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On the inequivalence of the Borsuk and the
H-shape theories for arbitrary metric spaces
by
Thomas J. Sanders (Blacksburg, Virginia)

Abstract. Among the methods that have been given to extend K. Borsuk's shape
theory are the ones given by Borsuk for metrizable spaces and by L. Rubin and the
author for Hausdorff spaces. These two approaches cannot be equivalent on metrizable
spaces as the first doesn’t preserve sums and products while the second does. In this
paper some conditions are given under which the second concept is courser than the first.

1. Yntroduction. Since K. Borsuk first introduced the notion of the
shape of a compactum there have been several methods given to extend
this notion to non-compact spaces. Both Borsuk [3] and R. H. Fox [5]
have given extensions to arbitrary metric spaces. The method given by
Borsuk seems to be “internal” in nature; whereas, Fox’s method seems
t0 be “external”. L. Rubin and the author [10] have given a method
of extending the notion of shape to arbitrary Hausdorff spaces. This
method also extends the notion of shape of compact Hausdorif spaces
given by S. Marde$ié and J. Segal [8], [9]. The last method, called
«H -Shape”, seems also to be “internal” in nature.

. Tt is known [1], [6] that Fox’s definition of shape is strictly courser
than Borsuk’s; i.e., if two metric spaces have the same Borsuk shape
then they have the same Fox shape, bub not conversely. In particular,
Borsuk’s shape is not preserved under sums and products. Since the
H-shape does preserve sums and products [10], it follows that the Borsuk
shape and the H-shape are not equivalent on arbitrary metric spaces.
In this paper we give some conditions under which H-shape i3 courser
than Borsuk shape.

The author wishes to thank Dr. Leonard Rubin who read an early

_copy of the manuseript and made some important suggestions.

2. Borsuk’s shape for arbitrary metric spaces. Suppose M and N are
absolute retracts (for metric spaces) and X and ¥ are closed subsets of
I and I, respectively. A fundamental sequence from X to Yin (M, N)[3]
o= {px; X, Yhyn, i8 & sequence of maps ¢,: M—XN that satisfies th’
following condition:
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(2.1)  TFor every set A C X there is a set BC Y (being compact, if 4 if
compact) such that for every neighborhood ¥V of B (in N) there
is a neighborhood U of A (in M) and an index %, such that ig
k= ky then gplp>@puly in V. .

Given a seb A C X, a5e6 BCY is said to be @-assigned to A if B satisfies
(2.1) for the set A. Note that if B is ¢-assigned to 4, 4'C 4 and B'C Y
is a set such that B’ is compact if A’ is compact and B C B’, then B’ is
@-assigned to 4",
" If Z is a closed subset of the absolute retract P and 0={0k, Y, Z}yp
is another fundamental sequence then the composition 0p = {bpqr, X, Z} MP
is also a fundamental sequence. Note that if B is ¢-assigned to 4 and ¢
iy f-assigned to B, then O is Op-assigned to 4. If M =N and X =Y
then setting each ¢, = 1,,; M — M (the identity map) one has the identity
fundamental sequence 1x = {Lpy X, X}prp.

Two fundamental sequences ¢ = {px, X, ¥}y and 0 = {6;, X, Yhuw
are said to be homotopic, g0, if they satisty the following condition:

{2.2)  For every set A C X there is a set B C ¥ (being compact, if 4 is
compact) such that for every neighborhood V of B (in N) there
is & meighborhood U of A (in M) and an index %, such that if
k> Ky then gulp~ 0]y in V.

It is known [3] that the relation ~ on fundamental sequences is an
equivalence relation that is compositive. Note that if @e~0, ACX and
BCY (compact if 4 is compact) is a set that satisfies (2.2), then B ig
B-assigned o A if it is p-assigned to A.

If X, Y are closed subsets of absolute retracts M, N, respectively,
and o= {gx, X, Y}y, is a fundamental sequence then ¢ is called
a fundamental equivalence if there iz a fundamental Eequenee [
= {0y, ¥, X}y such that fp~1lg,, and ¢0~1y . The fundamental
sequence 0 is called the homotopy imwerse of @. If there is a fundamental
equivalence ¢ = {p, X, Y}yn then X and ¥ are said to have the same
(Borsuk) shape, Shp(X)= Shgy(¥). It is known [3] that thiy relation
depends neither on the absolute retracts M and N in which X and Y are
respectively embedded as closed subspaces, nor on the respective em-
beddings. Since any metrizable space can be embedded ag a cloged subget
of an absolute retract, the notion of Borsuk shape gives an equivalence
relation on the family of all metrizable spaces [3]. ‘

If X and Y are compact then [3] (2.1) is equivalent to:

(2.3)  For every neighborhood V of ¥ (in ) there is a neighborhoéd U

of X (in M) and an index %, such that if & > ky then ¢l opyyly
in V.
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This is the usual definition for a fundamental sequence between com-
pacta, whenever M = N = @ (Hilbert cube). In this case, we drop the
subseript @, @ and write g = {gx, X, ¥} is a fundamental sequence (in @).

In [9], Marde&ié and Segal showed that if X and ¥ are compact sub-
sets of @, then a fundamental sequence ¢= {px, X, ¥} has a related
map of ANR-sequences f: ¥ —»Y for X and ¥ inclusion ANR-sequences
associated with X and ¥, respectively.

(2.4) This relation is such that:

(1) If X C Y then an “inclusion map of systems” ¢ = (i,%): XY
(where ip: Xyp—>Yn is an inclusion map for each =) is related to the
“inelusion fundamental sequence” ¢= {15, X, ¥}.

(2) Suppose ZC @ is compact and Z is an inclusion ANR-systex.n
agsociated with Z. If f: XY is related to o= {g, X, Y}, §= ¥ —~Z is
related to 0 = {0z, Y,—Z}—and h: X—Z is related to 0p = {6xpx, X, Z}
then (Lemma 6 of [9]) hgf. )

(3) Suppose fr XY is related to ¢ = {pz, X, Y} and g: X7 is
related to 6= {0, X, Y}. Then (Lemma 5 of [9]) g=0 is equivalent
to f~g.

Z’Ing and Y are compact subsets of absolute retracts M and N,
respectively, then there exist embeddings ¢: X »@ and 7: ¥ —@. Since Q
and M are absolute retracts, there exist extensions X: @ »M and T: N @
of ¢4 o(X)= X C M and v: Y@, respectively. If ¢ = {pz, X, Y}pn
is a fundamental sequence, then é = {Tp1 X, 0(X), 7(¥)} is a fundamental
sequence (see [3]). .

Let us note several things about the relationships between ¢ and g¢:

(2.5) (1) The homotopy class of 72 is independent of the extensions X
and 7. R

(2) I XCYC M and o= t|x: X ~Q, then 1 = {T1x X, v(X), 7(X)}
is homotopic to 7 = {l¢, 7(X), v(X)}.

(3) Suppose Z is a compact subset of an absolute retract P, y: Z —fQ’
an embedding, ¥: P—@ an extension of p and T': @ N and extension
of v t(¥) =2 YCN. If 9= {6x, ¥, Z}y,p i5 a fundamental sequence
then §p = {¥0:T" Tgr, =, o(X), p(Z)} is homotopic to fp = {Pbrpi Z, o(X),

).
vt )%4) If 0= {0, X, ¥}yy 52 fundamAenta,l sequence and f~g¢ then
b= {T6; X, 5(X), z(Y)} is homotopic to p = {TgxZ, o(X), 7(¥)}. All of
these are immediate consequences of Theorem 2.1 of [11].

In the context of [7], one can combine (2.4) and (2.5) to obtain the
following proposition.

(2.6) PropoSITION. A fundamental sequence @ = {pr, X, Ylrpy be-
tween compact subsets of absolute reiracts has a related shape map f: X —X.
‘Furthermore, this relationship is such that the following hold:
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(1) If XC Y C M then the “inelusion shape map” i: X — Y is related
to the “inclusion fundamental sequence” &= {lyry X; X}azpe

@ If £ XY and g2 Y->Z are related to o= {pp, X, T}y
and § = {0k, ¥, B}yp, respectively, then gf: X —Z is related to Op
= {grfrs X, Zinp- -

@) If f: X=X and g: X~ Y are related to ¢ = {px, X, Y}y and
0={0, X, Y}y, respectively, and =0 then f=g9

Statement (1) of (2.8) implies, in particular, that the identity shape
map lx: XX ig related to the identity fundamental sequence ly,
= {1M? X! X}M,M'

3. Shape for Hausdorff spaces. A CS-system [10] is a dirvect system
X*= {X,, Pow» @} in the (compact) shape category of [7]. A CS-morphism
F=(f,f.): X*+Y*={Y,, ¢, A} consists of an increasing function
f: Q- A together with a collection of shape maps f,: X,— ¥y, such that
it o< o then Guuywyfo= fuoPaw- I the identity Ix.= (1,1,): X*>X*
and composition are defined in the usual fashion, one has a category,
denoted CS.

Two COS-morphisms F = (f,f,), G= (g, g.): X*~ X" are homotopic,
F~@, provided for each index o e there is an index Ae 4, 1> f(w),
g(w), such that guumf. = Cyuudo- It is known [10] that the relation = is
2 morphism equivalence relation in CS. :

Suppose X is a Hausdorff space. Let ¢(X) = {4 C X| 4 is compact}
be directed by inclusion. Then there is a CS-system O(X) = {4, ¢ 44, ¢(X)}
where if A C A’ then i, 4: A —A’ is the inclusion shape map. Two Hausdorft
gpaces X and ¥ are said to have the same H -shape [10], Shu(X) = Sha(Y),
if there exist CS-morphisms F: C(X)—C(¥Y) and G: C(Y)— C(X) such
that GF~Iyyy and FG~]Iyy,. The notion.of H-shape gives an equiva-
lence relation on the family of all Hausdorff spaces [10].

A A cover ¥ of a Hausdorff space X is said to be OS-cofinal if there
is a function g: ¢(X)—JF satisfying :

(1) if 4 eo(X) then A Cg(4),

(2) if 4, 4" ce(X) and AC A’ then ¢g(4)C g(4").

H*ﬂ«“ is a compact cover of X that is OS-cofinal, & defines a CS-gystem
X' ={A,i,4,5} where if 4,4' e and ACA" then i, A->A" is
the inclusion shape map. It is known [10] that the shape of a Hausdorff
space X is completely determined by any compact cover F of X that
is C8-cofinal. That is, if X and Y are Hausdorff spaces and & and § are
compact covers of X and Y, respectively, that are OS-cofinal then
Sha(X) = Shp(Y) iff there exist OS-morphisms F: X* = {4, 4,,, F}~> ¥
= {B, jpw, 9} and ¢: ¥*-X* such that GF~Iy, and FG=Iy..
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4. Observations and examples. Suppose X and ¥ are closed subsets
of absolute retracts M and N, respectively, and = {p,, X, Yy i8
a fundamental sequence. If ¥ and § are compact covers of X and ¥,
respectively, that are OS-cofinal then for each A ¢  there is a B €8 such
that B is p-assigned to A. This means that ¢ , p = {pys A, B}y is atunda-
mental sequence between compacta; and hence, there is a related shape
map fup: A—B. If A’CA and BCE, let §={l,, A’y A}y and
n={ly, B, B'ly,y denote the inclusion fundamental sequences and
it A’>A and j: B—B’ the inclusion shape maps. Then ¢ 4zs="1Pr5
and thus f,zi= jfe 5 I cne can find an increasing function f: F-§
such that f(A) is @-assigned to A then there is a CS-morphism
F=(f,fg): X*>X* where fy=faiya: A~f(4) Is related 0 @45
= {pp, A, f(A)}y. We say the pair (§,S) is ¢-compatible: whenever
such a function f: ¥ —§ exists and the function f: F—§ is called a p-com-
patibility function. The OS-morphism F = (f, f,): X*-Y* is said to be
induced by . ‘

(4.1) ProrosITION. If 9= {9, X, Y}un s a fundamental sequence
and f, g: F -G are g-compalibility funclions belween compact covers F, 8
of X, Y, respectz‘vely: that are CS-cofinal, then the respective induced maps
F=(ff): X'» X" and G=(g,404 X*>5 Y* are homotopic.

Proof. If A ¢ F, choose B €§ such that BD f(4) v g(4). Then B is
@-assigned to 4 and both ji apfa 804 Jyspg, are related to ¢4
= {9 A, Blyry- ThUS Jyapfa = Jpupds and Fe G.

(4.2) ProrosrrioN. Suppose X is a closed subset of an absolute re-
tract N and F,F' are compact covers of X that are CS-cofinal. Then the
pair (F, F') is Lx 2~ compatible, where 1z yr= {135, X, X}prar 18 the identity
fundamental sequence. )

Proof. Let f': ¢(M)—»F be the function guaranteed by ¥ being
0S- cofinal. The function f = f'|g: F—F' is a Lx - compatibility function.

The proof of the following is clear.

(4.3) ProrposrrioN. The identity CS-morphism Ize= (1,1,): X*-x*
is induced by the identity fundamenial sequence.

(4.4) PROPOSITION. Suppose ¢ = {5y X, Ty and 0= {0, ¥, Zinp
are fundamental sequence and F, S, 3& are compact covers of X, ¥, Z, re-
spectively, that are CS-cofinal. If (¥, §) is @-compatible and (8, 1) 8
6-compatible, then (F, k) is Og- compatible.

Proof. Let f: F—»8 be a ¢-compatibility function and g: §—3 be
a §-compatibility function. It is routine to verify that gf: -3 is a ¢f-
compatibility function.
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(4.5) CoROLTARY. Suppose ¢ = {py, X, Y}px is @ fundamental sequence
and (5, ) s a g-compatible pair. If 5,8 are compact covers of X, ¥,
respectively, that are OS-cofinal then (5',8') is & @-compatible pasr.

Proof. By (4.2), (5, F) is 1x »-compatible and (S, §') is 1y y-com-
patible. Applying (4.4), (§',§') is @-compatible.

(4.6) CorozLARY. If F= (f, f): X*>T* is induced by @ and &
= (g, gs): Y*=Z* is induced by 0, then GF = (gf, Inayfa): X*—2* is
induced by Op. N

(4.7) PROPOSITION. Suppose ¢ = {p,,, X, Yy and 0= {0,, X, Yhw
are homotopic fundamental sequences and that (F, 8) s both @ and §- com-
patible pair. If F= (f,f,), ¢ = (g, g,): X*> T* are induced by @, 6, re-
spectively, then F~ @, T

Proof. Let 4 ¢ F. Since @0 there is a Beo(Y) satisfying (2.2).
Choose B’ ¢§ such that B'D B, f(A), g(4). Then ¢, 5 = {p,, 4, BYyw
and 0,4 5 = {0, 4, B}, are homotopic fundamental sequences. Let
£={1y,f(4), Blyy and 7= {1y, g(4), B'}y,y be the inclusion funda-
{nenta,l sequences. Then &gy )= @i 845 = 18444 This implies
Inawfs= Jyapds; and hence, F~ @.

(4.8) CorOLLARY. If ¢ = {p,, X, Yy and 0= {0;, X, X}y, are
homotopy inverse fundamental sequences and there exist compact covers F, §
of X, Y, respectively, that are OS-cofinal and such that (7, 0(X)) 45 - com-
patible and (8, (X)) is 0-compatible then Shy(X) = Sha(Y). -

Proof. Since (¥,¢(Y)) is g-compatible and (8, ¢(X)) is 6-com-
patible, it follows from (4.5) that (&,9) is g-compatible and (Q_, F) is
8-compatible. Let F=(f,f,): X*>¥* and G — (9,98): Y*->X* be
OS-morphisms induced by ¢ and f, respectively. By 4?4, (F, &) is Op-
compatible and (§, §) is #8-compatible. Applying 4.2, 4.3, 4.6, and I.T?,

it follows that GF~Ty. and FG~1I 7o

(4.9) ExAMprE. Suppose there is a compact cover F = {4, weQ}
of X that is 0S-cofinal and such that each A ¢ & has only finitely many
A’ ¢F for which A’e 4. This will occur, for example, whenever X ig
paracompact and locally compact (see Bxample 3 of [10]). If A e,
let 7(4) = card {4’ ¢ F| A’C A}, By induction on 75(4), it is routine
to construct a ¢-compatibility funetion f: F—¢(X)

(4.10) CoroLrARY. If X and Y are locally compact metrizable spaces,
then Sha(X) = Sha(¥) implies Shy(X) = Shu(¥). '

(4.11) Note. Corollary 4.10 implies, in particular, that if X and ¥ are
closed ,subsets of B (Buclidean n-space) and Shp(X) = Shy(Y) then

icm®
Shg(X) = Sha(Y). Example 3.4 of [1] gives an example for which X and ¥

may be embedded as closed subsets of E? Sha(X) = Shg(¥), but Sha(X)
# Sha(Y).

’
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(11
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