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Closed retractions of Euclidean spaces
by

Krzysztof Nowinski (Warszawa)

Abstract. The problem of the characterization of the images of the Euclidean
spaces under closed retractions is studied. The ¢-retract of the space X is defined as
the image of X under some closed retraction. The following theorems are proved:

TerorEM L. Bvery compact retract of B is the c-relract of En.

THEEOREM 2. For every mon-compact c-retract B of B® H™wR)= 0 for m=1,...
wey —1 and if B # B® then HYwR) = 0. (H™X) denotes the m-th Cech cohomology
group of X and wX denotes the one-point (Al drow) tification of X).

, TavoreM 3. The retract R of the Euclidean plane B* is the c-retract of B if and
only if it does mot disconnect B*.

The main purpose of this paper is to apply some methods investigated
in [6] to the study of closed retractions. The paper gives some results about
closed retractions of Euclidean spaces, particularly a complete characteri-
zation of all subsets B of the Euclidean plane E? for which there exists
a cloged retraction r: E*—R.

All notions and notations which are not defined here are taken
from [1] and [2].

DEerFINITION. The c-retract of the space X is the subset of X which
is the image of X under some closed retraction.

ProroSITION. Let R be a compact retract of E™ for some n. Then B is
the c-retract of B™.

Proof. The set R is an absolute retract in the sense of ([1], Sec. V. 1).
On the other hand, R C K(0, r) for some positive 7. (We denote by O the
element (0, ..., 0) of B"). We denote by S(r) the sphere obtained by
matehing to a point the set B™K (0, r). It is clear that §(r) is a compact
metric space and the quotient mapping s: E*—8(r) is closed (see [6],
Proposition 1). Simultaneously there exists a retraction 7,: 8(r)—=R
which is closed since S(r) is compact. The composition 7= 1r,° s is the
desired closed retraction.

We denote by H™(X) the mth Cech cohomology group with integer
coefficients of the space X. We can now prove the first main result of
this paper.
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TapoREM. For every mon-compact c-retract of B", HYwR)=0 for
i <n—1 and if B # B" then H"(wR)= 0.

Proof. If n= 1, then there is nothing to prove. Suppose now that
n >1, then, by ([6], Corollary to Theorem 7) we have yB" = wB"= 8"
The closed retraction r: B*—>R can be extended to yr: yH*->yR. (It is
possible by ([8], Theorem 4).) The mapping yr is an epimorphism and
hence yr(yE™E") = yB\R, which means that yE = oR. We can there-
fore obtain a mapping s: 8"—>wR as the composition of the homeo-
morphism i: §*—>yBE" and the mapping yr. Let j: wR—8" be the extension
of the identity map of E into BE™ Since § o j == idg, the mapping (s o )™
= j™ o g™ is the identity on H™«R) for every m. So s™: H™ wR)—H™8")
is 2 monomorphism, and since H™8") = 0 for m <n—1, the groups
H™wR) must vanish for m<n—1.

On the other hand, assuming that R s B", we can easily check that
R is a proper subset of S" and hence H"(wR)= 0.

COROLLARY. If 1 < k< n, then E* cannot be & o-retract of B".

Proof. oB*= §¥, hence HYwH¥)+0 and it remains to apply
Theorem 1. :

In the case n =2 we prove the following

Levma 1. If B is a c-retract of E?, then B does not disconnect B

Proof. If R is compact, then our lemma follows from ([1], Theo-
rem V.13.1). Suppose now that R is not compact. The closure of R in
8" = wE" iz homeomorphic to wR and 8™\wR = F*\R. This means that
if BAR is not connected then so is 8™\wR. Applying to the pair (8% wR)
the Borsuk Theorem ([4], Theorem XI.3.t), we obtain an essential mapp-
ing f: wR-+8" (This means that f is not homotopical to a constant map).
Therefore we infer that the Brushlingki group sn'(wR) iz not trivial. It
remains now to observe that #'(wR) = HYwR) (see [3], Theorem IL7.1},
hence HYwR) # 0, which is impossible in connection with Theorem 1.
This contradiction ends the proof.

We can now formulate the main theorem of this paper.

TEROREM 2. The retract R of the Huclidean plane B? is the ¢-retract,

of B? if and only if it does nmot discomnect B>

Proof. The necessity of this condition is a consequence of Lemma 1
and, if R is compact, then the condition is sufficient by Proposition 1.
So it remains to prove that if B is a non-compaet retract of B and B™\RE
is connected, then R is a ¢-retract of the plane. To prove this, we formu-
late and prove four lemmas.

Lemma 2. Let f: X—Y be a continuous mapping and let ¥ be a T',-space.
If there ewists such a covering A= {A.},.s of X by compact sets that f(A)
= {f(A)}ses is @ locally finite collection, thén the mapping f is closed.

icm®

Olosed retractions of Euclidean spaces 3

Proof. Let D be a closed subset of X. The sets Ds= D ~ 8; are
compact for every se S and hence the sets f(Ds) are clogsed in Y. Se
(D)= |Jf(Ds) is the sum of a locally finite family of closed sets and

s

8 €.
hence f(D) is closed.
We now introduce the following notations:
(i) Pp= EN\K,, where s<<r and K,= K((0,0),r)C B,
(ii) if A= ACE? then K(4,r)= JE(=z,7),
zed

(iii) if (¢) = 61; &, ... 18 @& sequence of positive numbers, then we
write K(4, (s))= UK (4~ Piy, e,

(iv) it A C B, then Fi(A) (the filling of A) is the sum of 4 and all
the bounded components of the set B™A.

It is easy to check that

(i) Fi(Fi(4)) = Fi(4) for any 4 CF,

(ii) if A= A then Fi(d)= Fi(4),

(iii) if 4 C B, then Fi(4)C Fi(B).

Levma 3. If Z is a compact subset of the plane not disconnecting BP,
then for every & >0 there emists an n(Z, (¢)) > 0 such that Fi(K(Z y {2, s)))
CE(Z,¢).

The proof is an easy modification of the proof of ([1], Lemma V. 3.2)
and will be omitted.

Luvuma 4. If B is a retract of B?, then for every v, s such that 0 < r<< s
only finitely many components Wy, ..., Wy of PINR intersect simultaneously
8y and 8s.

Proof. Let us fix one of such compouneunts, W,. It contains aun arc ,
joining §; and 8;. Now, if Wi = W, then I, v Wi disconnects P¢ and
the components V; and V, of P}\(l, v W) both contain points of R.
Denoting by Az the set Wi~ 8,00, We can observe that if r: B*—R
is the retraction, then r(Ax)\P;+#@. In fact, if r(A4y) C P; then, since
AV, # 0 £ A ~V,, there exists some arc joining V; and V, and
contained in R ~ P;, which contradicts the definition of ¥, and V,. So
there exists a point ax ¢ Wi 1" ENP) ~ Spppgpe-

Assume now that there exist infinitely many components W, of P§
joining S, and Sy. We can easily repeat the construction of the point ag,
and denoting by e the accumulation point of the set A = {a,, a,, ...}
we obtain:

(i) @ € R, since S,y \E is open in 8., and the points a, are
from disjoint components of the set’ 8. g \E.

(ii) r(a)¢ IntP?, since r(a) Cr(4) and r(4d) n Pi=@.

The contradiction between (i) and (ii) establishes our lemma.
1*
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LEMMA 5. Let R be a non-compact retract of B which does not disconnect
the plane and let (€) = &, &, ... be a strictly decreasing sequence of positive
real numbers such that & << 1/16. Then there ewisls a sequence (n) = 1y, 1y, ...
of positive reals such that Fi(E(R, (1)) C (R, (s)-

Proof. We define inductively the sequence of sets X, C X, C ...C B*?
and the sequence of positive real numbers (7) = %y, #,, ... satisfying the
following conditions:

() BCRu JE(R A En, 7m) C XaC E (R, (o))

) me=1
(11) Xn= Fi(xn)y
(i) Xa\X,_, C Int PRti,

(iv) Xo\R C K, 115,

(V) XKy 13 C K (R, £,44/2)
for n=1,2,..

In the first step we construct the set X,. Let Wi, ..., Wr be the
components of PHNER intersecting both §,, and Sy, (see Lemma 4).
We select for i =1, ...,k points w; ¢ W, and we pub & = min(d(wq, R)).
Now, let Vi be the component of E™\(K,,v R) containing W;. All
bounded sets from the family Vi, .., Vs are contained in some Ky
(N > 3). We put 5, = (R ~ Kx, min(&, /2), where 5 is defined as in
Lemma 3. The set X = Fi(K(R Ky, ) R) satisties the conditions
(i), (i), (iv) and (v) given above, and if we put X, = @ then condition
(iii) is also satisfied (see Figure).

To verify this, we notice first that 9, < s, < 1/16. Hence
E(R Ky, n) URCKmU EB;

on the other hand, if 4 is a boundéd component of BXK (B~E,n R
then 4 cannot intersect both §,, and 84, which follows from the de-
finition of #,. Thus conditions (iif) and (iv) are satisfied. Condition (ii) is
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satisfied by the property (i) of the operation Fi. Conditions (i) and (v)
are also easy to check. : ‘
‘We now assume that we have defined the sets X, ..., X, , and the

numbers ny, ..., 7, satisfying conditions (i)-(v). We define X, and 7,
as follows:
Let Wi, ..., Wi be the components of PRIlA\R joining §,.,, and

Bu11u. As above, we select wye Wy and we pubt & = min(d(w:, X,_,)).
Now, let N >>n+2 be such a number that all bounded compouents of
E\(Ru K,,,,) are contained in Ky. Observe now that only a finite
number of the components @ of PpriiNX,_, intersect both S, 5, and
8, ys- Using similar arguments as in the proof of Lemma 4 we can check
that the number of such components is not greater than the number of
the components of Pp=ft ~ X, , joining 8, ;, and 8, _ys. But every
such component contains at least one of the points of R, and so it contains
some ball of diameter 7,_,/2, and those balls are mutually disjoint.

We select the points g; e Gy for every ¢ and we put & = min(d(gi, X,.,)).
We define 7, = (X, , ~ Ky, min(&, &,¢,,,/2)) and we denote X,
= Fi(Xn—l e K(‘PZ:—I DAy yy 7711.))' . ’

‘We now prove that the set X, satisfies couditions (i)-(v). The first
part of (i) and (ii) follow immediately from the definition of X,. Notice
now that all of the bounded components of F™\(X,,_, v E(P%_ , ~ X, _;, %))
are contained in PR+Y/8, which follows from the definitions of N, & and &,.
Thus conditions (iii) and (iv) are satisfied. Condition (v) and the second
inclusion of (i) are now easy to verify. This finishes the description of
the inductive step. .

We define X = | ) X,. The set X satisfies the following conditions:

n=1

(i) K(R, () C X C E(R, (¢))

(vii) Fi(X) =X = X.

Condition (vi) follows from (i). The set X is closed as the sum of the
locally finite family of closed sets X, ~» P11, Now, let U be a bounded
component of the set EX™NX. So U C Ky for some N and, since X n Ky
= Xy, 0 Ky, we have UCTFi(Xy,,), which is impossible as X,
= Fi(Xy,.).

This finishes the proocf of Lemma 5.

‘We can now return to the proof of Theorem 2.

Let r: B*~R be some retraction. If R = B?, then there is nothing
to prove; hence we can assume that R # E® We prove that there exists
a closed set P satisfying the following couditious:

(i) RCP,

(ii) 7| P is closed,

(iii) there exists a homeomorphism h: E*~>E? such that h(P) is
a closed half-plane.
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Let (2) = &, &, ... be a sequence of positive numbers such that

(iv) &<<1/16, -

(V) S”< En—11

(vi) if %,% €K,y and o(®,y) < & then g(r(a;),r(y))< 1.

Such a sequence exists because of the uniform continuity of the
mapping 7 on every closed ball. The sequence satisfies the assumptions
of Lemma 5 and hence there exists a sequence (9) == M1y Moy --. sSuch that
Fi(E(R, @) C E(B, (2)-

Tet € be such a locally finite triangulation of the plane that

(vii) if o eB and o CENK,,, then diam o< 7,

(viii) if o eB is a two-dimensional closed simplex and ¢~ R # @,
then Inte ~nR #@.

‘We put as P’ the sum of all two-dimensional closed simplexes from G
intersecting B and let P = Fi(P’). It follows from the definition of (1)
and G that P C K(R, (¢)). Let us observe now that Fr(P) is a simple
brokeu line. In fact, let us assume that a is a point of self-intersection
of Fr(P). This means that a is a common vertex of at least two two-
dimensional simplexes of G and (_P ~st(a, B)\{a} is not connected. It
can easily be checked, by using (viii) that both components of
(P ~ st(a, B)\{a} must contain points from R. Let p, qb_eneaﬂest to a
such points. It is clear that p #~ a % ¢g. Leb k=a,p v a,q and I=kv
u (k) C P. Tt is clear that the set ! disconnects the plane and that one
of the components of E™I is bounded and contains some non-void eom-
ponent of E™P, which is impossible, since P = Fi(P).

We now prove that P does not disconnect the plane. Assuming the
contrary, we denote by U,V the components of EAXP. Since BXNE is
connected, - there exists an arc I joining U and V, disjoint with E. Let
&> 0 be such 2 number that K (I,e) nR=@. We can easily check,
using similar arguments as above, that ! disconnects P and both com-
ponents of P\l are unbounded. Let N be such an integer that ny < &/2
and [ C K. Denoting by K, L the two unbounded components of P\l we
obtain that E Ky =@ # INKy. Moreover, P’ ~ (K \Ky) # 0 # P
A (INEy). Let p ¢ P' n» (ENEy) and g € P' n (INKy). It follows from the
definition of P’ that there exist =,y ¢ B such that o(p, 2) < nw, e{(g,%)
<y, p,@vq,yCP. Hence RnK 5@ # EnL and, since R n1=@,
R is not connected. This contradiction finishes the proof of the fact that
FAXP is connected.

‘We now fix a one-dimensional simplex o, = me G and we define
2 homeomorphical embedding f: E—Fr(P) as follows:

Let £|[0,1] be a linear mapping onto ¢,. Assume now that we have
defined the mapping f on the segment [%, 1] and let oz = f(k) and a; = f(I)
be the endpoints of the broken line f([%,7]). It is clear that there exist
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two one-dimensional simplexes o and o; from Fr(P)\f((k, 1)) such that
a € ok, 0y € o7. We can extend f over [k—1, I4-1], putting on the segments
[k—1, %] and [1, [+1] the uniquely defined linear maps onto ox and oz,
respectively. Since the triangulation B is locally finite, the mapping f is
closed by Lemma 2 and hence it can be extended to yf: yB >y B = oF*
= S (see [6], Theorem 4). It is easy to check that yf(#) = o, where {w}
= oF™E?, for #eyB™I'. Henee we can define the mapping I: wB*
= 8 8% = wE? which is an extension of f.

We now prove that F(E)= FrP. In fact, if that is not so, then we
can repeat this construction for some o) C Fr(P)\f(B) obtaining the
embedding f: Bx{0,1}»>FrP. It is then easy to verify that FrP
disconnects the plane into at least three components, which is impossible,
since both P and BXP are connected. We can now apply ([5], Theo-
rem 61.V.1) to obtain a homeomorphism G: 82— 8% such that G(w)= o
and G(FrP) is the equator of the sphere. It is clear that G (P) is the closed
half-plane B x [0, o). We now denote by s the retraction of E* onto P
obtained by the composition G7" o s e &, wWhere sg: E*~EX[0, o) i8
a closed retraction defined by sy, )= (=, |y]). We now prove that
F=1os i the desired closed retraction. In fact, let £ = {P n Pp_,}3.,
(we assume P7= K, if s<0). It follows from the definition of the se-
quence (), that #(P ~P:_)C Pyti and hence the family and the
mapping 7 satisfy the assumptions of Lemma 2 and thus the mapping
r| P is closed. So ¥ is & closed retraction as the superposition of two closed
vetractions and the proof of Theorem 2 is finished.
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