natural way), let f, denote the period n
homeomorphism on by rotating each .D, through an angle of 2w/n de-
grees counterclockwise. (From here on j, will always denote such a standard
actior on @.) A homeomorphism f: Q—@ is said to be irivial at a point =
of f provided that for any neighborhood U of #, there exists an open
neighborhood ¥V of @, ¥V homotopically trivial, such that f(V)= V. One
of our main results is the following

TrEOREM 1. Let a: Q—>Q be any periodic homeomorphism of period n
having exactly one fized point (say O = (0,0, ...) @). Then in order thot
a be conjugate to Py it is mecessary and suffwumt that o be trivial at 0.

‘a is conjugate to B, means that there is a homeomorphism k: @@
for whigh %o a= fiy o k. Some rather non-trivial examples of periodic
actions on @ may be constructed using the following result of West ([12]):

(West) The product of a countable infinite collection of (non-degenerate)
compact, contractible polyhedra is homeomorphic with the Hilbert cube Q.

A ready example is given by considering any homeomorphism
h: ¥x Q->Q, where ¥ denotes the triod. Let r be the period 3 homeo-
morphism of ¥ by rotating the arms of the triod. Let ay =7 X f3: ¥ X @
Y xQ and a=h o ayo h% Clearly, a is trivial at the fixed point of «
and is not trivially conjugate to the standard action f; on Q. We do not
know whether every periodic action on @ having exactly one fixed point
(say O € Q) necessarily trivial at 0. However, no example that I know
of might indicate the contrary.

(*) This research was partially supported by NSF Grant GP20632.
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A subset 4 of a space X is a Z-set provided Imterior (4) = @ and
for each homotopically trivial open set U in X, U\A remains homotopic-
ally trivial. A subset X C @ is symmetric provided (z;) ¢ X implies (—z;) € X.
Using Theorem 1 we can construct some interesting non-frivial symmetric
subsets of ¢. Namely, a Hilbert cube may be separated by a symmetric

sub-Hilbert cube so that each of its components is itself a symmetric sub- .

Hilbert cube:

CororLARY 1. Let A = {(m)c@: &, <0} and B = {(m:)cQ: = > 0}
be sub-Hilbert cubes in Q. Then there is a homeomorphism h: Q@—Q - such
that k(4), h(B) and k(A ~ B) are symmeiric subsets of Q.

Proof. Since 4 ~ B is a Z-set in both 4 and B, using Anderson ([1])
we can easily constructh an involution (that is, a period 2 homeomorphism)
a on ¢ having exactly O @ as fixed point and such that « is trivial at 0,
a(d)= A and «(B)=B. By Theorem 1 there is a homeomorphism
h: Q—Q for which hea=p,¢h. b is what we wanted.

Throughout the following let « be any period » homeomorphism of
having exactly O as fixed point and such that a is trivial at 0. Let @,
= N0}, ay= aly, and f,= fnlg, By basic covering theory the orbit
space Qo/a, is an Eilenberg-Maclane space of type (Z,, 1); that is, the
fundamental group my(Qo/ay) of Qofay is isomorphic to Z,, the integers
modulo #, and are trivial in all other dimensions. Furthermore, the pro-
jection P: @Qg—Qy/a, is & n-fold covering map. In what follows let “~”
denote “homeomorphic to”.

THEOREM 2. Qufay 2= Qo/Be. Moreover, if ¢ e my(Qofos) and ¢ e m(Qolfy)
are generators (with respect to any base points), we may choose a homeo-
morphism b so that hy(e)=¢'.

Since the orbit space @/ is an one-point compactification of Q,fa;
(similarly for @/f,), by Theorem 2 we have

THEOREM 3. Qfa =~ Q/Ba.

By Lemma 9.9 of Borsuk [3, p. 118] it is not difficult to vei'ify that
Q/Bn is an absolute Tetract (AR). Hence Q/a is an AR. In fact, using a eri-
terion of near homeomorphism given in Theorem 5 below, we may con-
clude that @/a is a Hilbert cube factor: !

THEOREM 4. QlaX @ =~ Q.

Let X, ¥ be metric spaces. A surjection f: XY is a near homeo-
morplism provided that for each ¢ > 0, there exists a homeomorphism
g: X—Y such that d(g(2), (z))< e for any we X. A special case of
Theorem. 4 is proven by Bamt~Schor1 when a==f§,. Their proof uses
a criterion of near homeomorphism given in Curtis ([7]). In the following
‘we give a somewhat different criterion.

TororexM 5. Let K, L be locally finite simplicial complexes (Mfsc). Let

icm

Periodic actions on the Hilbert cube 205

f: \K|— L] be a surjection. Suppose that for each & > 0, there exisis a triangu-
lation L' of L of diameter less than & such that for each o e L', f~Y(lo]) s
homeomorphic to a compact, contractible polyhedron and Tt {Bd({a])) is
a Z-set in f7Y(ig|). Then id X f: @ X |K|—@Q X L] is a near homeomorphism.

Remark. We shall see that it is unnecessary to assume K to be
a Msc. In some applications, f~*(jo|) is homeomorphic to a n-cell or Q.
Thus f*(jo]) X Q =~ @. In such a case the proof goes through without
using the result of West.

Proof. Let ¢ >0 be given. Let 7 be a large number so that for
Q = Jix Q,, where @, = [] Ji, then mesh(@Q,) << /2. Let f, = id X f: @, X

k>i
X |K|-+@, X |L|. By hypothesis there is a triangulation I’ of L of mesh
less then ¢/2 such that for each g € I, f~(|o}) is homeomorphie to a com-

- pact, contractible polyhedron and f~*(Bd(js])) is a Z-set in f~*(js]). By

West’s theorem f73@;x jo}) = @, xf™(lo]) =@ and by [14], fi{(@:X
x Bdlo]) is a Z-set in fi} QX |o}). Let Ly denote the k-skeleton of L.
We now construet homeomorphisms

gr: 7@ x

inductively as follows. Let g, be any homeomorphism such that for any
0-simplex o e Ly, gyl 1@l is a homeomorphism between Hilbert cubes
NG % |o]) and @, X |o|. Now let o; € L,. Since f; (@, X Bd|sy]) is a Z-set
in the Hilbert cube f7*(@; X |oa}), by Anderson’ s extension theorem ([1])
we can get a homeomorphism of f;(Q, X |oy]) onto @, X |oy| which extends
9ol;70,x Bajeyy Bepeating the comstruction for every oy el, we obtain
1

a homeomorphism g,z f7(Qy X [ Ly])—>@, X |L;| which extends g,. Define
gos 03y --- Similarly and let §: @, X | K|—@; x | L] be the final homeomorphism.
Let g =1dx7: J'x (@ X [E))=>J* X (@, % |L]). g is what we wanted.

Proof of Theorem 4. By Theorem 3 we may assume a = fp.
Write Q as a product of 2-disks D, X Dy X ... Let ¢ denofe the radial con-
traction of D; to O eD;. Denote D= D, X ..xD; and let .()'i =id X
X 648 D*x Dy, —D*x {0}. Thus (in a natural way) @ = lim(D?, ¢4) and
¢; induces mapping : DFYA+1+-D?B" such that Q/fn = lim(DYp?, C7),
where p’ is the aection of p, on the component D°. We verify routinely
that for each ¢ > 1, CF satisfies the conditions of Theorem 5. Hence Cf X
xid: D™+ x Q—~DYpixQ is a near homeomorphism. By Westls
theorem each D?f!x @ is homeomorphic to @ and by M. Brown (|4]),
Hm(DYBix @, 0T xid) =~ Q. Hence Q/f2XQ == and the theorem is
f)}bved.

In an earlier paper ([13]) we obtain similar results in the setting of
fixed point free actions in infinite dimensional normed linear spaces

1%

)@ X | L}


GUEST


206 R.Y.T. Wong

N =~ N*°. Applications similar to that treated in [13] may be anti-
cipated here.

§ 2. The Key Lemma Throughout the following, let a: §—¢ be a homeo-
morphism of period n havmg exactly O as fixed point and such that « is
trivial at O.

A homotopy f= {fi}: Xx[0,1]-Y is limited by a cover U of ¥
provided for each z ¢ X, there exists an Ue U for which f({2}x[0,1])
C U. In such case we also say f, is W-homotopic to f;. Suppose 4C Y
is closed. A cover U of ¥\A is normal (with respect to A) provided each
map g: T\A— T4, g Usclose to id., extends to a map g: ¥— ¥ which is
the identity on 4.

Let P: @->QJa be the pro;ecmon and let p = P(0). We may think
of Qfa as Qofay v {p}, the following is our key lemma.

LEvyA 1. @y X [0, 1)
when a = fn. '

To give a prove we need several lemmas.

LeMma 2. (A) Let M be a Q-manifold and A C M be a closed Z-set.
Then for any open cover s of M there is a closed map f: M—M Us-homo-
topic to id such that fla=id and f(M) is a Z-set of M;

(B) Let X be a compact metric space and A C X be closed. Suppose
fis a map of X into a Q-manifold M such that f(X) is a Z-set. Then there
is a map g: X—>M such that g(X) is a Z-set, gla= fla and g(I\4)
ngld) =

Proof. (A) follows from the usual techniques using [5, Theorem 7.2]
(see for example [15, Lemma 3.3]).

(B) We may write M as M xQ x@ and assume that f(X)C M x
x {0} x {0}. Let h: X—~>@ be any imbedding such that all coordinates
of each h(z) are positive. Let 1: X—[0,1] and 4,: M—[0,1] be maps
satistying A7%(0) = 4 and 1;7(0) = f(4). Define g: ¥->MUXQXxQ by
g(@) = {g(=), Al2) h(=), Al(g(m))h(w)). g is what we wanted.

Levuma 3. Let X be a metric absolute neighborhood retract (ANR). Then
for any open cover U of X, there is a simplicial complex K and maps f: X— | K|,
g: |E|—~>X such that geof is Us-homotopic to id. DMoreover, if X is a
Q-manifold, we may choose g so that cl(g(|K|)) is o Z-set in X.

Proof. The first part follows from Palais [11, Lemma 6.4] and
S. T. Hu [8, p. 111]. As for a proof of the second part, we may use the
tirgt part to obtain f, g, and |K| with respect to an open cover U, of X
sach that U, is a star refinement of W. By Lemma 2 (A) there is a map
gs: X—X, Uy-homotopic to id such that g,(X) is a closed Z-set of X.

" Then g = ¢, o g, satisfies the condition of the lemma.
In the following let P: Q—@Q/a be the projection and let p = P(0).

o~ Qofag X [0, 1). T'his is readily seen to be true '
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LeMMA 4. Let K be o simplicial comples. Suppose f: |K|x {0,1}>Q/a
is a map such that f(p) = |K|x {1} and (f(IK|x {0})) is contained in
a closed Z-set of Qlay.” Then [ has an extension F: |K|X [0, 1]>Q[a such
that ~Y(p) = |K| X {1} and for each neighborhood V of p there is a neighbor-
hood Vy of p such that F({y}x[0,1]) CV whenever F(y,0)eV;.

Proof. Let W be anopen cover of Qy/a,= (@/a)\{p} which is normal
with respect to p. In particular, the diameter of T e U becomes uniformly
small as W approaches p. Given K a finer triangulation if necessary we
may suppose that for each o e K, f(lo], 0) is contained in some member
of U. By hypothesis of p there is a neighborhood system {U};., at O con-
sisting of homotopically trivial open sets U, such that U,= @ and for
all 4, U,,,CU; and a(U;}= U,. Thus ¥V, = P(U,) is a neighborhood
system at p = P(0). Let K, denote the ath skeleton ofK ‘We now con-
struct maps

fir EG X [0,1]>Qa .
inductively as follows. For any 0-simplex, ¢ ¢ K,, let i(c) be the largest
integer for which f(|o]) € Vy,. Let g2 |o]X {0, 1}+Q be any map such
that P o g = flyxpy- Clearly g((jo],0))e Uy,. Since Uy, is homo-
topically trivial, we can extend ¢, to a map, again called g, of lo] X
x[0,1]—-@Q such that g¢;(jo]x [0, 1]) C Um By Lemma 2 we ma.y as-
sume g,(jo} X [0,1]) is a Z-set and ¢g;*(0)*is the point (jo|, 1). Repeating
this process for every o « K, we obtain a map Gy: |K,| x [0, 1] @ satisfying:

(4,) For any oeX,, Gy(lo|x[0,1]) is a Z-set contained in Uy,

where (o) is the largest index containing the point Gy(|o}, 0);

(B)) Po@(z)=f(x) for ze|K|x{0,1}; and

(C) G7H0) = | K| x {1}.

Let fy=P o G;.

Suppose oy € K;. Define a map 1: Bd(ley|x[0,1])=Q/a by Ai(z)

= f(2) for z € o3| X {0, 1} and A(x) = fi(z) for @ « Bd(|gy|) X [0, 1]. Clearly,

-2 lifts to a map g, (that is, P o g, = 1) such that g.(Bd(la|x[0,1]) is

a Z-set in Q. Let i(c,) be the largest integer for which g,(Bd (joy| % [0, 17))
C Uje,y- For reasons similar to that above, we can extend g, to a map,
again called ¢, of |oy| X [0,1]—@Q such that gu(|o;| x[0,1]) is a Z-setb
contained in U, and g;*(0) = |0/ X {1}. Repeating this process we
obtain a map Gy |K;| X [0, 1] satisfying: ‘

(As) For any oy ¢ Ky, Gy(|oy| X [0,1]) is a Z-set contained in Uy,

where i(c,) is the largest index containing GZ(Bd(]all X [0, 1]));

(Bs) P o Gyz) = f(2) for = e |Ky|x {0,1};

(Co) G37(0) = | Ky X {1}; and

(Dy) P o Gz[]z.,[x[o,u =fi.
Let =P oG,
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Define f;, fs, ... analogously and let F: |K|X [0,1]+Q[a be t'he final
mapping. It is routine to verify that F is a continuous extension of f
fulfilling the requirements of the lemma.

Proof of Lemma 1. Let ¥ be a neighborhood of p = P(0), where
P:Q->Qfa is the projection map. By virtue of Lemma 3 there is a simplicial
comples K, maps f: Qoo 1Kl g || —Qofa, and a homotopy F = {f}:
Qax[0,1]>Qfa such that fy=id, filg,s=9°f Fi’(p)=p for all ¢
and el(g(|K)) is & Z-set in Qofap. :

By Lemma 4 there is a homotopy G = {g;}: [ K|x[0,1]-+@Q/a such
that g, =g, G~Y(p) = [K|x {1} and for each neighborhood U of p there
is a neighborhood U, of p such that G({y}x[0,1])C U whenever
6(y,0) ¢ Uy. This last condition implies that the homotopy {g; ° flier
extends to a homotopy {g;} of @/ into itself satistying g = fi, ¢:1(@la)=p
and for all t< 1, (g;)"(p) = p- {fi} follows by {g;} implies that there is
a homotopy H = {lu}: @ax[0,1]>Q[a such that h Y p)=p for all i,
ho— id and %,(Q[a) C V. Thus the restriction H': Qofayx [0, 1]->@ofa, is
a proper map (proper means the inverse of any compact set is compact).

Now we consider Q/a as the subspace @/ax {1} in the produet @/ax
% [0, 1]. Let W = @JaX (r,1] be an open neighborhood of Qlax {1} in
Qlax#,1] and let W, be any neighborhood of (p,1) eQlax {1}. By
what we have. just shown and by the Mapping Replacement Theorem
of [2, Theorem 3.1] there is a proper imbedding A= {4} of (Qofay X {1}) X
%[0, 1] into Qe [0, 1] such that 2, = id, the image H(Qofag X {1}) x
% [0, 1]) & Z-set of Qyfoyx [0, 1] contained in W and Ja(Qolay % {1}) C W,
By Theorem 6.1 of [2] and the manner in which it was proved, 1, extends
to a-homeomorphism % of Q/ax [0, 1] onto itself satisfying h(z) = for
@ e ({p}x[0,1]) v (Qlax [0, 7]) and h(Q[ax {1}) C W,.

Now using the usual techniques (see for example, Theorem 1 of [4])
we can shrink @/« x {1} to the point (p, 1) by means of a surjection ¢: Qlax,
% [0,1]1>QJax [0,1] such that ¢(x) =2 for @e{p}x[0,1], ¢(2)
— {point} for @ = (p,1) and g(a,1) = @fax {1}. Then gy = Ployuxwn
is @ homeomorphism of Qy/a,x [0,1) onto @Qyfay X [0,1].

§ 3. Proofs.

Proof of Theorem 2. Qy/a, and Q,/f, are @-manifolds which are
dominated by CW complexes. Hence they have the homotopy types
of CW complexes [9, 127]. Consider homeomorphisms

Qufay > Qofita X [0, 11— Qofay X [0, 1),

QolBo—> QofBo X 10, 11— Quffox [0, 1) ,

where Ry, h; are given by Anderson—Schori ([2']) and by, I, arve given by
Lemma 1. Let e e 7,(Qofcy) and €' ¢ m;(Qo/B,) be given. Let p: @yfay X [0, 1)
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> Qofog and p’: Qo/fy X [0,1)—>Qy/f, denote the projections and let e
= (kg © hy)y(e) and e; = (R o hy)u(e). By [10, Theorem 4] there is a homotopy
equivalence f: Qyfay—>Qo/f, such that fi(ps(e)) = pi(e). By a result of
Chapman [6, Theorem 5] there is a homeomorphism g: Q,a,x [0, 1)
—+Qo/fo X [0, 1) such that g is homotopic to FXxid: QufayX [0, 1)—>Q/B, X
X [0,1). Thus gu = (fxid)y and we have the following commutative
diagram: )

”1(‘90/%)( [o, 1))—10%‘* 7t @/ )
gg=(/xid)g A

v
ﬂl(Qo/ﬂo x [0, 1)) — 73(Qoffo)
. Dy

Hence gu(e,) = pi™ o fy o pyle) = ef. Let h: Qyjag—>Qg/f, be the homeo-
morphism defined by &= k" s ;" o g o hyo hy. Then

hagle) = (R 0 g™ )ap © g © (B © By)(e)
= (kg o B)E" o gule) = (g o By (e)) = €.
h i3 what we wanted.

Proof of Theorem 1. Since @ is the one-point compactification
of @, = Q\{o}, it suffices to show that there is a homeomorphism
h: Q—>0Q, satisfying Ji o a = B0 h. Let b € @, and suppose 4, A: ([0,1], 0)
—(Qy, b) are maps (preserving base points) such that A(1) = a(b) and
(1) = Bu(b). Let P: Qy—Qofa, and P,: Q,—Q,/B, denote the projections.
Then e= [P oA]em(Qofoy) and e =[P, o 1] e m(Qo/By) are generators.
It follows from Theorem 2 that there is a homeomorphism A': (Qn/ao, P(b))
—(QofBa, Py(b)) such that hi(e) = ¢’. The function k' then induces a fibre
homeomorphism k: (Q,, b)—(Q,, b) satisfying Py oh=h'o P and ko a(b)
= fin o k(D). For each x ¢ Q,, since the set {i(x), 7 o a{z)} e PR’ o P(w)),
there is an 1<<i<<# for which hoa(z)= B0 h(z). Let A;= {xeQ,:
hoa(w) = B o h{z)}. We verify easily that each A, is closed and {4,

are pairwise disjoint. Since @, is connected and 4, =0, 4, = Q,.
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Some properties of fundamental dimension
by

Slawomir Nowak (Warszawa)

Abstract. By a fundamental dimension of compactum X we understand the number
Fd(X) = min(dim ¥: Sh(X) < Sh¥).

The main purpose of this paper is to give characterizations of compacta with
fundamental dimension < n, where n is a positive integer or 0, and to apply these
characterizations to the study of some problems.

By a fundamental dimension of compactum X we understand the
number Fd(X) = min(dim ¥: Sh(X) < Sh(T)).
This notion has been introduced by K. Borsuk in [3] (see also [5],
p. 31). In the theory of shape it has a similar role to that of dimension
in topology. Therefore if is one of the most important invariants of the
theory of shape. T
The main purpose of this paper is to give characterizations of eom-
pacta with fundamental dimension <n (where n is a positive integer
or 0) and to apply these characterizations to the study of the following
problems:
(1) Suppose that all ecomponents of the compactum X have funda-
mental dimension <n. Is it true that Fd(X) < n?
(2) Suppose that X = lLm{Xj,pt™} and Fd(Xz) <n for every
k=1,2,.. Is it true that Fd(X) < n? :
. (8) Suppose that X, Y are compacta. Is it true that Fd(X v ¥)
< max (Fd(X), Fd(Y), 1+ FA(X ~ ¥))? .
(4) Suppose that X, A are compacta and X D A. Is it true that
Fd(X/4) < max(Fd(X), Fd(4)+1)?
(8) Suppose that M is a connected #-manifold and let X C M be
a compactum. Is it true that Fd(X) < n—1?% v
Theorems (2.1), (3.2), (4.1) and (4.18) give positive answers to
problems (1), (2), (3), and (4). Theorem (3.6) gives a partial answer to
problem (5). The above-mentioned characterizations are given in Theo-
rems (1.5), (1.7) and (1.9). The first section contains also Theorem (1.6),
which implies that Fd(X)= min(dim¥: Sh(X)= Sh(Y)). This result
was obtained by W. Holsztyriski as early as 1968.
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