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Extension of closed mappings
by
Krzysztof Nowinski (Warszawa)

Abstract. The problem of the extension of closed mappings from closed sets s
studied. The notion of the class ACK (C) where C iz the class of all metrizable or para-
compact spaces is introduced as follows:

DEFINITION 1. B  AER (C) if and only if for every locally compact space X from €
and every A closed in X and homeomorphic to R there exists a closed retraction
s X4,

TueorEM 1. The followmg conditions are equivalent: (1) B ¢ AER(C), (i) B « UR(C)
in the sense of Borsuk [1], B is locally compact and there exists a closed retraction ry: BX
X [0, 1)=Ex {0}.

I X and Y are locally compact spaces from € then the following condition is
necessary for the existence of the closed extension over X of the mapping f: A—>Y
defined on the closed 4 ¢ X and closed:

() if yi(s) = yi(y) for o,y epANA  then f(x)=2f(¥)
where y is the Freudenthal compactification and i: 4 X is the inclusion.

The main theorem of the paper is

TaroreM 2. If X, ¥ are locally compact, X « C and ¥ ¢ ATR(C) then the condition
(%) is also. sufficient for the ewistence of a closed extension F: XY of f: A->Y. Some
other facts about the class UCR(C) are also proved.

This paper is devoted to the study of the extensions of closed
mappings from closed sets. We introduce the class YER, which plays
the same role with respect to closed mappings as the usual class AR with
respect to continuous mappings. Some characterizations of the class ACR
are given and the analogon of the Tietze-Urysohn theorem is proved.

We now recall some definitions:

DEFINITION 1. The mapping f: X—¥ is closed if and only if for every
subset A closed in X its image f(4) is closed in Y.

DEFINITION 2. The mapping f: X—=Y is perfect if and ouly if it is
closed and for every y « ¥ the set f~'(y) is compact.

If A= {4.),.s is the family of mutunally disjoint subsets of the
space X, then we denote by X/ the space obtained by matching to
a point every set A, which means the quotient space X/R, where Ry
if and only if =1y or #,yeA, for some se .
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It (#X,r: X->rX) is a compactification of the space X then we
denote shortly by »X\X the remainder rX\r(X).

Moreover, we denote by I the class of all metrizable spaces and
by P& the class of all paracompact spaces.

All spaces are assumed to be Hausdorif (T,) and all ma,ppm S are
assumed to be continuous.

For all notions and notations not defined here see [2] and [3].

DEFINITION 3. We say that B ¢ HER(C) if and only if for every locally
compact space X from the class C and every subset 4 of X closed in X
and homeomorphic to R there exists a closed retraction 7: X— 4. The
class C may be the class I or PE.

Remark. The condition of the local compactness of the space X is
introduced since in the opposite case the one-point space would be the
unique compact space belonging to ACR(M) and ACR(PC), as is shown
in the following

ExAMPLE 1. Let W= Ix N/{{0} X N, {1} x N}, and for every sub-
seb. M of N and every k > 2 we denote by W, the subset [1/k, 1—1/k] X M
of W. It is clear that Wy, = Wy, for any M and k. Now, let R be the
compact space containing two distinet points p and g. We denote by X the
space ROW/{{[{0}x N1, p}, {[{L} X N1, ¢}}. It is easy to check that the
space X is paracompact and if B is metrizable, then so is X. We ghall
prove that there is no closed retraction from X onto R. In fact, assume
that 7: X— R is a closed retraction. We put M, = N and write 4, = R v
v Wy,s. The set 4, is closed in X and locally compact, hence the
mapping 7 € 4, is closed and we can apply ([6], Theorem 2), obtaining
a compact set Z C A, such that 7(4,\Z) is finite. It is clear that the set
ANZ contains infinitely many components of the set W,.,, and hence
there exists an infinite set M, C M, and a point a ¢ R such that (W g)
= {a}. Assume now that we have defined such an infinite set M, "ﬂhafmt
7(Wag,n) = a. We can apply the arguments given above to the set 4.,

Mani1 '~ B obtaining a new infinite set M., C M, such that
{Wagys1m+2) 15 finite and thas equal to {a}. This completes the description.
of the inductive step. We put D = | Wy, ,. It is clear that #(D)= {a}

8, R=§

am-l Pyqe D.' But p and ¢ are distinct, hence either p ¢ »(D) or ¢ ¢ r(D).
This contradicts the continuity of » and therefore there is no closed re-
traction from X onto R.

We now prove the first main theorem of this paper.

TesorEM 1. If C is the class M or PC, then the following aondmons
are equivalent:

(1) B «ACR(C),

(ii) B e YR(C) and there exisis o closed retraction ry: Rx [0,1)->R X {0}.
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Proof. The implication (i) = (ii) is obvious.

We now prove the implication (i) = (i). Assume first that R is com-
pact. Let R C X «C and let Up be a neighbourhood of R with compach
closure existing since X is loca]ly compact. Denoting by ¥ the space obtained
by matching to a point the set X\ Uy, we obtain a compact space from the
class G containing B as a closed subset. Let r: ¥—R be some retraction
and let p: XY be the quotient map. It follows from ([6], Proposition 1),
that the composition 7= 7 o p is the desired closed vetraction. Observe,
that, in fact, we prove here that every AR (C)-space in the sense of ([1],
V. 1) belongs to ACR(C).

Assume now that R is not compact. As usual, we denote by y.X the
Freudenthal compactification of X. Since B is connected, y(RX[O,l))
= w(Rx[0,1)) (see [6], Proposition 8) and hence yB = oR. Agsume
now that R= EC X ¢C and X is locally compact. It is well known

([2], Theorem 1.9.10.5) that X can be’expressed as the sum @ X;, where
se8

X, is o-compact for every s ¢ §, which means that X, = U Ay aud every
n=1

A, is compact. Now, since R is connected, there exists an s, € § such

that R C X,. Henee, if r': X, —R is & closed retraction, then taking any

@, e B and 'puttmcr 7| X, = 1" and 7( UX,) = {m,} we obtain the closed

retraction r: X—E. So, without loss of generality, we can assume that
X is o-compact. It is easy to check that in this case the remainder {w}
= X \X is a G,-set in »X and there exists a continuous funetion g: X T
such that {o} = g~*(1). Now, let J: yX—>wX be the extension of identity
over the Freudenthal compactification yX and let G =g od. It is clear
that G~Y1)= yX\X and the mapping b= G{X: X—>[0,1) is perfect.
Since R e AR(C), there exists a retraction r: X—+RE. The mapping 7 can
be corrected to a closed retraction 7: X—R as follows:

Let U = {V,}>, be a locally finite covering of E by open sets with
compact closures. We put F, = V. It is clear that the family 57 = {F oy
is a locally finite covering of R.Moreover, we can refine the covering U to
the covering #= {4,}o., such that A,= A, CV, for every n (see [3],
Lemma 1 to Theorem 5.1.3). We now select for any » and for every = € 4
a set U" open in X and such that U" iz a compact subset of »~HFa). We
take as U, the sum of some finite subfamily of {Uw}zs 4, covering An,
Tt is clear that the family W = {U,)2, satisfies the following conditions

(i) U, is compact for every n,
(i) Un Cr~Y(Fn) for every m,

(i) U Tad B

n==1
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We write U = G U, and we define f: B v (X\U)—I as follows:
foR) = 0, fi| X\U =nhTX\U, where b is defined above. Using the Tietze
extension theorem, we can extend f, to the mapping f: X—I satisfying
the condition f(U)C (0,1). We define the mapping F: X—>Rx[0, 1)
by the formula F(z)= (T(m), f(@)). The wapping f|X\U is perfect and,
as is easy to verify, the mapping F[X\U is also perfect (see [3],
Problem 3.X). Assume now that A is a closed subset of U. Then I4)

= GF(A nﬁ). But F(A ~ ff;) is compact and it is contained in Fy, x
x‘EOjl). Hence F'(4) iy the sum of a locally finite family of compact
sets and therefore F(A) is closed. 8o F|U is closed, and, combining this
with the above result about the mapping F|X\U. we infer that the
mapping F is closed. The mapping 7 == 7, o F is the required closed re-
traction. In fact, 7 is closed as the superposition of two cloged. mappings r,
and F and simultaveously F(z)= (», 0) for # ¢« B and, since #,|R x {0}
= idg, the mapping 7 is a retraction.

This completes the construction of a closed retraction of X onto R
and the proof of Theorem 1.

We now give some examples of non-compact spaces belonging to
the class YCR.

Exawere 2. Let B be a closed Euclidean half-space, which means
that B = {(1,..., %) e B": », >0}, The space B belongs to UACRK(IM)
and ACR(PR). In fact, sinee R is a retract of B, we have R « AR(M)
cand R e AR(PC) (see [1], Theorem IV.2.1). We define the retraction
7t BX[0,1)>R X {0} by the formuala

@1y oy Tny 1) = (@ F (1) @y, ooy @, 0)

Tt can easily be checked that 7, is closed and hence R satisties condition (ii)
of Theorem 1.

ExamPrp 3. Let B, e UCR(C) and let RC R, be a c-retract of Ry,
that is, let B be the image of R, under a closed retraction #. Then
E < ACR(C). In fact, let X = R[0, 1) u R, x{0}. It .is clear that if R, is
locally compact, then so is X and X ¢ C. Let r,: X—R, and 7yt By—R be
closed retractions. The mapping r, = r, o 7, is the required closed retrac-
tion from Rx [0, 1) onto R. On the other hand, R «UAR(C), as iy shown.
in [1], IV.2.2.

We now give some corollaries to Theorem 1.

COROLLARY 1. If R is a non-compact space from the class ACR (M)

or ACR(PE),. then the retraction ry: Rx[0,1)—R Sfrom the condition (ii)
of Theorem 1 is perfect and yR = wR.
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The proof follows immediately from the first part of the proof of
Theorem 1 in the case of a non-compact R and the well known properties
of perfect mappings, (see [3], Problem 3.X).

CorOLLARY 2. If R, is an UR(IM)-space for m=1,2, ..
PR, c ACR ().

n=1
CoROLLARY 3. If Rs is an AR(PE)-space for every sef, then
P R; e UCR(PEC).

geS

., them

COROLLARY 4. If Ry e UR(M) for n=1,2, ..., P R, is locally compact
n=1

and Br e NER(M) for some non-compact Ry, then ;; Ry, e UER(IN).

n=1
Proof. It is clear that P B, < AR(IM) (see [1], Theorem IV.7.1), Lot
=1

n=
75 Bex[0,1)—Rrx {0} be the closed retraction from condition (i) of
Theorem 1. It follows from Corollary 1 that r; is perfect and hence, by
([2], Corollary I1.10.2.3) the product

rgX P idp: P Ryx[0,1)—= P R,x {0}
n#Ek

n=1 n=1
is theé perfect retraction required in condition (i) of Thevrem 1.

COROLLARY 5. If Rs e UR(PC) for every s e 8, P R; is locally compact
se8
and paracompact and B, ¢ UER(PC) is non-compact for some s, < S, then

P R, e ACKR(PE).
8eS

The proof is quite analogous to the proof of Corollary 4.

We can now formulate and prove some facts about the extension
of closed mappings from closed subsets of locally compact spaces. As
usual, we denote by C the class of all metrizable spaces 9 or the class
of all paracompact spaces PC.

We define first the notion of an admissible pair of closed mappings.

DeriNiTION 4. Let both X and Y be locally compact spaces. Lef
i: A—2X be a closed embedding (we can regard A as the closed subset

. of X) and let f: A—Y be a closed mapping. The pair (¢, f) is admissible

if and only if the following condition is satisfied:
(%) if  yi(s) = yi(y) for z,y epANA, then yf(x)=¥f(y).

Observe that condition (x) is equivalent to the existence of a mapping
g: yX\X—>yY such that yf|yA\A = g o (pi|yA\A4). This follows from
the compactness of the set yANA. :

To check that condition (%) is not always satistied, it is sufficient

" 40 observe that the pair (i: B'—E?, f = id: B'->TF"), where i(z) = (2, 0),
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is not admissible. Tt is easy to verify that both ¢ and f are closed and
that yi(yENEY) = {0} = yENE* = wE N (see [6], corollary to Propo-
sition 8) and simultaneously yf(yBNE") is a two-point set. :

Tt is clear that if y¥ = 0¥ and f: A-Y is perfect, then for every
closed embedding i: A—X the pair (¢,f) is admissible. In fact, if 4 is
compact, then there is nothing to prove, and if A iy non-compact, then
yf(pANA) = {0} = yY\Y¥, hence condition () is satisfied for every closed
embedding i: A—X.

We first prove the following

PROPOSITION 1. Let it A—~X be a closed embedding into a locally
compact space X from C and let f: A be a perfect mapping into the space
Y e UCR(C). Then f can be extended to o closed mapping F: XX,

Proof. We denote by X u, ¥ the space X @ X/{f(y) v W} yer and
by ¢: X®Y->X v, ¥ the standard quotient mapping. We prove that the
mapping ¢ is perfect. First, let # ¢ X, ¥. Clearly, if @ ¢ X\ A then @Y (@)
= {w} and if @ ¢ ¥ then ¢~}(#) = {w} U f~(w); hence in both cases ¢™(x) is
compact. Now, let M be a closed subset of X @Y. It is clear that o (M)
=pMnX)up(M~Y) and o(M ~n¥)= M ~Y is closed in X v, ¥.
So we can regard only the case M C X. To verify that p(M) is closed
take a point weX u, YN\g(M n X). It wep(TN\f(4)), then wel
= (X v; IN@(X) CX vy T\@(H) and U is an open neighbourhood of .
I @ e p(XNA), then v U = p(X\(4 v M), and if v eg(d), then we T
= p(T\f(H)). It is easy to check that in all the cases described above
U is an open neighbourhood of = not intersecting (M) and that they
are all the cases possible for o ¢.¢(M). Hence we have proved that the
mapping ¢ is perfect. Therefore we infer, using the results of [4] and [5],

that X w; ¥ «C and, as can easily be verified, X v, ¥ is locally compact..

Tt now remains to observe that ¥ is closed in X v; ¥ and hence there
exists a closed retraction 7: X v, ¥—Y. The superposition F =7 o p| X
is the required closed extension of f. In fact, if 4 <A then ¢(w)= f(«)
¢X U, Y, and hence rop(w) = f(#). On the other hand, F is closed as
a superpasition of two closed mappings.

We can now prove the main theorem of this paper. .

TeBoREM 2. Let (i: A—X, f: A—Y) be an admissible pair. If X eC
and ¥ « UER (C) then f can be extended to o closed mapping F: XX,

Proof. Notice first that since both 4 and X are locally compach
and paracompact and the mapping ¢ is a closed embedding, it is easy
to check that yi(yAN\A) is a closed subset of the compact, zero-dimensional
space yX\X. (ind(yX\X) = 0 = Ind(yX\X) by [3], Theorem 7.1.10).

Notice now that since Y is locally compact, paracompact and con-
nected (see [1], Corollary IV.2.3), it is, by [2], Theorem 1.9.10.5

icm
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(=]
o-compact, i.e. Y= |JZ, and every Z, is compact, Moreover, since
n=1

every compaet subset of a locally compact space has an open neighbour-
hood with compact closure, we can obtain a family {R.};., of compact
sets such that

(i) R, CIntR, ., for every =,

[
(i) ¥ = J Rn,
n=1

putting B, = @ and taking as Ry the compact closure of the neighbour-
hood Ug,, y z,- .

Write Fy, = f~}Ry) and let fo: Fa—> R, be the restriction of f. Since
fn is closed and R, is compact, we obtain by [6], Theorem 2 compact

~ ~ » ~
sets Gy C Py such that f,(F,\G) is finite for every n. Denote Gn = || G»

k=1
and let fu(Fn\Gn) = {U1; ..., Ym}. Clearly, we can assnme that f*(ys) is
not compact for every n and i. Now, since f,(F,\G,)C fpr(FpiN\Gpis),
- o]

we can order the set {4y, ¥, ...} = U falFa\Gn) = f(AN\ | Gx) in snch
n=1

n=1
a manner that the function n(k) = min{n: yz C IntR,} is not decreasing.
Write Bp= yf~Yyx) ~ (y4A\4) and C= yi(Bx). It follows from the
definition of the admissible pair that the sets U are closed and mutually
disjoint.
‘We now prove that there exists a family {C}i.; of mutually disjoint
open-and-closed sets in yX\X such that Ox C Oy for every k. Take

Vi = XN (yANG) It Bygy © {1 1 # %, n(0) < n(®)}) -

Clearly 0: C Vi and, since for every % there exists only a finite number
of such I that n(l) < n(k), the set V is open and Vi ~ 0, = @ for I # k.
We define the sets Op inductively. Let O; be an open-and-closed subset
of yX\X such that €, C 0; CV,. Such a set exists since Ind (yX\X) = 0.
Assume now that we have defined the sets Cy, ..., Oy, and take ag Cy
an open-and-closed subset of yX\X satistying the following condifion:
k—1
O C Cx C Vi U Ci. The family {0}, satisfies the above-mentioned
=1
conditions. '
We can now construct a family {U,1%., of open subsets of y.X satis-
tying the following conditions:
) UinUy=@ if i #],
(1) C:C Uy
(iii) Fr(U;)CX
(iv) f(Us n A) = {33}
The inductive construction ot the sets U; is rather complicated and
proceeds as follows:

for every 7.
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Put
H, = (pXNIN0) v

w i (f )y ENIn(By) © e 8 # 1, m(i) = n(1)})) © Gy .

It follows from the definition of €, that the set H, is-closed and, clearly
H, ~ 0, =@. Moreover, (; v H,DyX\X. Since yX is normal, there
exists a set Uy, open in »X and such that ¢, C U; C T, C yH\H,. I} is
easy to check that the set U, satisfies conTitions (ii)-(iv) given above
and. moreover,

7~ Uloeo yilon w) = 0.

Assume now that we have defined the sets U, .., U,_, satisfying
conditions (i)-(iv) and, moreover,

li

k-1 ©
U Ten U0 vilys w0
Similarly to the above, we take the set
Hy, = (pXININO,) ©

g.

Je—1

© L) T Y IO (Rygy) © {a: 6B, (i) < n(R)})) < Gy o U T;
fe=]

It is easy to check, using the above arguments, that the set Hy is closed,
O = (yXNX)\H; and that

UW(’VJC) (l/z))f‘Hk—@
=

3

We can hence select a set U open in yX and such that Oy C Uy
C T, CyX\Hz. It is easy to check that the tamily {U,, ..., Uy}, satisfies
all the conditions (i)-(iv) and

k oo
UTin U Cvyi(yf)™ ) =9,
=1 T=k4-1
which completes the description of the inductive step.
-If ig clear that the sets Uy, U,, ... satisfy the condition (i)- (1v)
Now select for every 4 a point ;e 4 ~ T, and define the space X as
the guotient space X/{T,}2,. We prove that X is locally compact and
X < €. Notice first that the standard quotient mapping ¢: X—X is closed
a8 we can check considering the extension of @ over yX and using [6],

Theorem 5. On the other hand, the space X' = (X Cj Uy) o {wy, &, ..}
<1 ’
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is a closed subset of X: hence X’ is locally compact and belongs to the
class C. It is clear that X = X'J{Br(Ts) v {@}}2, and, the fibres of the
quotient mapping ¢’: X'—X are either singular points or compact sets

Fr(Us) v {mi},hence the mapping ¢’ is perfect. It follows then from the results
of [4] and [5] that & < C and, as can easily be verified, X is locally compact.
Notice now that it follows from condition (iv) given above that there
exists a mapping F: 4 = ¢i(4)->Y such that f= fo @ . It is sofficient
to put f(l2]) = f(e) it @ epi(AN{z, [@], ..} and F([@a]) = f(@m) for

every #. It is clear that f is closed and, moreover, since

TR =14 Fn)\ LJ< (TN{m) {Fr(Ts) ni(4) v @} i: nenen
1 <N

and the closure of U; in X coutain all the image yi(y4AN4), T YRa) is
compact for every n. It follows that the mapping f is perfect and we can
apply P10p0s1t10n 1 to obtain a closed extention F: X—¥ of the
mapping f.

It now remains to put F = ¥ o and to observe that the mapping
F is the required closed extension of f.
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