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Representation of functions of two variables
as sums of rectangular functions, I

by

Roy O. Davies (Lafayette, Ind.)

Abstract. It is shown that CH implies that every real f(z,%) can be written
3 gn(@)ha(y), with summation from I to N (», )< co, and that such a representation
for exp(xy) implies CH and is impossible with a fixed number of non-zero terms.

In 1952, Michael P. Drazin asked me what was essentially the follow-
ing question: does every real-valued function f of two real variables
admit a representation in the form

N1

(1) @y =) gu(@)ha(y)?

n

[
—

The main aim of this paper is to present the proof (which I found in 1954)
that if the continuum hypothesis is assumed then the answer is affirmative,
and indeed there is a representation (1) with the property that for each
point (z, y) €« R* there are only finitely many non-zero terms in the series
(Theorem 1). Moreover it will be shown that conversely this proposition
implies the continnum hypothesis (Theorem 2); unfortunately, I see no
way of deciding whether this converse remains valid when the finiteness
assertion is omitted. Finally, it will be shown that “finitely many” in
Theorem 1 cannot be replaced by any fixed integer N (Theorem 3).

It is easy to see that for non-negative f one cannot demand a re-
presentation (1) with non-negative g’s and h’s: for example, this is impos-
sible in the case of the characteristic function of the diagonal, 1— sgnjz—y|.
It is hoped to discuss the possibility of representing a measurable f with
measurable ¢’s and A’s in a subsequent paper.

TerorEM 1. If X, ¥ are sets of cardinality x,, then given any function
fr XX Y~>R there ewist two sequences of functions

gn: X—>R, hy: YR (n=1,2,..)

such that (1) holds for every (w,y)e X X ¥, and moreover for each (x,y)
€ XX Y there are only finitely many mon-zero terms in the series.
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Proof. It will be convenient to regard a sequence of real-valued
functions from a set £ to R as a function from Nx E to R, and to de-
note by 3™ a sum in which there are only finitely many non-zero terms.
Instead of (1) we shall thus write :

o0

) f@,9)= 3" g(n, o)h(n,y) .

n=1
-

We may and shall suppose that X and ¥ are disjoint. List the ele-
- ments of X ¥ as a transfinite sequence (,) of type w,, and for each
ordinal o << w; let )

Z,={l 0<p<a], X,=Z,nX, Y. =42,n7.

Denote by  the set of all ordered pairs of real-valued functions (g, h)
satisfying the following conditions: for some ordinal a = a(g, k), with
0<a<w, we have domg=NXX,, domh=Nx ¥,, and (1’) holds
for (z,y) e X, X ¥,, and in addition .

(a) given any two disjoint finite subsets K, X’ of X, and any finite
subset Z of Y, there exist infinitely many values of n for which simul-
taneously '

gn, ) =0 (§cK), g(n,&)=1(<cK), Nin,n)=0 (yeL),

(b) given any two disjoint finite subsets I, L’ of ¥, and any finite
subset K of X,, there exist infinitely many values of n for which simul-
taneously

hn,n)=0 (nel), hin,n)=1 (g eL’), gn,8=0 (EcK).
Partially order ¢ by the relation j defined as follows:
(9,0 < (¢, ) it gCy & RCH

(that is: ¢, b” are extensions of g, h respectively). Now (3, ) ¢ 7, and
every totally ordered subset @ of T has an upper bound, namely

(U{g: (g,h)eQ}, {J{h: (9’771')50-})7

and therefore by Zorn’s Lemma ¢ contains a maximal element (g, k).
It will now be sufficient to show that a(g, k) = w, since then domg
=NxZX, domh=NxXY, and (1)) will hold for every (z,y)e Xx Y.
Suppose if possible that a(g, k) = a<< w;: we shall show how to
extend g or h. The element {, belongs to X or ¥; suppose the former.
The sets X,, ¥, are countable. Consequently we can list the elements
of ¥, in a finite or infinite sequence
(2) , Y., 7,, ..

7
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and we can form an infinite sequence
(3) ('KZl’K{ILIYL{)J ('KZ!'K;’L27Lé)} b

consisting of all quadruples of which the first two members are disjoint
finite subsets of X, and the last two members are disjoint finite subsets
of ¥,; each such quadruple being repeated infinitely often in the
sequence (3).

Now define four infinite sequences of positive integers by induction
as follows: ry=1, and for ¢=1,2, ...

P;=r;, i y; is undefined (i.e. if ¥, has i—1 or fewer elements),
and otherwise p; is the least integer p >7, ; for which

(4) Mp, )= .= h(p,9;20) =0 and  &(p,y:)=1;
¢: is the least integer g > p; for which
5) 9(g;6) =0 (§e Ky, g(g,&)=1(F<cK), and
hg,n) =0 for qe{y,..,y:};

(6) g; is the least integer ¢ > ¢ satisfying (5);

’ (7)  #; is the least integer r > g} for which

hirym)=0 (neL), h{r,7n)=1 (4 L, gr;8)=0 (§eKy).

It is easy to verify that, because the pair (g, h) satisties conditions (a)
and (b), these integers all exist.

Define a function g*: Nx X,,,~>R by putting g*n, 2) = g(n, z)
for z ¢ X,, and defining g*(n, ) by induction on = as follows:

pi—1

(8)  0¥Po L) = fllwr ¥)— D) 0%, LBn, y)) i p >y,
n=1 .

© o, ) =1,

(10) g*(n, ) =0 for all other values of n.

Congsider the pair (g%, h); we shall show that it belongs to ¢, which
contradicts the maximality of (g, ), since g* is a proper extension of g.
Observe that

domg* = Nx (X, v {{}) =NxX,,,
and
domh=NxY,=NxTY,,.

6 — Fundamenta Mathematicae T. LXXXV
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Now we show that (1) holds (with g replaced by g*) for (2, y) € Xaﬂ X
x ¥,,,. Since (g,%) 9, the only case to be congidered is when z =(,
Let ay oceur as yx (say) in the sequence (2), and consider the sum

(11) D g, L) h(n, 9e) -

n=1

In view of (10), we have g*(n,,) = 0 unless » is of the form p; (with
i >1;_,) O g;, while by the definitions of p; and ¢ (see (4) and (5)) we
also have h(pe,yx) =0 for i>k, h(pr,yr) =1, and h(gs, yx)= 0 for
i > k. Consequently the sum (11) has only finitely many non-zero terms,
and reduces to ‘

DE—1

P ANl
n=L

which by (8) is equal to f(,, ¥x). We have thus established that (1') holds.

Finaliy, we must verify conditions (a) and (b), with g replaced by g*
and o by a-1. ) )

Condition (a). Let K, K’ be disjoint finite subsets of X ,,, and
let L be a finite subset of ¥, = X,.

Case 1. {,¢ K w K'. Then K v K'C X, and the required infinitely
many values of n exist because the pair (g, h) satisfies (a).

Case 2. [, e K. Then for every occurrence of (K\{{,}, K', L, @) as
a term (K, K;, L;, L;) in the sequence (3), it follows from the definitions
of ¢g* and ¢; (see (6), (10)) that

(m, ?/k)’f‘g*(.pk; L)y

g€, 8) =0 (e K), g*a;, H=9g(¢, E)=1 (' <X,

h’(Q;;: n)=0 (nel),
provided that ¢ is so large that L C {y,, ...
many such occurrences.

Case 3. [, e K'. Then for every occurrence of (K, K"\{{.}, L, d) as
a term (K;, K;, I;, I;) in the sequence (3), it follows from the clefmmons
of g* and ¢ (see ( (9)) that

, Yi}, and there are infinitely

901, 6)=9(01,5) =0 (e K), g*gi, &
hgi, 1) =0 (neI),

provided that i is so large that I C{yyy ooy
many such occurrences.

)"‘1 (£ eE"),

¥}, and there are infinitely

icm°

Eepresentation of functions of two variables as sums of rectangular Sfumctions 181

Condition (b). Let K be a finite subset of X,., and let I, L" be
disjoint finite subsets of ¥,,, = ¥,.

Casel.l, ¢ K. Then K C X, and the required infinitely many values
of n exist because the pair (g, h) satisfies (b).

Case 2. [, < K. Then for every occurrence of (E\{¢,},d,L, L) as
a term (K, K;, L;, I;) in the sequence (3), it follows from the def).mtlons
of g* and 7; (see (7), (10)) that

Wrom) =0 (mel), hir,n)=1(gcl), g(r,&=0 (eK),
and there are infinitely many such occurrences.
The proof that (g%, ) has now been completed, and with it the

proof of Theorem 1.

TumOREM 2. The exisience of a representation
N(zj,z/)
(12) = 3" ga(@) haly) ,
n=1

where N (z,y) is a positive integer for each point (x,vy) ¢ R*, implies the
com’muum hypothesis. :

Proof (I owe the idea of this to P. Erdos.) Stppose if possible that
there exists a representation (12) but 2% > y;: ‘naturally, we are assuming
the axiom of choice. Let @ be a subset of R of cardinality s,. For each
z e R and each positive integer N, let Q(N, ) = {yeQ: N(z,y)=DN};
then @ = \)Q N, »), and therefore Q(N,«) is infinite for. some integer

N=N (x), select an (& -+1)-element subset S(2) of @ (N (z), ). For each

non-empty finite subset S of @, let P(8)= {w e R: S(z) = 8}; then R
= {J P(8), and therefore P(S) is infinite for some § = S,, say. Let 8, have
s

cardinality X1, and select an (N -1)-element subset R, of P(8,). Then
for every point (#,y) ¢ Ryx 8, we have

&Y = S‘ gn(z

n=1

hﬂ y) H 2
and it follows ([1], [2]) that

det[¢™™] =0, where Ry= {%, .., By} So= (U1, o) Ynsa} -

- But ([3], p. 9) such a determinant never vanishes, and we have a contra-

diction.

6%
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TarorEM 3. There ewists no positive integer N such thal € admits
a representation

eV =

(@) en(y)

Ds

{13)

Il
-

n

with the property that for each point (v, y) « R® there are no more than N non-
zero terms in the series.

_Proof. Suppose if possible that there exists a representation (13)
of this kind. Let NV, be the least integer such that there exist sets 4, BC R
of cardinality 2%, with the property that for each point (z,y)e AX B
there are no more than N, non-zero terms in the series in.(13). Thus
1< N, < ¥. Take any such sets 4, B, and for each Nj,-element subset #
of the set of positive integers let

P(B)= {(z,y)e A X B: ga(2)bn(y) # 0 for ne H}.

Given any E, let @ () be a maximal collection of points of P(H)
such that no two lie on the same horizontal or vertical line. Now |Q (Z)]
< Ny, because otherwise if we select an (N,41)-element subset

{(53':, 'y.;): = 1, vy N0+1}

of Q(E) then for each 4, j we have gn(a;i)ﬂn(y,-) # 0 for nel and (since

there are no more that N, non-zero terms in the series) ™% = >' g, (2:)ha(ys),
nel

whence det[¢™¥] = 0, which is impossible. Let 4,(B), B,(F) be the pro-
jections of Q(E) on the axes. Then P(E)C [4(H)x B]w [A X ByB)],
and ‘ ’

IA“(E)[ < NO y [BO(E)I < lvo .

Ii: follows that-

U AfB) <9, [UBoB) <y,
B B

@
and therefore |A'|= |B'| = 2%, where

A'= A\EEJ AfB),. B =B\ ByE).
B

1
But for each point (z, y) € A’ x B’ there are no more than N o—1 non-zero
terms in the series (13), and this contradiets the definition of N,.
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