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it 8, Sy, Ssy - and 8, 85, 85, ... ave HWO sequences in the collection T,
there is a positive integer n such that (S;) does not intersect (8"
By Theorem 3, each sequence in this uncountable collection U de-
termines a planar atriodic tree-like contintum with positive span. Further,
it I and K are two continua each determined by a sequence in U, then H

does not intersect K.

5. Remark. In 1939 Waraszkiewicz [3] published a paper in which

he claimed that the plane contains no atriodic tree-like continuum which
is nobt chainable. However, each continuum in the collection of plane
continua described in this paper has positive span and, thus, is not
chainable.
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On smooth continua
by
T. Mactkowiak (Wroctaw)

Abstract. A metric continuum X is said to be smooth at a point p if for each sub-
continuum K of X which contains p and for each open set ¥ which contains X there
exists an open connected set U such that K C U C7T. If the continuum X ig hereditarily
unicoherent at p, then the definition of smoothness at p» mentioned above is equivalent
to the definition of smoothness at p introduced by &. R. Gordh in [7]. Moreover, it is
proved that if the continuum X is hereditarily unicoherent at some point (or if X is
an irreducible continuum), then X is hereditarily unicoherent at each point at which
it is smooth; thus X is smooth in the sense of Gordh at each such point. Therefore, we
conclude that the notion of smoothness at a point (introduced in this paper) is
independent of hereditary unicoherence at a point, and smoothness at a point may
be defined for all continua.

The set of all points of X at which X is smooth is called the inttial set and is de-
noted by I(X). It is proved that if a mapping f on a continuum X is monotone (or open,
or quasi-interior), then f(I(X)) CI(f(X)). This is a generalization of Theorem 4.1 in 7]
(Theorem 4 and Corollary 6 in [13]). Furthermore, we give a new relation between the
initial set of the preimage and the initial set of the image for confluent mappings.
Namely, if a mapping f on a continuum X is conflunet, then f(X)N\I (f(X)) C f(X\I(X)).

§ 1. Introduction. Investigating smooth continua, defined by
G. R. Gordh in [7], we have observed that the notion of smoothness of
a continuum at some point at which it is hereditarily unieoherent, can
be easily extended to the notion of smoothness of a continuum at some
point at which it need not to be hereditarily unicoherent, i.e., that the
notion of the smoothness of a continuum is independent of the mnotion
of its hereditary unicoherence. Moreover, the idea of the smoothness of
a continuum at a point is, as will be seen, s generalization of the idea of
the local connectedness of the continuum at that point in some sense.

In this paper we study some properties of smooth continua, in par-
ticular we give some characterizations of them, and, iuncidentally, we
investigate the invariability of smoothness under some classes of continu-
ous mappings, and the co-existence of smoothness at some point and
hereditary uuicoherence at another point in an arbitrary continuum.

Theranthor is very much indebted to dr. J. J. Charatonik, who con-
tributed to these investigations.
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§ 2. Definitions and preliminaries. The topological spaces under con-
sideration will be assumed to be metric continua. If 4., 4,.... is a se-
quence of subsets of a topological space X, then L1 Ay denctes the set

of all points # e X for which every neighbourhood mtersect A, for almost
all n, and Ls A, denotes the set of all points 2 ¢ X for which every

N—+00
neighbourhood intersects A, for arbitrarily large n. A sequence of sub-

sets A;, Ay, ... is said to converge to a set (denoted by leAn = A) in

case Ll An = A = Ls A,. We have the following (see [9], § 47 II, The()-
n—>00

rem 6, p. 171)
(2.1) ProPOSITION. If Oy, O, ... 18 & sequence of subcontinua of a com-
pact meiric space such that Li Cn # @, then the set Ls Oy is a continuum.
n—+eo n—oo
(2.2) Lmmma, Let €y, Oy, ... be a sequence of subcontinua of a com-

pact metric space X. If x,y eLl Cn and the aommumn Ls Gy is trreducible
N~+0Q

between points & and y, then the sequence Oy, Oy, ... is convergent.

Proof. Suppose, on the contrary, that the sequence 0y, O, ... is not
convergent, i.e. that Ls G’n\Di Cn # @ (since we always have ILi(,

n~>oo n—oo
CLs Cr). Let cels On\Li On IL follows from the definition of Li C,
n—>e0 n—co

n—00
that there exist a nelo*hbourhood U of the point ¢ and a subsequence
C,y Cppy - OF the sequence O, Oy, ... such that none of the 0, for m
intersects U. Let L= Ls O, . Therefore we have ¢ e U C X\L.
M—>00
Since #,y ¢ Li Oy, thus z,yecLiC, .
N—r00 n—>-o0
T is a continnum which contains the points # and y. Moreover, we have
L CLs 0. The continuum Ls Gy being irreducible between points « and y,

N0 N>
we conclude that L= Ls C,, whence c¢el, a contradiction.
n—o0

(2.3) TEEOREM. Let @, @y, ... and Yy, Ys, ... be sequences of points of
a compact metric space X which converge to © and y respectively, and let
I(z,y) be a continuum irreducible between » and y. The following are
equivalent: ;
(i) there exists a sequence K, K,, ... of continua such that @n, Yn € Kn
for each n=1,2, ... and LsKn-I( ¥)3

= 1,_47 s

Therefore, by Proposition (2.1),

(ii) there ewists a sequence K, K,, ... of continua such that o, Yn € Kn
for each n=1,2, .. and LimK, = I(2,y);
n—+eo

(iil) there ewists a sequence of continua I(zy,y;), I(®s, ¥s), ... which
are irreducible between xn, and yn, respectively, and such that L I(bn, Yn)

7n->00
= I(z,¥);
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(iv) there ewists a sequence of comtinua I(zy, %), I(%., ¥s), ... which
are zwedumble between wn and Yn, respectively, and such that Tim I (wn, yn)
= I(@, ). e

Proof, (i) implies (i) by Lemma (2.2). We prove that ( 11) implies (iii).
Let @, yn and K, be like in (ii) and let I(@y, ¥») be a continuum irreducible
between @, and y,, which lies in K, for n = 1, 2, ... Therefore Ls I (2, yn)

Nn~—>00
CLsKn_leKn_I (2, y). Since m,yeLlI(w,,,yn)CLsI (@, Ya), thus,

by Proposition (2.1), Ls I(%n, ys) is a contmuum contammg the points @

N—>»0
and y. So we have Ls I (@, ¥z) = I(z,y) by the irreducibility of I(z, v)
Nn—»00

between x and .

Further, (iii) implies (iv) by Lemma (2.2), and obviously (iv)implies (i).
The proof of Theorem (2.3) is complete.

We say that a continwum X is smooth at the point p « X if for each
convergent sequence @y, &,, ... of points of X and for each subcontinuum
K of X such that p, ¢ K, where » = lim »,, there exists a sequence

n—>oo
K,, K,, ... of subcontinna of X such that p, #, ¢ K, for each n =1, 2, ...,
and LimK, = K.

N->00

The next theorem gives some characterizations of continua-which
are smooth at some point. '

(2.4) TuEOREM. Let 2y, @y, ... be a sequence of points of a compact
metric space X which is convergent to a point x e X, and let p e X. The
following are equivalent:

(i) for each continuum K such that p, » € K, there ewisis a sequence
E,, K, ... of subcontinua of X such that p, on e Kn for each n=1,2, ...
and Lim K, = K;

N=+0 .

(i) for each irreducible continuum I(p,») between p and @, there
emists a sequence Ky, K,, ... of subcontinua of X such that p, on € Kn for
each n=1,2, ... and Ls K, =I(p, x);

n—-00
(iif) for each irreducible continuum I(p,x) between p, and z, there
ewists a sequence K, K,, ... of subcontinua of X such that p, @n ¢ Ky for
each n=1,2,.. and LimKy, = I(p, @),

n—>00
(iv) for each irreducible comtinuum I(p,x) between p and =, there
ewists o sequence I(p, z:), (D, %), ... of trreducible subcontinua between p
and @, respectively, such that Ls I(p,zn) = L(p, ®);

n—>00
(v) for each irreducible continuum I(p, ) between p and ©, there
ewists a sequence I(p,x;), I(P, @), ... of irreducible continua between p
and @, respectively, such that LimI(p, zn) = I(p, @).

Nn—>00
6 — Fundamenta Mathematicae LXXXV
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Proof. (i) obviously implies (ii), (ii) implies (iii) by Lemma (2.2),
(iif) implies (iv), and (iv) implies (v) by Theorem (2.3) (taking yn =9
for each n= 1,2, ...). Therefore it remains to prove that (v) implies (i).
Let a continuum K be an arbitrary subcontinuum of X containing p
and #. K contains & continuum I(p, ») irreducible between p and a.
Tt follows from (v) that there exists a sequence I(p, z), I(p, %), ... of
subcontinua of X which are irreducible between p and @, respectively,

and such that LimI(p,ws)=I(p,). Putting Kn= K o I(p, ) for

n—>c0
each n=1,2,.. we see that p, @, ¢ Ky for each n=1,2, ... whence K,
are continua. Further, LimK,= K v limlI(p,as) =K v I(p,s) =K,

N—+00 N0 .
because I(p,x) C K. The proof of Theorem (2.5) is complete.

Recall (see [7], p. 52) that the continuum X is hereditarily unico-
herent at the point p if the intersection of any two subcontinua each of
which contains p is connected. An equivalent condition runs as follows
(see [7], Theorem 1.3, p. 52): the continunm X is hereditarily unicoherent
at p if and only if, given any point » ¢ X, there exists a unique sub-
continuum of X which is irreducible between p and ». If the continuum
X is hereditarily unicoherent at p and ¢ <X, then pq will denote the
unique subcontinuum which is irreducible between p and g.

Gordh in [7], p. 52, introduced the concept of the smoothness of
a continuum at a point as follows. A continuum X is said to be smooth
at @ point p of X is hereditarily unicoherent at p and, for each sequence
of points ay, a,, ... of X which is convergent to a point a, the sequence
of irreducible continua pa,, pa,, ... is convergent to. the continuum pa,
ie. lepa,, = pa.

In this paper we define the smoothness of a continuum X in such
a way that if a continuum X is smooth at the point p, then X need not
be hereditarily unicoherent at p, i.e., it is not as in Gordh’s definition
of smoothness; but condition (v) of Theorem (2.4) implies that, if X is
hereditarily unicoherent at the point p, then both the definitions of the
smoothness of a continuum X at the point p are equivalent. Moreover,
as.we will prove in Theorem (4.3), it a continuum X i hereditarily uni-
coherent at some point and .X is smooth at the point p, then X is
hereditarily unicoherent at p. Therefore the notion of smoothness at
g point (introduced in this paper) is independent of the notion of heredi-
tary unicoherence at a point, and smoothness at a point may be defined
for all continua which are or are not hereditarily unicoherent at some
point.

Similarly to what was done by Gordh, the set of all points of an arbi-
trary continuum X at which X is smooth is called the smétial set of X
and is denoted by I(X). If I(X) % @, then X is said to be smovth.

2
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§ 3. The initial set. Recall that, given a subset @ of a continuum X
and a point p e @, the set of all points of @ which can be joined with P
by a continnum contained in @ is called the constituent of the point p in
the set G (see [9], p. 188). Denocte the constituent of the point p in the
set @ by C(G,p). We have the following

(3.1) THEOREM. Let p be an arbitrary point of a continuum X. The
following are equivalent:

(i) X is smooth at p,

(ii) for each open set G such that p € G, the set (@, p) 18 open,

(i) for each subcontinuum N of X such that p ¢ N and for each open
set V which contains N, there exists an open commected set U such that N
cocr,

(iv) for each subcontinuum N of X such that p ¢ N and for each open
set V which contains N there ewists a continuum K such that N CIntK
CKECYV.

Proof. (i) implies (ii). Let .X be smooth at p and let @ be an open
set such that pe@. We have C(@,p)={reX: there exists a con-
tinuum R such that p, x ¢ R and R n (X\G) = @}. We will prove that
0(@, p) is open. Let @, #,, ... be a sequence of points of X\C(@, p) which
converges to x. Let B be an arbitrary subcontinunm of X which contains
the points p and z. Since X is smooth at p, there exists a sequence
Ry, R;, ... of subcontinua of X such that 9, z, ¢ B, for each n=1,2, ...
and Lim B, = R. The points #, are in X\C(G, p) for each n =1, 2, ...;

n—co
thus B ~ (X\@) # @ by the definition of C(@, ). Therefore E ~ (X\G)
= LLmR ~ (XI\@) # @. Hence, for each continuum R which contains p

and #, we have R n (X\G) = @, and thus # e X\C(G, p). Consequently,
X\C(@, p) is closed.

(i) implies (iii). It is sufficient to take U = CG(V, p).

(i) implies (iv). Let N be an arbitrary subcontinuum of X such
that p € NV and let ¥ be an arbitrary open set such that ¥ C V. Then there
exists an open set @ such that ¥ C @C GCV. It follows from (iii) that
there exists an open connected set U such that NC UCE. Put K= U.
Obviously K is a continnum and NCUCIntKCK=UCGCYV,
ie., (iv) is satistied.

(iv) implies (i). Let a sequence #;, @,, ... of points of X be convergent
to a point @, and let N be an arbitrary subcontinuum of X such that
p,xelN. Let @Q(N,¢) denote the union of open metric balls with the
centres in the set N and with the radii e > 0. According to (iv), for each
&> 0 there exists a continuum X, such that N CIntK, C K, CQ(N, s).
The sequence #,,,, .. is convergent to # e N, and thus there exists
a positive integer m such that #, e IntK, if n >m. This implies that

6*
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we can choose a sequence K, K,, ... of subcontinua of X in sueh a way
that p, & ¢ Kn and NCIntK.CE,CQ(N, en) f’or each n=1,2,..,
where the sequence &, &, ... of positive numbers iy convergent to zer(?,
Then LimKy,= N. Thus X is smooth at p. The proof of (3.1) is
7N—>00
ﬂomlzlgfi;‘;' COROLLARY. A continuum X is locally connected ab each poini
of I(X). . .
(3.3) COROLLARY. A continuum X 38 locally connected if and only if
it is smooth ab each of its points, ie., if I(X) = X,
We recall here the notion of aposyndeticity of F. B. Jones (see [8],
p. 404, and see also [4]). Namely, let X be a continunm and let  and ¥
be distinet points of X; if X contains a continuum K sugh that @ « Int K
C E C X\{y}, then X is said to be aposyndetic ot o with respect to .
We have, by Theorem (3.1) (iv), the following

(3.4) CoROLLARY. Let a continuum X be smooth at the point p, and
let y be a point of X. If K is a subcontinuum of X such that p e K C X\{y},
then X is aposyndetic ab each point @ K with respect to y.

The condition of Corollary (8.4) does not characterize continua
which are smooth at some point: there are continua which are not smooth
at amy poimt but which satisfy this condition for each point. This can
be seen from. the following

(3.5) Exawpre. Consider in the Euclidean plane endowed With.the
ordinary rectangular coordinate system Ozy the union 4 of all straight
line intervals joining the point (0,1) with the points (1/n, 0) for
n=1,2,.. and the point (0, 1) with the points (0, 0) and (—1, 0). Let
B be the image of A under the reflection through the line y = 0. Let
M= A uBwy(, where C is a straight line interval joining points (0, 0)
and (—1,0). Then M is a continuum aposyndetic at each point with
respect to another point, but M is not smooth at any point. Observe
also that the continuum 4 o B is aposyndetic at each point with respect

to another point and it is smooth at each point of its local connectivity.

It is proved that if a contimuum X is hereditarily unicoherent ab
the point p and simultaneously smooth at p, then every indecomposable
subcontinuum of X has a void interior (see [7], Corollary 3.3, p. 55). But
this is not true if X is only smooth at p, this can be seen from the
following.

(3.6) ExAmpLE. The continuum X will be considered as a subset
of the Euclidean plane endowed with the ordinary rectangular coordinate
system Oaxy: The continuum X consists of

(i) all semi-circles with ordinates >0, with centre (1;2,0) and
passing through every point of the. Cantor ternary set C,
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(ii) all semi-circles with ordinates <0, which have for n > 1 the
centre at (5/(2-3"), 0) and pass through each point of the set ¢ lying
in the interval 2/3" < » < 1/37%,

(iii) all points of the form (@, 0) where 0 <z << 1.

The set described by conditions (i) and (ii) is a well-known inde-
composable continuum (see [9], § 48, V, Example 1, p. 204) and has a non-

void interior in the continuum X which is smooth at each point (2, 0),
where 0 < 2 < 1.

§ 4. Hereditary unicoherence at some point. In this section we consider
continua which are hereditarily unicoherent at some point and which are
smooth at another point. We will prove that those continua are also
hereditarily unicoherent at the point at which they are smooth.

(4.1) LemuA. Let a continuum X be hereditarily unicoherent at a point p.
For every subcontinuum K of X and for every point z ¢ K, the set pa~K is
connected.

Proof. Let K be an arbitrary subcontinuum of X and let a point =

belong to K. Then the set pz v K is a continuum. Suppose, on the con-
trary, that the set pa\K is not connected. Therefore pz~\K is the union
of two unon-empty separated sets P and @. Observe that pm\K
= (pw v K)\K. Thus the continoum K separates the continuum pz u K.
It follows from Theorem 3 in [9], § 47, I, p. 168 that the sets K v P and
K v @ are continua. The continuum X fails to contain the point p because
‘otherwise px C K and hence panK would be empty; thus either peP
or p eQ. If p e P, then K u P contains an irreducible continuum between
p and o, because x ¢ K. Consequently, the continnum X being hereditarily
unicoherent at the point p, we have po C K w P. Thereby, we see that
QCpzsC Ko P, which contradicts the fact that @ = Q C (X\K)
~ (XN\P). If p € Q, we obtain a contradiction in a similar way. The proof
of Lemma (4.1) is complete.

We also have (see [9], § 48, II, Theorem 3, p. 193) the following

(4.2) ProrosITION. Let X be an irreducible space between the poinis

and b, and lot C be aclosed connected set. If a € C, then the set X\O s connected.

(4.3) TomoREM. Lel a continuum X be hereditarily umicoherent at
some point. If X is smooth at a point q, then X is hereditarily unicoherent at g.

Proof. Let a continuum X be hereditarily unicoherent at a point p
and let g be an arbitrary point of I(X). We can obviously assume that
P # ¢q. We will show that for an arbitrary point @ of X there exists a uni-
que subcontinnum of X which is irreducible between ¢ and z (cf. [7],
Theorem 1.3, p. 52). Firstly we will prove that

(a) it & epgq, then there exists in pg a nnique subcontinuum irre-
ducible between « and g.
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Suppose, on the contrary, that I(x,gq) and I'(z,q) are di.:fferent
continua irreducible between points z and ¢, and each of them is con-
tained in pg. Since I(z, q) # I'(x, ¢), there exist po.ints z and 2’ such
that z el(z, PN\I'(@, ¢) and ¢ e I'(z, 9\I(w, ¢). Obviously p ¢ I(=,q) v
o I'(z, g). Therefore there exists an open connected set ¥V such that
I(z,q) CVCVCX\{#,p} by the smoothness of X at q_apd Theorem
(8.1) (iii). The set ¥ is a continuum, and thus the sgt_ﬁ_g\V is connected
by Lemma (fi.l), and p,2 ep\V. Thereby p# C pg\V. Further, since
2el(w,q)CV, we have pg\V C X\{z}. Consequently, ps' v I'(z,q) is
a continuum which joins p and ¢ and it is contained in pg\{z}, contrary
to the irreducibility of pg between p and g.

(b) if g e px, then there exists in px a unique subcontinnum which
is irreducible between ¢ and z.

Suppose, on the contrary, that I(q,) and I'(q,#) are different
continua both irreducible between points ¢ and @, and both contained
in psx. Since I(g,z) # I'(q, ), there exist points z and 2’ such that
zel(q, s)\I'(q, ®) and 2’ e I'(q, )\I (g, #). Obviously p ¢ I(g, ) v I'(g, ).
Therefore there exists an open connected set V such that I(q,2)CVCV
CX\{#, p} by the smoothness of X at g and Theorem (3.1) (iii). The
set V is a continuum; thus the set pa\V is connected by Lemma (4.1),
and then p,2 epa\V. Thereby pz' C pa\V C I\{z} as before. The set
pz’ wI'(g, ) is a continuum which joins p and x, and lies outside
.contrary to the irreducibility of pz between p and .

Now consider three cases.

1'. » e pq. We shall prove that there exists a unique subcontinuum
of X which is irreducible between z and ¢. It follows from (a) that there
exists a unique subcontinuum zg of pg which is irreducible between #
and ¢. Suppose, on the contrary, that I(z,q) is an irreducible subcon-
tinuum of X between # and ¢ which is different from ag. Therefore there
exist a point # such that z e vg\I(z, ¢). Obviously p ¢ I(», g). Since X is
smooth at g, we have, by Theorem (3.1) (iii), an open connected set V
such that I(w, q) CVC¥ C X\{z,p}. It follows from Lemma (4.1)t_ha_t
the set pg\¥ is connected; thus pg\V is a continuum. Moreover, p ¢ pg\V

Cpg, and thus by Proposition (4.2) the set pg\pg\V is a continuum.

Since z, g e pg\pg\V C¥ ~ pg, we have zg C ¥ by (a). But 2 e wg, a contra-
dietion. )

2'. ¢epw. We shall prove that there exists a unique subcontinuum
of X which ig irreducible between g and «. It follows from (b) that there
exists a unique subcontinuum gz of pw which is irreducible between q
and ». Suppose, on the contrary, that I(g,#) is an irreducible sub-
continuum of X between ¢ and x which is different from go. Therefore
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there exists a point z such that 2 e gaNI(g, ). Obviously p¢ I(q,x).
Since X is smooth at ¢, we infer, by Theorem (3.1) (iii), that there exists
an open connected set V' such that I(q,s)CVCVC XN\{#, p}. It follows
from Lemma (4.1) that the set pa\V is connected, thus paN\V is a con-
tinuum. Moreover, p e panV C pz, and thus, by Proposition (4.2), the
set piv\jT\V is ‘a continuum. Since g, e ponpa~\V C ¥ ~ px, we have
gz CV by (b). But 2 €qz, a contradiction.

3" m e X\pg and qe X\pa. Let I{(g, z) be an arbitrary irreducible
subcontinuum of X between points g and . It follows from the hereditary
unicoherence of X at p that, firstly, the intersection pr ~pg is a con-
tinunm, and, secondly, the inclusion pzC I(q,2) v pg holds true. There-
fore we have pa\(pz ~ pg) C I(g, #). The set paN\(pz ~ pq) is 2 continunm
by Proposition (4.2). Moreover, x e prN\(pz ~ p9) CI{g,s) and, by the
connectedness of pa v pg, we have pa\(pz pq) ~ pg # @. Take a point
2 e pa\(p% N pg) ~ pq. Tt follows from 1’ that there exists exactly one
subcontinutm 2q of X which is irreducible between z and q; thus zgq
CI(g, x). Therefore the set pa\(px ~ pg) U 2q is a continuum containing
points ¢ and « and contained in I(q, #). Then poN(p2 N pg) v 2g = I(q, ®)
by the irreducibility of I(g,=) between g and z. This shows the uni-
queness of I(g, »). The proof of Theorem (4.3) is complete.

§ 5. Irreducible smooth continua. In this section we .consider irre-
ducible continua which are smooth at some point. We will prove that’
these continua are also hereditarily unicoherent at the point at which
they are smooth. Some properties of irreducible smooth continmsa were:
studied by J.J. Charatonik in [2].

(5.1) Levwma. Let a continuum X be irreducible between a and b, i.e.,
X = I(a, b), and let X be locally connected at the poini p. If a £ p b,
then there ewist subcontinua I(a,p) and I( P, b) of X irreducible between a
and p, p and b, respectively, and such that

(@) I{a,p) nI(p, b)= X, and

(i) I(a, p) ~ I(p, b) = {p}.

Proof. If we take a positive number & such that

0 < ¢ < min{dist(a, p), dist(p, d)},

then, by the local connectedness of X at p, there exists an open con-
nected set V, with diameter less than e. Take the closure 7, of V,. Then 7,
separates X in such a way that X = A, U B,, 4, and B, are continua,
acd,; beB,and 4, ~B,=7,. Observe that, if 0< &< ¢’, then 4,C 4,
and B,C B,. We define 4 = 4, and B=\ B,. It is easily to check

>0

>0
that 4 n B= {p}, ae A and b ¢ B, and A and B are continua. Therefore,
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if we take an irreducible continuum I(a,p) between a and p which is
contained in 4, and an irreducible continuum I(p, b) bei}ween p”and b
which is contained in B, then I(a,p) and I(p,b) satisfy (i) and (ii).

(5.2) LEMMA. Let a continuum I(a,b) irreducible 'betweem a and b be
the umion of two subcontinua I(a,p) and I(p, b) irreducible between a and p
and p and b, respectively, and such that I(a,p) nI(j?, b)=.{p}. Then

(i) if © € I(a, D), then each subcontinuwum of I(a, b) irreducible between
o and p is contained in I(a,p). ‘ )

(i) if # e I(p,b), then each subcontinuum of I(a, b) irreducible between
p and x is contained in I(p,Dd).

Proof. Let z<I(a,p), and let I(z,p) be an arbitrary irreducible
subcontinuum of I(a,b) between z and p. Then I(z, p)\{p} is connected
by Proposition (4.2), and it is contained in I(a, p)\{p}, because p
separates I (a, b) by assumption. Therefore I(z, p) = I(z, p)\{p} C I(a, p).
If zeI(p,b) the proof is the same.

(5.3) TaEOREM. Let a continuum X be irreducible between points a
and b. If X is smooth at the point p, then X is hereditarily unicoherent at p.

Proof. Let # be an arbitrary point of X. We will show that there
exists a unique subcontinuum. of X which is irreducible between p and a.
Consgider three cases.

1. a=p. Thus we have X = I(p,b). Suppose, on the contrary,
that I(p,#) and I'(p, =) are different continua, both irreducible between
points p and x. Since I(p,») +* I'(p, x), there exist points z and 2’ such
that 2z e I({p, s)\I'(p, ) and 2’ ¢ I'(p, «)\I(p, ). Obviously b¢ I(p,x) v
v I'(p, »). Therefore, by the smoothness of X at p and by Theorem (8.1)
(iii), there exists an open counected set V such that I(p,a)CVCV
C X\{7, b}. The set V is a subcontinaum of X and p 7V; thus, by Propo-
gition (4.2), the set X\V is counected. Moreover, 2’, b ¢ X\V; hence the
set TNV w I'(p, 2) is a subcontinunm of X containing _pm_ints p and b,
and thus X = I'(p,s) v X\V. Therefore z e I'(p, ) u XV, a contra-
diction.

2. p="b. The proof is the same as in 1'.

3'. a#p#b, Since X is smooth at p, thus, by Corollary (3.2),

X is locally connected at p. Therefore, by Lemma (5.1) there exist two
subcontinaa I(a,p) and I(p,b) of X irreducible between a and p and
between p and b, respectively, and such that X = I(a,p) v I(p, b) and
I(a,p) ~I(p,b) = {p}. We can assume that the poiut & belongs to
I(a,p) (i z<I(p,Dd), the proof is the same). Then each subcontinuum
of X irreducible between « and p is contained in I(a, p) by Lemma (5.2).
Suppose, on the contrary, that I(z,p) and I'(w,p) are different sub-
continua of I(a,p), both irreducible between points « and p. Since
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I(z,p) + I'(z, p), there exist points z and 2’ such that z eI(x, pNI'(z, p)
and @' eI'(z,p)\I(z,p). Obviously {a,d}~ (I(z, p) v I'(z, p)) = O.
Therefore, by the smoothness of X at p and by Theorem (3.1) (iii), there
exists an open connected set V such that I(z,p) CVCVCX\{a, b,2'}.
The set V is a continuum, and {2,8} "V =@; thus I\V = G u H, where
G ard H are open and connected, a « G and b « I (see [9], § 48, II, Theo-
Tem 3, p. 193). Moreover, HC I(p,b) and a,2 ¢ (. Therefore the set
I(p,b)w @uI'(m,p) is a continunm containing points e and b, thus
I(p,b)v @uI'(z,p)= X by the irreducibility of X between & and b.
Consequently, zeI(p,b)uw @ v I'(z,p), a contradiction. The proof of
(5.3) is complete.

If an irreducible eontinunm X is locally connected at a point p only,
‘without being smooth at p, then X need not be hereditarily unicoherent
at p, i.e.,.the assumption of the smoothness of X at p in Theorem (5.3) is
essential. This can be seen from the following

(5.4) ExampLE. Let (2, y) denote a point of the Euclidean plane
having # and y as its rectangular coordinate. Put O = (1/n, 1), by
= (1fn, —1) and e, = ((n-+1)/n,0), where n=1,2,.. Consider the
union 4 of straight line intervals joining sequentially points ¢, ay, @y,
Cay b1y by G, Gy, a4, ¢, by, By, €5, ... and so on. Let B be the image of 4
under the reflection through the line # = 0. The clogure of 4 w B is an
irreducible continuum such that it is locally connected at each ‘point
of 4 U B and it is not hereditarily unicoherent at any point.

§ 6. Mappings and the smoothness of continua. Recall that a continuons
mapping f of a topological space X onto a topological space Y is called
monotone if, for any continuum @ in ¥, the set f~%(Q) has only one com-
ponent, i.e. if it is connected (see [9], p. 131)

" (6.1) LemumaA. If @ is an arbitrary subset of a continuum X, a point p
i in & and a mapping f: X—>F(X) is monotone, then '

(e(@, f(m) = ¢(f &, p)-

Proof. Let a;ef“l(C'(G,f(p))), Le., f(#) e O(@, f(p)). Thus there is
a subcontinuum K of f(#) which contains points f(z) and f(p) and is
contained in &. The mapping f being monotone, the set f{X) is a con-
tinunm which contains the points # and p and is contained in FU&.
This shows that e C(f~(@), p). Conversely, let x ¢ 0(f (@), p). This
means that there is a subeontinnum L of X which contains the points 2
and p and is contained in f~Y(@). Its image under f, the set f(L), is a con-
tinuum which contains points f(x) and f(p) and is contained in e
= @. Thus f(a) ¢ O(@, f(p)), whence @ «f~*(0(&, f(p)))- The proof of the
lemma is finished. .
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Note that the inclusion C(f*(&,p))Cf~
arbitrary continuous mapping f.

(6.2) TemorEM. If f: X—f(X)
tinwum X, then-F(I(X))C I{f(X)).

Proof. Let a continuum X be smooth at the point p. We will show
that f(p) is an initial point of f(X). Suppose, on the contrary, that f(X)
is not smooth at f(p). Then, by Theorem (3.1) (ii), there is an open sub-
set @ of f(X) such that f(p) e ¢ and the constituent C(&,f(p)) of the

Y0(@, f(p))) holds for an

is a monotone mapping of @ con-

point f(p) in the set G is not open. Therefore there exists a convergent.

sequence ¢y, ¥, ... of points of F(X)\C(@, f(p)) such that its limit-point y
belongs to C(&, f(p)). Since the mapping f is continuous, the set f~(&)
is open; moreover, p ¢f~%@), and thus the constituent O(f"(@), p) of
the point p in the set (@) is open by the smoothness of X at p and by
Theorem (3.1) (ii). Since the mapping f is monotone, we have f“l( (G I p)))
= Of %), p), by Lemma (6.1). Thus f~(y) C C(f™(&), p) and F(y) ~

A C(f e ,p)— @ for each n =1, 2, Take foreach n =1, 2, ... & point
@, of X such that f(@s) = ya. Let #,,, .fvm, ... be a convergent subsequeuee
of the sequence #y, &, ... and let & point # be its limit. It follows from the
continuity of f that f(a)=y, i.e., ® e f7(y); thus w'e C(f &), p). Further,

Ty oy - 18 & Sequence of points in 2’1\0()“"1 , D) and ;me L= 2
—00

Therefore ¢(f(@), p) is not open, a contradiction. The proof of Theo-
rem (6.2) is complete.

We say that a continuous mapping is open provided it transforms
open sets into open sets (see [16], p. 348).

(6.3) THBOREM. If f: X~>f(X)
then f(I(X))C I(f(X)).

Proof. Let a contintum X be smooth at a point p..We will show
that f(p) is an initial point of f(X). It suffices to show, by Theorem (3.1)
(iii) that for each continmum K such that f(p)e K and for each open
set V containing K there exists an open connected set U such that
KCUCY. Let K be an arbitrary subcontinuam of f(X) such that
f(p) e K and let V be an arbitrary open set such that K CV. Since the
mapping f is open, we infer, by Whyburn’s theorem (7.5) in [18], p. 148,
that each component of the inverse image f~(X) is mapped onto K
under f. In particular, if we take a component 0, of f~YK) such that
? € Gy, then f(C)= K. Since p ¢ C, and 0, is contained in the set f~(V)
which is open by the continuity of f, we infer, by the smoothness
of X at p and Theorem (3.1) (iii), that there exists an open connected
seb @ such that €, C @ Cf~(V). Since the mapping f is open, f(G) is an
open connected set, and K = f(C,) C f(¢) CV. Putting f(§) = U, we see
that the proof of (6.3) is complete. ‘

.8 an open mapping of a continuum X,
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A continuous mapping f: X—f(X) is called quasi-inferior at a point
y e f(X) if, for each open set UC X such that a component of f~'(y) is
contained in U, we have y ¢ Intf(U). A continuous mapping f: X—f(X)
is called quasi-interior if f is quasi-interior at each point of f{X) (see [19],
p. 9). It is proved in [10], Corollary 3.1, that a continuous mapping h is
quasi-interior if and only if A is an O.M -mapping, i.e. k can be represented
a8 a composition of mappings f and g, by writing h = gf (which means
1(z) = g(f(»)) for each & ¢ X), where f is monotone and g is open. There-
fore, by Theorem (6.2) and Theorem (6.3) we have the following

(6.4) COROLLARY. If a mapping f: X—f(X) of a continuum X is quasi-
interior, then f(I(X))C I(f(X)).

Observe that Corollary (6.4) is a generalization of Corollary 6’ in [13].
Moreover, we obtain, by Theorem (4.3), the following

{6.5) COROLLARY. If a continuum X is smooth at a point p, if a mapp-
ing f: X—>f(X) is quasi-interior and if the continuum f(X) is hereditarily
unicoherent at some point, then f(X) is smooth at f(p) in the sense of Gordh.

Recall that a continuous mapping f: X—~F(X) of a topological space
X is called a local homeomorphism if for each point 2 of X there exist an
open neighbourhood U of # such that f(U) is a mneighbourhood of f(x)
and that f|U is a homeomorphism (see e.g. [18], p. 199). We have the
following

(6.6) COROLLARY. If f: X—f(X) is a local homeomorphism of an irre-
ducible smooth continuum X, then the continuum f(X) is irreducible and
smooth, and f(I(X))C I{f(X)). .

In fact, if the continuum X is irreducible and smooth at p, then,
by Theorem (5.8), X is hereditarily unicoherent at p. Thus it is smooth
in the sense used in [2] and therefore it is of type 1 (see [2], Proposmon 1).
Hence Theorem 6 in [15], p. 73 can be applied, and thereby we see thab
if f is a local homeomorphism of X, then f(X) is an irreducible continuum.
Sinee each local homeomorphism is an open mapping (see [15], Remark 1,
p. 70), we infer, by Theorem (6.3), that f(X) is smooth at f(p).

Corollary (6.6) is a positive solution of the problem set by J. J. Chara-
tonik in the Proe. International Symposium in Topology, Budva (Yugo-
slavia) 1972.

A continuous mapping f of a topological space X onto a topological
space f(X) is confluent if, for every subcontinuum @ of f(X), each com-
ponent of the inverse image f~(Q) is mapped by f onto ¢ (see [1], p. 213).
The class of confluent mappings comprises open mappings (see [1], VI,
p. 214), monotone mappings (see [1], V, p. 214) and quasi-interior mapp-
ings (see [10], Corollary 2.7). As we can see by Thecrem (6.2), Theo-
rem (6.3) and Corollary (6.4), a monotone (or open, or quasi-interior)
image of a smooth continuum is a smooth continunm. Moreover, a mono-
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tone (or open, or guasi-interior) image of an initial peint of a continuum
X is an initial point of its image. It is known (see [3], D. 309) that if a con-
tinnum X is smooth at p, and f: X—f(X) is a confluent mapping, then f(p)
need not be an initial point of f(X). In spite of this, one can ask whether
a confluent image of a smooth coutinuum is also a smooth continuum.
The answer is negative. This can be seen from the following

(6.7) Bxampre. Consider the following subsets of the Huclidean
plane endowed with the ordinary rectangular coordinate system Owy.

A= {(a;, nsing): —l<<s< O}U {(0,9): —-1<y<1},

o ~
B={(m,—smm): —9<w<—1}u{(—2,y): —l<y<1},

oMl T 1 1 1
n = m,Smm22”+1<m<é—n— U{(im7y)——1€y<1}y

where n=1,2,..

- -
Put 0= |_JOy. The union X =40 Bu C is a continuum and it is

=1
smooth at each point (z, y) e X such that —2 < # < 0. We define a con-
fluent mapping f of X as follows

(0,y) if
(wyy) i

The image of X under f is the continnum O, i.e., f(X)= (, which
is not smooth at any point.
) This example shows that a confluent image of a continuum which
is hereditarily unicoherent at each point, hereditarily: decomposable
irreducible and smooth need not be smooth. One can observe that thé
mapping f in this example is quasi-monotone (for the ‘definition see [17]
p. 136, cf. alzo [18], p. 151). Therefore, however quasi-monotone mapping;
preserve the irreducibility of continua of type 1 (see '[6]), they do not
preserve the smoothness of such continua.

) Recall that a dendroid means a continuum which is hereditarily
unicoherent at each point and is arcwise connected. It is asked in 3]
P. 310,_ whether a confluent image of a smooth dendroid is a smootl:i
dend‘rmd.. Since confluent mappings do preserve the property to be
a dendroid ([1], Corollary 1, p. 219), the question concerns the preserving

of smoothness only. The.answer is affirmative, as it
. was r
(see [14], Corollary 3.4). ’ ‘ 'ecenﬂy proved

<0,

z>0.

fl@,y)=
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We have the following

(6.8) THEOREM. If a mapping f: X-—>f(X) of a continuum X is con-
Sluent, then f(X)\I(f(X))Cf(X\I(X)).

Proof. Assume, on the contrary, that qef(X)\I(f(X)) and fq)
C I(X). Therefore, by Theorem (8.1) (iii), there exist a continuum K such
that ge K Cf(X) and an open set V containing K and such that each
connected set U with property K C U CV isnot open. Take p < f~*(g) C X.
Then p ¢ f~(¥V). Since the image O (), p) under f contains the point
a=f(p), the mnion U= U {f[C(f(V),)): pef™(a)] is connected.
Further, let M be a component of f~1(K) which contains the point p.
Thus M is contained in CO(f~(V),p), whence, by the confluence of f,
we have K =f(M)C f(G(f‘l(V), p))CUCY. By the assumption the
set U is not open. Hence, there exists a sequence ¥, ¥s; - of points. of
f(X) such that y, e f(X)\U for each n=1,2,.. which is convergent
to a point y e U. Write 4= {C(f*(V),p): p ¢ g)}. This implies
that f~3(y) C A. Indeed, it follows from y e U that there is a point
o' e O(f V), p') for some ‘p' ef~g) with f(a')=y. Therefore there is
a continuum L such that «',p’ eLC C(fX(V),p’) Putting N=7(L)
we have a continuum N with g,y ¢ N C U. Let € X be such that f@)=1y.
Since y e NCUCV, we have fy)Cf™N)CfHV), ie z e fY(N)
Cf~Y¥). Take a component ¢ of the set f~(X) such that # e C. The
component € is & continuum contained in V; moreover, by the confluence
of f, there exists a point p « C such that f(p) = ¢, and thus z « C{f V), ?).

Tt follows from ¢, € FIXNU that f{ya) C X\fHU) CXI\A. Take
a convergent subsequence &y, @, ... of points of X such that f(ax) = Yp,
and put # = lim z;. By the continuity of f we have z¢ Fy)CA. The

k00
sets O(fXV) ,p) are open for each e fg) C I(X) by the smoothness
of X at p, see Theorem (3.1) (ii). Thus the set X\A is closed. Since this
seb contains points @ which converge to the point ®, we conclude that
o ¢ X\A4, a contradiction.

(6.9) Examere. Put in the OCartesian coordinates in the plane
an—= (27", —1), b= (27", 0), cx=(3-27"%D,0) and dy=(3 -2—m4D) 1),
Join consecutively an, b, én, dn, and the point (0,2) by straight’ line
segment and take the closure of the union of polygonal lines obtained
in this way. The resulting continuum M (homoemorphic with the well-
known harmonic fan) is not smooth only at the point of the straight
segment joining points (—1,0) and (2, 0). Define f(z,y)= (=, |y]) for
each point (¢, y) € M. The image f(M) is a continunm which is not smooth
at any point.

Observe that the conclusion of Theorem (6.8) is not satisfied for
this example; therefore the assumption of the confluence of f in this
theorem is essential.
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A continuous mapping f of a topological space X onto a topological
space ¥ is said to be semi-confluent if for every gubcontinnum @ of ¥
and for each two components C; and C, of the inverse image f~q) either
F(0,) CF(Cy) or f(Cy) Cf(Cy) (see [12]). Observe further that the mapp-
ing f defined in Example (6.9) is semi-confluent. Thus, if fi X—f(X) is
semi-confluent, then the condition f(XNI(f(X))C f(X\I(X)) need not
be satisfied.

Recall that, if we denote by L(X) the set of all points of a con-
tinnum X at which X is locally connected, then for each continuous
mapping f: X—f(X) we have f(XNL(f(X))CFANL(X)) (see [5], (3),
p. 28). This inclusion resembles that of Theorem (6.8).

§ 7. Some remarks on the heredity of smoothness. It is easy to see
that smoothness is not hereditary. Moreover, if a continuam X is smooth
at p, then X can contain a subcontinuum K such that p ¢ K and K is
not smooth at any point. However, if X is hereditarily unicoherent at
some point and it is smooth at the point p, then each subcontinuum
containing p is smooth at p.

We can introduce the following definition. A confinuum X is said
to be hereditarily smooth at p if each subcontinnum of X which contains p
is smooth at p.

(7.1) CorOLLARY. If a continuum X dis hereditarily unicoherent at
some point and X is smooth at p, then X is hereditarily smooth at p.

In fact, according to the assumption, we infer that X is hereditarily
unicoherent at the point p by Theorem (4.3). Therefore the continuum
X is smooth at p in the sense of Gordh (see [7], p. 52, cf. § 2 here); thus
each subcontinuum of X which contains the point p is smooth at p by
(2.8) in [11], i.e., X is hereditarily smooth at p. .

Recall that a conmtinuum is hereditarily locally connected if each
subeontinuum of it is locally connected (see [9], p. 268). It follows from
Corollary (3.3) that

(7.2) COROLLARY. A continuum X is hereditarily smooth ot each point
if and only if X is hereditarily locally commected.

We also have

(7.3) THEOREM. If an arcwise connected continuum X is hereditarily
smooth at some point, then each subcontinuum of X is siooth.

Proof. Let an arcwise connected continuum X be hereditarily
smooth at p and let K be an arbitrary subcontinuum of X. Take an are pz
such that pz ~ K = {z}. We will show that K is smooth at 2. Let ,, 2, ...
be a convergent sequence of points of K and let &= lima,. Let Q be

N—»00
a subcontinuum of K such that #,2¢@. X heing hereditarily smooth
at p, the continuum pz v K is smooth at p. Therefore there is a sequence
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K,, K,, ... of subcontinua of pz v K such that x,,p ¢ K, for each
n=1,2,.. and LimK, =@ v pz by the definition of smoothness of

N->00
pz v K at p. We define @, = K ~ K,. Obviously @, is a continnum for
each n=1,2,.., and @,,2¢€Q, for each n= 1,2, ..., and, moreover,
Lim@, = Q. The proof of (7.3) is complete.
=00
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