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A Boolean view of sequential compactness
by v
David Booth (Los Angeles, Cal.)

Abstract. Conditions for sequential compactness and strong sequential compactness
of D% where ¥, < 2 < ¢, are given. Sequential compactness of D* is independent of the
axioms of set theory.

Let S(%) be the collection of all subsets of the natural numbers,
N, and also the corresponding Boolean algebra; let S,(N) be the finite
sets and also the corresponding Boolean ideal. A set @ in S(¥) determines
an element [a] of the quotient algebra. Without fearing confusion one
may safely write ““a < b for the Boolean inequality [a] < [b]. Sometimes
one finds that the investigation of some question turns in part on the
properties of this ordering: this is the case, as we shall see, Wlth the study
of sequential compactness.

A topological space is sequentially compaet if each sequence of points
has a convergent subsequence. The Cantor set D is sequentially compact
(D stands for the two point Hausdorff space) but D, ¢ is the power of
the reals, is not.

DrrFINITION. Call a space strongly sequentially compact if it is se-
quentially compact and, in addition, given any sequence of points and
any limit of this sequence, there is a subsequence converging to this
given limit point.

In a first countable space sequential compactness and strong se-
quential compactness are the same. The space DX ig therefore strongly
sequentially compact; let us consider the property of 1, {y < i<y
that D* is sequentially compact. Such a property is of interest only when
the continuum hypothesis fails; for everything is known here if there
are no cardinals between &, and ¢. The continunm hypothesis is independent
of the axioms of set theory: it holds in some mathematical universes but
fails in others.

TaEoREM 1. The following are equivalent:

1. D* is strongly sequentially compact.
2. If X, is strongly sequentially compact for a2, so is HX
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3. If a,CN, acl, and the collection {a,: aei} has the fim'te inter-
section property then there is @ set b C N such that for each a,b << a,.

4, Any compact Hausdorff space having weight at most 2 is strongly
sequentially compact. »

Proof. Clearly 2 implies 1. Let us obtain 3 from 1. Define a sequence
(x> in D* by putting @m(a) = 1 if n e a, and za(a) = 0 otherwise; .let  be
the point which takes the value 1 on each coordinate. The point z is
a limit point of the sequence {#,); here we are supposing that each a, is
infinite — thig follows from the finite intersection property according to
our conventions about dropping brackets. Now there will be a sub-
sequence {&,> 7 € b converging to x; this set b satisfies 3. ’ o

Next, obtain 2 from 3. Let (x> be a sequence in JIX, having a limit z.
On each coordinate the sequence <{@,(a)> has a subsequence (@,(a)> % ¢ a,
converging to the point #(a). The set b given by 3 produces a sequence
(x> n e b converging to z.

Finally, consider part 4; part 1 is an instance of 4. Conversely, a com-
- pact Hausdorff space, X, of weight <1 must be a continuous image of
some closed subset ¥ of D’ Since 1 holds, D* is strongly sequentially
compact, thus ¥ is as well; but a continuous map preserves strong
sequential compactness. .

The property of sequential compactness also corresponds to an
algebraic property. .

THEOREM 2. The following are equivalent:

1. D* is sequentially compact. i

2. If a,C N, ael, are infinite, then there is a set b C N such that for
each a either b<<a, or b< N~a,.

3. Any compact Hausdorff space having weight at most A is sequentially
compact. _

Proof. To obtain 2 from 1, one considers the sequence {(w,)> where
@n(a) =1 if » € a, and x,(a) =0 otherwise. This must have a convergent
subsequence <z,> neb; and b<<a, if (x,(a)> neb converges to one,
otherwise << N ~a,. Conversely, a sequence <(z,> determines a set «,
with # € a, when #,(e) = 1. Obtaining a set » we find a limit point 2 by
putting #(a) =1 just where <{wn(a)) neb converges to 1. i

The third property follows just as the corresponding property in
Theorem 1.

The referée of this paper has provided another condition which is
equivalent to these: the generalized Bolzano-Weierstrass condition. This
condition is that every sequence of sets has a convergent subsequence.
Hausdorff showed that this property holds in spaces of weight x,, Lubben

[3] showed that it fails in spaces of weight ¢. One can find an account of
the geﬁéra]{ized Bolzano-Weierstrass property in [2], Chapter 2, Section 29.
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ProposiTION. D* is sequentially compact if and only if the generalized
Bolzano-Weierstrass property holds in spaces of weight at most A.

Proof. A sequence of points (x> in D* can be regarded as a sequence
of sets ({z.}> which, assuming the Bolzano-Weierstrass condition, will
have a subsequence <{zy}» % ea which converges. S0 {z> % ea must
converge too, for D* is compact.

Conversely, given a sequence of sets {4»>, in-a space having an open
basis {U,: ae 2}, one puts B, = {a: 4, n U, 0}. Corresponding to B,
there is its characteristie funetion fn which is a point of D%. The sequence
{Bs> has a convergent subsequence {f,> n e a; one readily sees that
<4n, wea is a convergent subsequence of (4,).

TrEOREM 3. If D* is sequentially compact then every set of reals of
power A has Lebesgue measure zero.

Proof. Let d map infinite sets into the reals by putting d(a) = X
where a(n) is the value of the characteristic function of a. Tt § is a subset
of [0, 1] of power 1 we have that § ~range(d) is countable; so one only
has to show that & ~range(d) has measure zero. Say 8 ~range(d)
= {d(a,): < 2}; by Theorem 2 choose b 5o that b < a,orb<< N~a,. Now

8 ~range(d) C {d(c): b<c}w {d(e): e< N~b}.

But it is easily seen that both of these two sets have measure Zero.

A scmewhat similar argument serves to show that, under the same
hypothesis, each set of reals of power 1 is first category.

DEeFINITION. An ultrafilter P in gN ~ N (these terms are explained
in [1]) is a P(4) point if it is in the interior of the intersection of any ecol-
lection of less than 1 open sets containing it.

A P(sy) point is called a P-point. If X is a space then T°X is the
space generated by all intersections of less than A neighborhoods of X.

ProPOSITION. The following are equivalent:

1. D* is strongly sequentially compact for each A< c.

2. The P(c) points in BN ~N are dense in T°(BN).

This can be proved rather in the manner of Theorem 4.14 in [13.
Let us see now something of the difference in strength between the pro-
perties of Theorem 1 and those of Theorem 2.

TurorEM 4. If D* is sirongly sequentially compact then ¢ = 2* but if
we assume instead that D* is only sequentially compact this need not be
the case. )

Proof. The first part seems widely known in one form or other;
one can construct a tree of distinet sets ordered by <<,such that if f: 12,
then a(f) is a terminal point of the branch {a(f ~ (a X 2)): @ ¢ A}. Property 3
of Theorem 1 allows the construetion to continue at limit ordinals.
1+
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For the rest of the theorem — assuming set theory is consistent —
one begins with a model M of set theory and Ay, (this is defined in [4]).

One can check that D¥ is strongly sequentially compact in M (see,
for example, Theorem 4.10 of {1]) therefore M contains a P(c) point.
Carry out a Cohen extension of M obtaining a new model A in which
9% ==y, and S(N)¥ = §(N)4. The P(c) point P of M is still an ultra-
filter and a P(c) point. Let {a,: 4 x5} be a collection of infinite sets,
in order to meet the conditions of Theorem 2 we may as well suppose
that N ~ a, is infinite too. Bither a, or N ~ a, is in P; let a, be a, if a, ¢ P
and N ~ a, otherwise; since P is a P(c) point there is a b C ¥ such that
for each «, b<< a.. This b satisties condition 2 of Theorem 2.
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Completely regular proximities and RC-proximities

by
Douglas Harris (Milwaukee, Wis.)

1. The author recently introduced the theory of RC-proximities to
characterize the spaces that can be embedded in a regular-closed space.
The present results are concerned with the manner in which RC -pro-
ximities are made up from other types of proximities.

The theory of RC-proximities was developed in our paper [HS];
this paper is a continuation of [HS], and terms, notations, and techniques
introduced therein will be used herein without further reference.

2. LO-proximities and R-proximities. A proximity é such that the
induced closure operator is topological and such that from A noné B
there follows cl4 nond el B is called a LO-prozimity. An R-provimily is
defined in [HS] as a proximity satisfying Axioms P1-P5 of [HS], a LR -pro-
@imity is a proximity that is simultaneously a LO- pronmxty and an
R-proximity. ‘

There are three proximities that can be defined on any T, space
and that will be useful later in forming examples. These proximities are
considered in [CHY]; it is appropriate here to observe that the proximities
considered in [CH] are more general than those that we consider, since
Axiom P4, which requires that distinet points be far, need not be satisfied
by the proximities of [CH].

The proximities considered below do satisfy P4, however, since the
associated topologies are 7.

21 [CH, 25A. 18(a)]. For any T, space X the relation A 8 B if
(A ~clgB)v (clx A~ B) # @ 1is the finest prowimity ihat induces the
topology of X.

2.2 [CH, 25A. 18(b)]. For any T, space X the relation A 6, B if A 6; B
or both A and B are infinite is the coarsest prowimity that induces the
topology of X.

2.3 [CH, 25A. 18(c)]. For any T, space X the relation A 6, B
~clxB # O is a promimity that induces the topology of X.

The following results are readily established from the definitions.

if clx A ~
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