Concerning the shapes of $n$-dimensional spheres

by

Karol Borsuk (Warszawa)

Abstract. It is proved in this note that among compacta lying in the Euclidean $(n+1)$-space $E^{n+1}$ the compacta $X$ with the shape of the $n$-sphere are characterized by three following conditions:

1. $p_k(X) = 1$ and $X$ is acyclic in dimensions $k = 0, 1, \ldots, n-1$.
2. $X$ is approximatively 1-connected.
3. $X$ is an $FANR$-space.

One of the most important problems of the theory of shape is to find for a given compactum $X$ a system of shape invariants characterizing the shape of $X$. The aim of this note is to give a system of shape invariants characterizing the compacta with the shape of the $n$-dimensional sphere among all compacta lying in the Euclidean $(n+1)$-space $E^{n+1}$.

We assume as known the most elementary concepts and theorems of the theory of shape, in particular the notions of the shape $Sh(X)$ of a compactum $X$, of the $k$-dimensional fundamental group $\pi_k(X, x_0)$, where $x_0 \in X$, of the fundamental retraction, of the fundamental absolute neighborhood retract $FANR$, of the movability and of the approximative connectedness in dimensions $k$. The reader may find the definitions of these notions in [1] and in [3]. The homology notions for compacta are understood here in the sense of Vietoris (or, which is equivalent, in the sense of Čech). In particular, $p_k(X)$ denotes the $k$-dimensional Betti number of a compactum $X$.

§ 1. Infinite polyhedra adjacent to a compactum $X \subseteq E^{n+1}$. A set $Y \subseteq E^{n+1} \setminus X$ is said to be an infinite polyhedron adjacent to $X$ if $X \cup Y$ is a compactum and if there exists a locally finite, countable triangulation $T$ of $Y$ with diameters of its simplexes converging to zero. One sees easily that then every neighborhood of $X$ (in $E^{n+1}$) contains almost all simplexes of $T$. A triangulation $T$ of $Y$ satisfying these conditions is said to be appropriate. It is well known that if $A \subseteq E^{n+1}$ is a polyhedron containing in its interior $A$ a compactum $X \neq \emptyset$, then the set $Y = A \setminus X$ is an infinite polyhedron adjacent to $X$. 
Let us prove the following

(1.1) **Lemma.** Let $A \subset \mathbb{R}^{n+1}$ be a polyhedron containing in its interior a compactum $X \neq \emptyset$, but not containing any component of the set $\mathbb{R}^{n+1} \setminus X$. Let $T$ be an appropriate triangulation of an infinite polyhedron $Y \subset A$ adjacent to $X$. Then for every neighborhood $U_0$ of $X$ in $\mathbb{R}^{n+1}$ there exists an infinite polyhedron $Y_\delta$ adjacent to $X$ and satisfying the following conditions:

(a) $Y_\delta$ has an appropriate triangulation $T_\delta$ consisting of almost all simplices of $T$.

(b) $U_0$ contains all $(n+1)$-dimensional simplices of $T_\delta$.

(c) There is a retraction $r: X \times Y \to X \times Y_\delta$.

**Proof.** If $\delta$ is an $(n+1)$-dimensional simplex belonging to $T$, then one easily sees that there exists a finite system $A = A_1, A_2, \ldots, A_m$ of $(n+1)$-dimensional simplices of $T$ such that:

1. If $1 < i < j < m$ then $A_i \neq A_j$.
2. If $1 < i < m$ then $A_i \cap \mathbb{R}^{n+1} \setminus Y = \emptyset$ and $A_i \cap A_{i+1}$ is an $n$-dimensional simplex.
3. $A_m \cap \mathbb{R}^{n+1} \setminus Y$ contains an $n$-dimensional simplex.

One infers, by an inductive argument, that there exists an infinite polyhedron $Y' \subset A$ adjacent to $X$, having an appropriate triangulation consisting of almost all simplices of $T$ and such that $A$ is not contained in $Y'$. It easily follows that there exists a sequence $Y = Y_1 \supset Y_2 \supset \ldots$ of infinite polyhedra adjacent to $X$ such that $Y_i$ has (for every $i = 1, 2, \ldots$) an appropriate triangulation $T_i$ consisting of almost all simplices of $T$ and that $Y_{i+1}$ is a retract of $Y_i$ and that for every $(n+1)$-dimensional simplex $x$ of $T$ there is an index $i_x$ such that $x$ does not belong to $T_{i_x}$. Since almost all simplices of $T$ lie in $U_0$, we infer that one can select an index $i_x$ such that the infinite polyhedron $Y_x = Y_{i_x}$ satisfies the conditions (a), (b), and (c). Thus the proof of Lemma (1.1) is finished.

§ 2. A lemma on extending maps. Now let us prove the following

(2.1) **Lemma.** Let $X$ be a movable compactum lying in a space $M \in AB(3)$. If $X$ is approximately 1-connected and acyclic in dimensions $k = 0, 1, \ldots, n-1$, then for every neighborhood $U$ of $X$ in $M$ there exists a neighborhood $U_0 \subset U$ of $X$ (in $M$) such that if $U_0$ is a closed subset of a space $U$ such that $\partial X_0$ is a polyhedron of dimension $< n$, then every map $g: G_0 \to M$ with all values in $U_0$ can be extended to a map $\hat{g} : G \to M$ with all values in $U$.

**Proof.** If $n = 0$ then $\partial X_0$ is a finite set. Setting $U_0 = U$, we get the required extension $\hat{g}$ of $g$ if we assign to every point $x \in \partial X_0$ an arbitrary point $\hat{g}(x) \in U$.

Now let us assume that $n = m+1$ and that for $n = m$ the lemma holds true. Let $T$ be a triangulation of the polyhedron $\partial X_0$ and let $X'$ denote the union of $G_0$ and of all simplices of $T$ with dimensions $< m = n-1$. By our hypothesis, for every neighborhood $U_0$ of $X'$ (in $M$) there exists a neighborhood $U_0$ of $X$ (in $M$) such that every map $g: G_0 \to M$ satisfying the condition $g(\partial G_0) \subset U_0$, can be extended to a map $\hat{g} : G \to M$ with all values in $U'$.

Since $X$ is movable and approximately 1-connected an acyclic in dimensions $k = 0, 1, \ldots, n-1 = m$, we infer from the "modified theorem of Hurewicz" proved by Mrs. K. Kuperberg [3], p. 26, that for every point $x \in X$ the fundamental group $\pi_1(X, x_0)$ is trivial and consequently (see [3], p. 191) the compactum $X$ is approximately $m$-connected. This means that if $U$ is an arbitrarily given neighborhood of $X$ (in $M$) then the neighborhood $U_0$ of $X$ can be selected so that every map of the boundary of any simplex $G$ of dimension $m+1 = n$ into $U'$ has a continuous extension onto $U$ with all values in $U$. It follows that every map $g: G_0 \to M$, satisfying the condition $g(\partial G) \subset U_0$, can be extended to a map $g' : G \to M$ with values in $U'$, and the map $g'$ can be extended onto each $n$-dimensional simplex $A \subset T$ to a map with all values in $U$. Thus we get a map $\hat{g} : G \to M$ being an extension of the map $g$ and satisfying the condition $\hat{g}(\partial G) \subset U$. Hence the proof of Lemma (2.1) is finished.

§ 3. **Main theorem.** Now let us pass to the main goal of this note:

(3.1) **Theorem.** The shape of a compactum $X \subset \mathbb{R}^{n+1}$ is the same as the shape of the $n$-dimensional sphere $S^n$ if and only if three following conditions are satisfied:

1. $\pi_n(X) = 1$ and $X$ is acyclic in dimensions $k = 0, 1, \ldots, n-1$.
2. $X$ is approximately 1-connected.
3. $X \times S^1$ is FRANR.

**Proof.** It is clear that $X = S^n$ satisfies the conditions 1, 2, and 3. Since these conditions are shape invariants, we infer that each compactum $X$ with $\text{Sh}(X) = \text{Sh}(S^n)$ satisfies them.

Now let us assume that $X$ is a compactum lying in $\mathbb{R}^{n+1}$ and satisfying the conditions 1, 2, and 3. By 1 the set $\mathbb{R}^{n+1} \setminus X$ has two components: one bounded component $G$ and the other unbounded $G'$. Consider two $(n+1)$-dimensional simplices $A, A'$ lying in $\mathbb{R}^{n+1}$ and such that $A \subset G$ and that $X$ lies in the interior of $A$. Let $\partial A$ denote the interior of $A$. Then the set

$$A = A \setminus \partial A$$

is a polyhedron containing $X$ in its interior and the boundary $\partial A = \partial A \setminus A$ of $A$ is a deformation retract of $A$. It follows that

$$\text{Sh}(A) = \text{Sh}(\partial A) = \text{Sh}(S^n).$$
The set \( Y = A \setminus X \) is an infinite polyhedron adjacent to \( X \). Let \( I \) be an appropriate triangulation of \( Y \). By \( 3^8 \) there exists a compact neighborhood \( U \subset A \) of \( X \) in \( E^{n+1} \) and a fundamental retraction
\[
t = (\tau, U, \mathcal{U})_{E^{n+1}, E^{n+1}}.
\]

By Lemma (1.1) there exists an infinite polyhedron \( Y_0 \) adjacent to \( X \) and satisfying the conditions (a), (b) and (c). Let \( U_0 \) be a neighborhood of \( X \) (in \( M = E^{n+1} \)) satisfying the conditions of Lemma (2.1). Let \( C_0 \) denote the union of the set \( X \) and of all simplexes of the triangulation \( \mathcal{U} \) of \( Y_0 \) (given by the condition (a)), lying in \( U_0 \). Setting
\[
\mathcal{C} = X \cup Y_0,
\]
we infer by the condition (b) and by Lemma (2.1) that the inclusion map \( g: C_0 \rightarrow E^{n+1} \) can be extended to a map \( \tilde{g}: X \cup Y_0 \rightarrow E^{n+1} \) such that
\[
\tilde{g}(X \cup Y_0) \subset U.
\]
Setting
\[
f = \tilde{g} g,
\]
we obtain a map \( f \) of the set \( A = X \cup Y \) into \( E^{n+1} \) and all values of this map belong to \( U \). Since \( A \) is a closed subset of \( E^{n+1} \), we can extend \( f \) to a map
\[
\tilde{f}: E^{n+1} \rightarrow E^{n+1}.
\]
Then \( \tilde{f}(A) = f(A) \subset U \) and \( \tilde{f}(x) = x \) for every point \( x \in X \). Setting
\[
\tilde{r}_x = \tilde{r}_x \tilde{f}
\]
for every \( x = 1, 2, \ldots \),
we get a sequence of maps \( \tilde{r}_x: E^{n+1} \rightarrow E^{n+1} \) such that
\[
\tilde{r}_x(x) = \tilde{r}_x(x) = x \quad \text{for every point } x \in X.
\]

If we recall that \( r \) is a fundamental retraction, we infer that for every neighborhood \( V \) of \( X \) (in \( E^{n+1} \)) there exists a neighborhood \( W \) of \( U \) in \( E^{n+1} \) such that
\[
\tilde{r}_x(W) \subset W \quad \text{in } V \text{ for almost all } x.
\]

But since the values of \( f \) belong to \( U \) and since \( \tilde{f} \) is an extension of \( f \), we infer that there exists a neighborhood \( W \) of \( A \) (in \( E^{n+1} \)) such that \( \tilde{f}(W) \subset W \). Consequently
\[
\tilde{r}_x(W) = \tilde{r}_x \tilde{f}(W) \quad \text{in } V \text{ for almost all } x.
\]

Hence \( \tilde{r} = (\tilde{r}_x, A, X)_{E^{n+1}, E^{n+1}} \) is a fundamental retraction of \( A \). It follows that

\[
\text{Sh}(X) = \text{Sh}(A) = \text{Sh}(S^n).
\]

Moreover \( \text{Sh}(X) \) is not trivial, because \( p_0(X) = 1 \). However it is known (11, p. 359) that there exist only two shapes \( \text{Sh}(S^n) \), actually the trivial shape and \( \text{Sh}(S^n) \) itself. Hence \( \text{Sh}(X) = \text{Sh}(S^n) \) and the proof of Theorem (3.1) is finished.

\section*{§ 4. Remarks and problems}

The condition that \( X \) lies in the space \( E^{n+1} \) (appearing in Theorem (3.1) is not a shape invariant. However it is easy to modify the formulation of Theorem (3.1) in order to give to it a purely shape-theoretical form:

Let us assign to every compactum \( X \) a number \( e(X) \) defined as follows:

If there exist natural numbers \( k \) such that the space \( E^k \) contains a subset \( Y \subset \text{Sh}(X) \), then \( e(X) \) is the minimum of all such numbers \( k \).

If none of spaces \( E^k \) contains a subset \( Y \subset \text{Sh}(X) \) then \( e(X) = \infty \).

It is clear that \( e(X) \) is a shape invariant and that \( e(X) \leq n \) implies that \( X \) is acyclic in all dimensions \( \geq n \). Using this number \( e(X) \), we can re-formulate Theorem (3.1) as follows:

\begin{enumerate}
    \item[4.1] \textbf{Theorem.} In order \( X \subset \text{Sh}(S^n) \) it is necessary and sufficient that \( X \) is a compactum satisfying the following conditions:
    \begin{enumerate}
        \item \( p_0(X) = 1 \) and \( X \) is acyclic in dimensions \( k = 0, 1, \ldots, n-1 \).
        \item \( X \) is approximatively 1-connected.
        \item \( X \subset \text{FANR} \).
        \item \( e(X) = n+1 \).
    \end{enumerate}
\end{enumerate}

In this formulation only shape-invariants are involved.

The following problems remain open:

\begin{enumerate}
    \item[4.2] Does Theorem (3.1) remain true if one replaces in it the condition \( 3^* \) by the weaker one, that \( X \) is movable?
    \item[4.3] Does Theorem (4.1) remain true if one replaces in it the condition \( 4^* \) by the hypothesis that \( X \) is acyclic in all dimensions \( \geq n \)?
\end{enumerate}

This last problem may be considered as a question corresponding in the theory of shape to the famous conjecture of Poincaré.

\begin{thebibliography}{1}
\end{thebibliography}
K. Borsuk


Envoi par la Rédaction le 17. 5. 1973

LIVRES PUBLIÉS PAR L'INSTITUT MATHÉMATIQUE DE L'ACADÉMIE POLONAISE DES SCIENCES


MONOGRAFIE MATEMATYCZNE

47. K. Borsuk, Multidimensional analytic geometry, 1968, p. 443.

LES DERNIERS PASCUCLES DES DISSERTATIONES MATHEMATICAE

CX. A. Jankowski, Algebras of the cohomology operations in some cohomology theories, 1974, p. 49.
CXI. D. Simson and A. Tyc, Connected sequences of stable derived functors and their applications, 1974, p. 71.
CXIV. T. B. Flannagan, Set theories incorporating Hilbert's ε-symbol, 1974, p. 32.