

A Boolean view of sequential compactness

by

David Booth (Los Angeles, Cal.)

Abstract. Conditions for sequential compactness and strong sequential compactness of D^{λ} , where $\aleph_0 < \lambda < c$, are given. Sequential compactness of D^{\aleph_1} is independent of the axioms of set theory.

Let S(N) be the collection of all subsets of the natural numbers, N, and also the corresponding Boolean algebra; let $S_{\omega}(N)$ be the finite sets and also the corresponding Boolean ideal. A set a in S(N) determines an element [a] of the quotient algebra. Without fearing confusion one may safely write "a < b" for the Boolean inequality [a] < [b]. Sometimes one finds that the investigation of some question turns in part on the properties of this ordering: this is the case, as we shall see, with the study of sequential compactness.

A topological space is sequentially compact if each sequence of points has a convergent subsequence. The Cantor set D^{\aleph_0} is sequentially compact (D stands for the two point Hausdorff space) but $D^{\mathfrak{c}}$, \mathfrak{c} is the power of the reals, is not.

DEFINITION. Call a space strongly sequentially compact if it is sequentially compact and, in addition, given any sequence of points and any limit of this sequence, there is a subsequence converging to this given limit point.

In a first countable space sequential compactness and strong sequential compactness are the same. The space D^{\aleph_0} is therefore strongly sequentially compact; let us consider the property of λ , $\aleph_0 \leqslant \lambda < \varsigma$, that D^λ is sequentially compact. Such a property is of interest only when the continuum hypothesis fails; for everything is known here if there are no cardinals between \aleph_0 and ς . The continuum hypothesis is independent of the axioms of set theory: it holds in some mathematical universes but fails in others.

THEOREM 1. The following are equivalent:

- 1. D^{λ} is strongly sequentially compact.
- 2. If X_a is strongly sequentially compact for $a \in \lambda$, so is ΠX_a .
- 1 Fundamenta Mathematicae T. LXXXV

- 3. If $a_a \subseteq N$, $a \in \lambda$, and the collection $\{a_a: a \in \lambda\}$ has the finite intersection property then there is a set $b \subseteq N$ such that for each $a, b < a_a$.
- 4. Any compact Hausdorff space having weight at most λ is strongly sequentially compact.

Proof. Clearly 2 implies 1. Let us obtain 3 from 1. Define a sequence $\langle x_n \rangle$ in D^{λ} by putting $x_n(a) = 1$ if $n \in a_u$ and $x_n(a) = 0$ otherwise; let x be the point which takes the value 1 on each coordinate. The point x is a limit point of the sequence $\langle x_n \rangle$; here we are supposing that each a_u is infinite—this follows from the finite intersection property according to our conventions about dropping brackets. Now there will be a subsequence $\langle x_n \rangle$ $n \in b$ converging to x; this set b satisfies 3.

Next, obtain 2 from 3. Let $\langle x_n \rangle$ be a sequence in ΠX_a having a limit x. On each coordinate the sequence $\langle x_n(a) \rangle$ has a subsequence $\langle x_n(a) \rangle$ $n \in a_a$ converging to the point x(a). The set b given by 3 produces a sequence $\langle x_n \rangle$ $n \in b$ converging to x.

Finally, consider part 4; part 1 is an instance of 4. Conversely, a compact Hausdorff space, X, of weight $\leq \lambda$ must be a continuous image of some closed subset Y of D^{λ} . Since 1 holds, D^{λ} is strongly sequentially compact, thus Y is as well; but a continuous map preserves strong sequential compactness.

The property of sequential compactness also corresponds to an algebraic property.

THEOREM 2. The following are equivalent:

- 1. D^{λ} is sequentially compact.
- 2. If $a_a \subseteq N$, $a \in \lambda$, are infinite, then there is a set $b \subseteq N$ such that for each a either $b < a_n$ or $b < N \sim a_n$.
- 3. Any compact Hausdorff space having weight at most λ is sequentially compact.

Proof. To obtain 2 from 1, one considers the sequence $\langle x_n \rangle$ where $x_n(a) = 1$ if $n \in a_a$ and $x_n(a) = 0$ otherwise. This must have a convergent subsequence $\langle x_n \rangle$ $n \in b$; and $b < a_a$ if $\langle x_n(a) \rangle$ $n \in b$ converges to one, otherwise $b < N \sim a_a$. Conversely, a sequence $\langle x_n \rangle$ determines a set a_a with $n \in a_a$ when $x_n(a) = 1$. Obtaining a set b we find a limit point x by putting x(a) = 1 just where $\langle x_n(a) \rangle$ $n \in b$ converges to 1.

The third property follows just as the corresponding property in Theorem 1.

The referee of this paper has provided another condition which is equivalent to these: the generalized Bolzano-Weierstrass condition. This condition is that every sequence of sets has a convergent subsequence. Hausdorff showed that this property holds in spaces of weight κ_0 , Lubben [3] showed that it fails in spaces of weight ϵ . One can find an account of the generalized Bolzano-Weierstrass property in [2], Chapter 2, Section 29.

Proof. A sequence of points $\langle x_n \rangle$ in D^1 can be regarded as a sequence of sets $\langle \{x_n\} \rangle$ which, assuming the Bolzano-Weierstrass condition, will have a subsequence $\langle \{x_n\} \rangle$ $n \in a$ which converges. So $\langle x_n \rangle$ $n \in a$ must converge too, for D^1 is compact.

Conversely, given a sequence of sets $\langle A_n \rangle$, in a space having an open basis $\{U_a\colon a\in \lambda\}$, one puts $B_n=\{a\colon A_n\cap U_a\neq 0\}$. Corresponding to B_n there is its characteristic function β_n which is a point of D^{λ} . The sequence $\langle \beta_n \rangle$ has a convergent subsequence $\langle \beta_n \rangle$ $n\in a$; one readily sees that $\langle A_n \rangle$ $n\in a$ is a convergent subsequence of $\langle A_n \rangle$.

Theorem 3. If D^{λ} is sequentially compact then every set of reals of power λ has Lebesgue measure zero.

Proof. Let d map infinite sets into the reals by putting $d(a) = \sum^{a(n)}/2^n$ where a(n) is the value of the characteristic function of a. If S is a subset of [0,1] of power λ we have that $S \sim \operatorname{range}(d)$ is countable; so one only has to show that $S \cap \operatorname{range}(d)$ has measure zero. Say $S \cap \operatorname{range}(d) = \{d(a_a): a \in \lambda\}$; by Theorem 2 choose b so that $b < a_a$ or $b < N \sim a_a$. Now

$$S \cap \operatorname{range}(d) \subseteq \{d(c) \colon b < c\} \cup \{d(c) \colon c < N \sim b\} .$$

But it is easily seen that both of these two sets have measure zero.

A somewhat similar argument serves to show that, under the same hypothesis, each set of reals of power λ is first category.

DEFINITION. An ultrafilter P in $\beta N \sim N$ (these terms are explained in [1]) is a $P(\lambda)$ point if it is in the interior of the intersection of any collection of less than λ open sets containing it.

A $P(s_1)$ point is called a P-point. If X is a space then $T^{\lambda}X$ is the space generated by all intersections of less than λ neighborhoods of X.

Proposition. The following are equivalent:

- 1. D^{λ} is strongly sequentially compact for each $\lambda < c$.
- 2. The P(c) points in $\beta N \sim N$ are dense in $T^{c}(\beta N)$.

This can be proved rather in the manner of Theorem 4.14 in [1]. Let us see now something of the difference in strength between the properties of Theorem 1 and those of Theorem 2.

THEOREM 4. If D^{λ} is strongly sequentially compact then $c=2^{\lambda}$ but if we assume instead that D^{λ} is only sequentially compact this need not be the case.

Proof. The first part seems widely known in one form or other; one can construct a tree of distinct sets ordered by <, such that if $f: \lambda \to 2$, then a(f) is a terminal point of the branch $\{a(f \cap (a \times 2)): a \in \lambda\}$. Property 3 of Theorem 1 allows the construction to continue at limit ordinals.

D. Booth

102

For the rest of the theorem — assuming set theory is consistent — one begins with a model M of set theory and A_{\aleph_0} (this is defined in [4]).

One can check that D^{\aleph_1} is strongly sequentially compact in M (see, for example, Theorem 4.10 of [1]) therefore M contains a $P(\mathfrak{c})$ point. Carry out a Cohen extension of M obtaining a new model A in which $2^{\aleph_1} = \aleph_3$ and $S(N)^M = S(N)^A$. The $P(\mathfrak{c})$ point P of M is still an ultrafilter and a $P(\mathfrak{c})$ point. Let $\{a_a\colon A\in\aleph_1\}$ be a collection of infinite sets, in order to meet the conditions of Theorem 2 we may as well suppose that $N\sim a_a$ is infinite too. Either a_a or $N\sim a_a$ is in P; let a'_a be a_a if $a_a\in P$ and $N\sim a_a$ otherwise; since P is a $P(\mathfrak{c})$ point there is a $b\subseteq N$ such that for each $a,b< a'_a$. This b satisfies condition 2 of Theorem 2.

References

- [1] D. Booth, Ultrafilters on a countable set, Ann. Math. Logic 1 (1970), pp. 1-24.
- [2] K. Kuratowski, Topology, vol. I, New York-London-Warszawa 1966.
- [3] R. G. Lubben, Limiting sets in abstract spaces, Trans. Am. Math. Soc. 29 (1928), pp. 668-685.
- [4] D. Martin and R. Solovay, Internal Cohen extensions, Ann. Math. Logic 2 (1970), pp. 143-178.

UNIVERSITY OF CALIFORNIA, Berkeley

Recu par la Rédaction le 27. 9. 1971

Completely regular proximities and RC-proximities

by

Douglas Harris (Milwaukee, Wis.)

1. The author recently introduced the theory of RC-proximities to characterize the spaces that can be embedded in a regular-closed space. The present results are concerned with the manner in which RC-proximities are made up from other types of proximities.

The theory of RC-proximities was developed in our paper [HS]; this paper is a continuation of [HS], and terms, notations, and techniques introduced therein will be used herein without further reference.

2. LO-proximities and R-proximities. A proximity δ such that the induced closure operator is topological and such that from $A non \delta B$ there follows $clA non \delta clB$ is called a LO-proximity. An R-proximity is defined in [HS] as a proximity satisfying Axioms Pl-P5 of [HS]; a LR-proximity is a proximity that is simultaneously a LO-proximity and an R-proximity.

There are three proximities that can be defined on any T_1 space and that will be useful later in forming examples. These proximities are considered in [CH]; it is appropriate here to observe that the proximities considered in [CH] are more general than those that we consider, since Axiom P4, which requires that distinct points be far, need not be satisfied by the proximities of [CH].

The proximities considered below do satisfy P4, however, since the associated topologies are T_1 .

- 2.1 [CH, 25A. 18(a)]. For any T_1 space X the relation $A \, \delta_s \, B$ if $(A \cap \operatorname{cl}_X B) \cup (\operatorname{cl}_X A \cap B) \neq \emptyset$ is the finest proximity that induces the topology of X.
- 2.2 [CH, 25A. 18(b)]. For any T_1 space X the relation A δ_c B if A δ_s B or both A and B are infinite is the coarsest proximity that induces the topology of X.
- 2.3 [CH, 25A. 18(c)]. For any T_1 space X the relation $A \delta_w B$ if $\operatorname{cl}_X A \cap \operatorname{cl}_X B \neq \emptyset$ is a proximity that induces the topology of X.

The following results are readily established from the definitions.