Mutational retracts and extensions of mutations
by
S. Godlewski (Warszawa)

Abstract, Let X be a closed subset of a metrizable space X’ considered as a closed
subset of an ANR ()-space P. A mutation [9] r: U(X’, P)—>U(X, P) is called a mu-
tational retraction if r(z) = o for every r er and x « X. If there exists a mutational re-
traction r: U(X’, P)->U(X, P) then the set X is called a mutalional refract of the
space X',

Every fundamental retract [3] of a space X’ is a mutational retract of X, but
not conversely. Every compact mutational retract of a space X’ i8 a fundamental re-
tract of X’.

Tn the natural manner we define a mutational neighbourhood refract of a space X',
mutational absolute retract (MAR) and mutational absolute neighbourhood reiract (MANR).

Every FAR-space (FANR-space) [3] is a MAR-space (MANR-space), but not
conversely. Every compact MAR-space (MANR-space) is a FAR -space (FANR -space).

In order to extend some standard notions of the homotopy theory
onto arbitrary compacta K. Borsuk introduced in [2] the notion of the
fundamental sequence from a compactum X to a compactum Y. Replacing
maps by fundamental sequences one can obtain generalizations or modifi-
cations of many standard notions. In this manner K. Borsuk introduced
in [3] the notions of the fundamental retract, the fundamental absolute
retract and the fundamental absolute neighbourhcod retract, which are
generalizations of the notions of the retract, the absolute retract, and
the absolute neighbourhood retract, respectively. Analogously in [4]
K. Borsuk introduced the notion of shape, which is a modification of
the homotopy type. In [5] and [6] these notions were extended to arbi-
trary metrizable spaces. Independently, in [9] R. H. Fox extended the
notion of shape to arbitrary metrizable spaces, introducing the notion
of the mautation, as a modification of the notion of the fundamental
sequence.

In this paper, replacing fundamental sequences by mutations, we
introduce the notions of the mutational retract, the mutational absolute
retract and the mutational absolute neighbourhood retract, as general-
izations of the mnotions of the fundamental retract, the fundamental
absolute retract, ‘and the fundamental absolute neighbourhood retract,
respectively.
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§ 1. Basic notions. In this section we recall some definitions from [5],
[6], and [9].

Consider closed subsets X and ¥ of metrizable spaces P and @,
respectively. A fundamental sequence = {fe, X,Y}pg from X to ¥ in
P, is defined to be an ordered triple consisting of X, ¥ and a sequence
of maps fy: P—@, k= 1,2, ..., satisfying the following two conditions:

(L.1) For every neighbourhood ¥V of ¥ (in @) there exists a neighbour:

hood U of X (in P) such that fi|U=f,.,|U in V for almost all %.

(1.2) For every compactum A C X there exists a compactum BC Y
such that for every neighbourhood V of B (in @) there exists
a neighbourhood U of A (in P) such that f,| U= fr,|U in V for

almost all %.

Two fundamental sequences f= {
are called homotopic (notation: fx=g)
satistied:

(1.3)

w Xy Yipg and g={g;, X, Y}pq
if the following two conditions are

For every neighbourhood V of ¥ (in @) there exists a neighbour-
hood U of X (in P) such that fx|U=:gx|U in V for almost all %.

(1.4) TFor every compactum A C X there exists a compactum BC Y

such that for every neighbourhood V of B (in Q) there exists

a neighbourhood U of 4 (in P) such that fi|U=>ge|TU in V for -

almost all Z%.

A composition of fundamental sequences f= {f;, X, Y}po and
g=1{gx, ¥, Z}gr is defined to be the fundamental sequence g¢f
= {grfx, X, Z}p - The fundamental sequence ix = {ix, X, X}pp, where
ig: PP, k=1,2,.., is the identity map, is called the fundamental
identity sequence.

By the Kuratowski-Wojdyslawski theorem ([1], p. 78) any metriz-
able space X may be considered as a closed subset of an AR(IN)-space P.
Two metrizable spaces X and Y are said to be of the same skape in the
sense of Borsuk (notation: Sh(X) = Sh(Y)) if there exist two fundamental
sequences f= {fy, X, ¥}py and g = {gx, ¥, X};p where P and @ are
AR(IM)-spaces containing X and ¥, respectively, as closed subsets,
such that

(1.5)

I=h

g~iy and gf~ix.

It the fundamental sequences f and g satisfy the first condition of (1.5),
then the shape of X (in the sense of Borsuk) is said to dominate the shape
of ¥ (notation: Sh(X) > Sh(X)).

If X is a closed subset of a metrizable space X’ and X' is. a
closed subset of an AR(M)-space P, then a fundamental sequence
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r = {rp, X', X}p p such that ry{@)= o for every e X and k=1,2,..,
is called a fundamental retraction of X' to X. If there exists & fundamental
retraction of X' to X, then X is said to be a fundamental retract of X'.
A closed subset X of a metrizable space X' is said to be a fundamental
neighbourhood retract of X' if there exists a closed neighbourhood Wof X
in X' such that X is a fundamental retract of W.

A metrizable space is called a fundamental absolute = retract
(notation: X ¢ FAR) if for every metrizable space X', containing X as
a closed subset, the set X is a fundamental retract of X'. A metrizable
space X is said to be a fundamental absolute neighbourhood retract (no-
tation: X ¢ FANR) if every metrizable space X' containing X as a closed
subset, the set X is a fundamental neighbourhood retract of X',

Let X be 2 closed subset of an ANR()-space P. The family U(X, P)
of all open neighbourhoods of X in P is called a complete neighbourhood
system of X in P.

Consider two arbitrary complete neighbourhood systems U(X,P)
and V(¥, Q). A mutation f: UX,P)>V(X,Q) trom U(X, P) to V(Y,Q
is defined as a collection of maps f: U—7V, where U ¢ U(X, P),V e V(X, @),
such that ) -

(16) I fef, f: U=V, U'CU, U'cUX,P), VCV' eV(T, Q@) and
f: U'»V is defined by f'(z)= f(«) for e U’, then f'ef;

(1.7)  Hvery neighbourhood Ve V(Y,Q) is the range of a map fef;

(1.8) I fi,facf and fi,for UV, then there exists a U’ e U(X, P)

such that U'C U and f11U =f|TU".

It U(X, P) is a complete neighbourhood system, then the collection z
of all inclusions u: U’ — T, where U’, U e U(X, P) and U’ C U, is & mu-
tation from U(X,P) to itself.

Oonsider two mutations f# U(X,P)-»V(¥Y,Q) and g: V(¥,Q)
- W|(Z, R). The composition gf: U(X ,P)»W(Z, R) of the mutations f
and g is the mutation constituting the collection of all compositions gf
such that fef, geg and gf is defined.

Two mutations f, g: U(X,P)—V(Y,Q) are homotopic (notation:
f=g) it

(1.9) For every fef and geg such that f,g: U7V there exists

a U’ U(X,P) such that U'C U and f|U" ~g|U"

By the Kuratowski-Wojdystawski theorem ([1], p. 78) any metrizable
space X may be considered as a closed subset of an ANR(IN)-space P.
Two metrizable spaces X and Y are said to be of the same shape in the
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sense of Fox (notation: ShX =ShY) if there exist two mutations
£ UX,Py=V(Y,Q) and g: V(Y,Q)—U(X,P) such that
(1.10)

fe~y and  gf=u

where u and v are mutations consisting of all inclusions in systems U(X, P)
and (Y, Q), respectively. If the mutations f and g satisfy the first con-
dition of (1.10), then we say that the shape (in the sense of Fox) of X
dominates the shape of ¥ (notation: ShX =8hY).

Remark. In [9] R. H. Fox introduced the notion of the shape in
an arbitrary category and specialized this notion to metrizable spaces.
Some definitions given above differ only formally from Fox’s original
definitions.

§ 2. Extensions and restrictions of mutations. Let X and ¥ be closed
subsets of ANR(I)-spaces P and @, respectively. Consider a map
f: X»Y. Then there exists a Uy U(X, P) and a map f: U,—»@ such
that f(e) = f(@) for every # ¢ X. The map J determines uniquely a mu-
*tation f: U(X,P)—V(Y,Q) consisting of all maps g: FHVY n U=V
defined by g(a)= (@), where UC U,, UeU(X,P) and Ve V(Y,Q).
The mutation f is ealled an eztension of the miap f ([9], p. B4).

Tet X be a closed subset of a metrizable space X’ considered as
a closed subset of an ANR(M)-space P and let ¥ be a closed subset
of an ANR(IM)-space Q. We say that a mutation f': U(X’, P)-»¥(X, Q)
is an extension of a mutation f: U(X, P)— V(¥, Q) (and then f is called
a restriction of f') if for every fef there exists an f'ef’ such that f'(»)
= f() for every = ¢ X and range f’ = range f (by range f we denote the
‘range of f).

Let us prove that

(21) If a map f': X' > Y is an extension of a map f: X—Y and
mutations f: U(X, P)» V(Y,Q) and f': U'(X', P)-> V(X, Q) are extensions
of the maps f and f', respectively, then f' is an extension of f.

Pro of; The mutation f consists of all maps g: f”‘l(V) N UV defined
by (@) = F (), where J: U,—Q, U, e U(X, P), f () = f{») for every weX,
UCU,, UeUX, P), VeV(Y,Q). The mutation f’ congists of all maps
g: fV)n UV defined by g'(e)= F'a), where J': U@, U,
cU(X',P), Flo)=F"(x) for every weX' U'CU,, U <U(X,P)
VeV(Y,Q).

Take an arbitrary g e f, g: J™(V) ~ U—V. From the definition of f’
there exists & g’ ef such that ¢': '~ (V) ~ U' V. For every w e X we
have g'(a) = }'(#) = () = f(2) = }(2) = g(«) and range ' = V = rangey.
Thus, f' is an extension of f.
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(2.2) If j: U(X, P) - U'(X', P) is an extension of the inclusion j: X X',
then for an arbitrary mutation f': U'X', P)-¥V(¥, Q) the mutation fj:
U(X,P)-V(Y,Q) is a restriction of f'.

Proof. Take an arbitrary fef’j. By the definition f= f’j’, where
fref and j e, ie. j J7YV)~ UV, where j: Upy—@Q is a map such
that j(&) = j(») for every e X, Uy« UX,P), UCU,, UeUX,P)
Ve V(Y,Q). For every #eX we obtain f(a)= fli@) = 15 (@) = f'§ ()
= f'(x) and obviously range f= range f’. Thus, f7j is & restriction of f'.

(2.3) TueorEM. If mutations f, g: UX,P)-»V(Y,Q) are both re-
strictions of a mutation f': U'(X', P)—V(Y,Q), then f=g.

First we prove the following

(2.4) TLmvwma. If X is a closed subset of a metric space X'y Z is an

ANR(I) - space and maps },F: X' Z are boih estensions of a map f: X7,
then there exists o neighbourhood U of X in X' such that flu=F|T.

Proof. Let F: X x <0, 1xu X' x{0,1}—»Z be a map defined by the
formula

flw) for xeX and 0<tkl,
F(z,1) = Fl@y for xzeX and =0,
@) for weX’ and t=1.

Obviously, F is well defined and continuous. Since Z is an ANR(IN)-space
and the set X x<0,1> v X'x {0,1} is closed in X'x<0,1), there exists
a neighbourhood W of X x<0,1) v X' x {0, 1} in X' %<0, 1) such that
there exists an extension F: W—2Z of F. By the compactness of the unit
interval there exists a neighbourhood U of X in X’ such that Ux<0,1>
C W. The restriction F|U x(0,1) is & homotopy joining the maps flu
and F|T.

Proof of Theorem (2.3). Take two arbitrary maps f, and g,
belonging to fand g, respectively, with a common domain and a common
range, i.e. fy, go: Up—Vy, where Uge U(X,P), V,eV(X,Q). Since f’ is
an estension of f, there exists an fef’ such that for Ug—7V,, where
U, e U'(X', P) and fo(z) = fo(@) for every 2z e X. Since f’ is also an ex-
tension of g, there exists an f; e f' such that fi: U, -V, where Uy e U'(X', P)
and fi(x) = go(x) for every zeX. By the definition of a mutation there
exists & U,e U'(X', P) such that U;C Ug ~ U: and f,| Uy 17U, (see (1.8)).
By the first theorem of Hanner ([11, p- 96) ¥, is an ANR(I) - space.
Hence by Lemma (2.4) there exists a Us e U(X, P) such that U, C Uy
~ T, and fi|Uy=f|U, and f;|U; =gl Ui- Therefore we have obtained
Fol Uy fs| Uy f1l Uy = go| Uy - Thus fo= g (see (1.9)) and the proof is concluded.

4%
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Tt is obvious that

(2.8) If f: UX,P)»V(Y,Q) 18 an extension of a mutation
£ UX,P)>V(Y,Q) and f": U"(X", P)—V(X,Q) is an estension of f',
then f'" is an ewtension of f.

§ 3. Mutational retractions and mutational retracts. Let X be a closed
subset of a metrizable space X' considered as a closed sebset of an
ANR(I)-space P. We say that a mutation r: U'(X’', P)»U(X, P) is
a mutational retraction if r(z) = 2 for every r er and for every zeX
(compare the definition of the fundamental retraction, [3], p. 58, [6] p. 82).

Let us prove the following

(3.1) TumorEM. Suppose P and @ are ANR(IN)-spaces, X' and ¥’
are closed subsets of P and Q, X and Y are closed subsels of X' and ¥’
respectively, and h: X' =X’ is a homeomorphism such that h(X)= Y. I]’”
there exists o mutational retraction r: U'(X', P)—~»U(X, P), then there ewists
a mutational retraction v': V'(X',Q)— V (X, Q).

Proof. Since ¢ is an ANR(I)-space, then there exists a map
ke Uy—Q such that hy(x) = h(z) for every ¢ X, where U, e U(X, P).
Take an arbitrary Ve V(Y,Q). Then ki (V) n Uge U(X, P). Take an
arbitrary U « U(X, P) such that U C hg(V) n U,. Since r is a mutation
then (see (1.7)) there exists an » e ¥ such that #: U’ — U, where U’ e U'(X', P).
By the first theorem of Hanper ([1], p. 96) U’ is an ANR(IN)-space.
‘Therefore there exists a map h": V'—U’ such that A'(y)= h~Yy) for
every y ¢ Y', where V' e V'(¥’, Q). Let us define the map »': V' -V by
the formula ! :
7'(y) = hoTh'(y)

Let 1’ be the collection of all maps # defined in this way. Let us prove
that r': V/(¥', @)~ V(¥,Q) is a mutation. '
Ta,k(f an arbitrary map 7; e ¥, 7;: Vi —V,. Take arbitrary neighbour-
. hood§ Ve V(X',Q) and V,e V(Y,Q) such that V,CV,; and V,C7V,.
09ns1der the map r5: V,—7V, defined by the formula ry(y) = »i(y) for
every y ¢V,. We want to show that r; e ¢’ (see (1.6)). Since 7y € ¥, there
exist U, e U(X, P), U; e U'(X’, P) and r, ¢ ¥ such that U, Chyy(Vy) n T,
7t U;—» Ty and P v

for every yeV’.

71(y) = hory e(y)

where h{ ViU, is a xoap such that hy(y) = h~*(y) for every y ¢ ¥'. Let
us d(lefme the map hy: V;~T; by the formula hyy) = hi(y) for every
y € V,. Then for every y ¢V, we have

for every yeVy,

horihily) = horyhi(y) = 73(y) = 7i(y) -
Theyefore r; ¢ ¥'. Thus the collection ' satisfies the condition (1.6).
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Tt is obvious that the collection »' satisfies the eondition (1.7 )
Now, take two arbitrary maps rg,7;er’ Wwith a common domain

and a common range, Le. 15, 7y V'V, where V' e V/(¥', @), Ve V(Y,Q).

By the definition of the collection r’ there exist U,, Uy e UX,P), U, U,

e U'(X’, P) and 1y, 7,er such that Uyw U,C WY V) A Uy, 12 Ug—= Uy,

re U,—U, and

5(y) = hoshe(y) ry(y) = horyhyly) for every ye v,

where hy V' U, and hy: V'—U, are maps such that
hiy) = hily) = hy) for every ye ¥’

Sinee r is a mutation, there exists a Us e U'(X’, P) such that (see (1.8))
U;C Uy U, and

(3.3)
Take Vje V'(Y’, Q) such that
ViCTV ABHTY A BT -

(3.2)

1| UgrJU; in Ugv U

Moreover, by (3.2) and Lemma (2.4) we can require V4 to be such that

(3.4) WV hVy in U;.
Tt follows by (3.3) and (3.4) thab
Tsh;W;zr,‘h;(V{; in Uyv U,.

Hence horgha|Veo byt hyVs in V. Therefore Vo= ry|Vy. Thus, the col-
Jection ' satisfies the condition (1.8). Therefore ¥’ is a mutation.

Now, take an arbitrary map " er’ and an arbitrary y e ¥. Then
we have

#(y) = Rt (y) = hth7HY) = hahTH(Y) = My =19 .

Thus, » is 2 mutational retraction and the proof is finished.

We say that a closed subset X of & metrizable space X’ is a mutational
retract of X' if there exists a mutational retraction r: U(X', P)»U(X, P),
where P is an ANR(M)-space containing X’ as a closed subset. By
Theorem (3.1) the choice of an ANR (I)-space P and the manner of
imbedding of X' into P, as a closed subset, is immaterial. Moreover, it
follows by Theorem (3.1) that the notion of mutational retract is topo-
logical invariant.

Consider two metrizable spaces X
spaces P and @, respectively, and let f= {fr; X, X}po

and ¥ contained in ANR(IM)-
be a fundamental
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sequence. Let us denote by f the collection of all maps f: U~7V, where
UeUX,P), VeV(Y,Q), that are such that
(3-5) feflU

(compare (4.5) of [9], p. 57). It follows by (1.1) that fis a mutation from
U(X, P)to V(X,Q) (cf. [9], p. 57). It will be called the mutation associated
with the fundamental sequence f.

in V for almost all %

§3.6) THEOREM. Suppose 1= {ry, X', X}pp is a fundamental re-
traction 'omd r: U'(X’, Py U(X, P) is the mutation associated with v. Then
there exists & mutational retraction r': U'(X', P)~U(X, P) homotopic to r.

Proof. By hypothesis we have ry(z)=ao for every zeX and
k=1,2,.. Let us denote by r’ the collection of all maps r ¢ r such that
r(z) = o for every x ¢ X. Let us prove that »' is a mutation.

Take an arbitrary map r; € ¢, 1 Uy~ Uy, Uy e U'(X’, P), U, ¢ U(X, P).
Take U;e U(X',P) and U, e U(X,P) such that U,C U, and U, ,C U.
and consider the map 7;: U;—U, defined by the formula #)(x) =D 7 (m;
for every z ¢ U;. Since rj e r’, we have r; e r, and since r is a mutatioon
we have by (1.6), 7; e r. Moreover, for every @ ¢ X we have #/(x) = 1)(z) = w’
Therefore r; e r'. Thus, the collection »’ satisfies the condition (f'.6). .

Now, take an arbitrary neighbourhood U e U(X,P). Since r is
a fundamental sequence, by (1.1) there exist a neighbourhood U’
eU'(X’, P) and a natural number % such that r{U)CU. Let r: U'»T
be t.he map defined by the formula r(x) = ry(x) for every we U'. It is
obvious that rer’. Thus, the collection ' satisfies the condition (1.7).

Now, take two arbitrary maps 5, r; € ' with a common domain and
& COMmMON Tange, Le. 13, 73t Uy~ U,, where U, ¢ U'(X’, P), U, e U(X, P).
Sl%lce r’z, 73 € ¥ and r is a mutation, by (1.8) there exists a neighbour]good
Us « U'(X', P) such that U;C U, and 75| Uj~r|U,. Therefore the col-
leemosg ¥ s?tisfies the condition (1.8). Thus, r is a mutation.

ince for every rer’ an i
o e 10 retmcj;ion. d for every x e X we have r(z) =, r is

It is obvious that ¢’ is a restrictio L
obtain ¥'~r and the proof is concludercll.()f " Hence by Theorem (2.3) we

By Theorem (3.6) we obtain the following

(8.7) CororLARY. If X is o fundament
. al ret ! i
& mutational retract of X'. ot of X then X

Remark. The converse of (3.7) is not tr . A i
Vil bs gven 11 5 ] (8.7 rue. A corresponding example
Since every retract of X’ is a fundament
) ntal retract of X’
by (3.7) we ‘get the following o L0 v 8

3.8) Coro . ! ’ ; ;
mwt(of é{". LLARY. If X is a retract of X', then X is a mutational re-
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It is obvious that

(3.9) If r: U'X',P)»UX,P) and ¢: U'(X",P)-U'(X", P) are
mutational retractions, then the composition rv': U"(X", P)>U(X, P) is
a mulational retraction.

Hence we obtain the following

(3.10) CororLarY. If X is a mutational retract of X' and X' is
a mutational retract of X", then X is a mutational retract of X",

We say that a mutation f: U(X,P)~V(¥,Q) is a h-mulation if
there exists a mutation g: V(¥,Q)—U(X,P) such that fg=~v, where
v: P(Y,Q)—> V(¥,Q) is a mutation consisting of all inclusions of the
system V(¥,Q) (compare the definition of the h-fundamental sequence,
[3] p. 59). By the definitions the existence of a h-mutation f: U(X, P)
- V(Y, Q) is equivalent to the inequality ShX > ShY.

It follows by (3.5) of [10] that

(8.11) A mutation associated an h-fundamental sequence 1S an h-mu-
tation. '

Let us prove that

(8.12) Bvery mutational retraction is an h-mutation.

Proof. Consider an arbitrary mutational retraction r: U'(X’, P)
- U(X, P). Let j: U(X,P)-U’(X", P) be the extension of the inclusion
j: XX’ and let u: U(X, P)->U(X, P) be a mutation consisting of all
inclusions of the system U(X, P). We shall prove that rj=u.

By (2.2) rjis a restriction of r. Let us prove that is also a restriction
of r. Take an arbitrary map % eu Then u: Uy—=U,, Uy, Uye U(X, P),
U,C U, and u(z) =« for every z e U;. Since r is a mutation, by (1.7)
there exist U’ ¢ U'(X’, P) and r e r such that r: U’ U,. Since r is & mu-
tational retraction, we have r(z)= = u(2) for every » e X. Therefore
u is a restriction of r. Hence, by Theorem (2.3), we obtain #j~u. Thus,
r is an h-mutation.

By (8.12) we obtain the following

(3.13) COROLLARY. If X is a nustational retract of X', then Sh.X < ShX'.

By propositions (4.6) and (4.7) of [9] (p. 57) for compacta the re-
lation ShX < ShX’ is equivalent to the relation Sh(X) < Sh(X'). Hence
by (8.13) we obtain the following : :

(3.14) COROILARY. If a compactum X is a mutational reiract of a com-
pactum X', then Sh(X) < Sh(X').

~ Remark. For non-compact metrizable spaces (3.14) is not true.
A corresponding example will be given in § 6.
Let us prove that
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(3.15) If X' is a dlosed subset of a metrizable space X", X is a closed
subset of X' and X is o mutational retract of X", then X is a mutational
retract of X'.

Proof. By hypothesis there exists a mutational retraction r: U (X", P)
-U(X,P). Let j: UX',P)~»U"(X",P) be the extension of the in-
clusion j: X’ — X", Tt is easy to see that rj: U'(X’, P)»U(X, P) is a mu-
tational retraction. :

Let us denote by @ X, the sum of the family {X;},., of disjoint

tel

spaces (see [8], p. 70).
(3.16) TumorEM. If X; is a mutational velract of X; for every te 1T,

then @ X; is o mutational retract of @ X;.
teT tel
Proof. By hypothesis, for every fe T there exists a mutational

retraction re Uj(X;, P)—> U(X;, P), where P, is an ANR(IR)-space
containing X; as a closed subset. Let X = @ Xy X' = (—D X, P= (-B P,

Obviously X is closed in X’ and X' is closed in P. By Theorem 8.1 of [11]
(p. 98) P is an ANR(IR)-space. Consider the complete neighbourhood
systems U(X, P) and U'(X’, P). Let r be the collection of all combinations
of maps 7t e ¢, i.e. r congists of all maps r: U'—-U, where U’ e U'(X’, P)
and U e U(X, P), such that for every #e U ~P; we have r(x) = rqz),
where 7 er;. It is obvious that r: U'(X’, P)-»U(X, P) is a mutational
retraction. Thus, the proof is concluded.

(8.17) THrOREM. If X is a mulational refract of a melrizable space X’
contained as a closed subset im an ANR(IN)-space P, then for every mu-
tation f: U(X,P) - V(Y,Q) there exists an extension f': U'(X’, P)
~V(Y,Q) of f. :

Proof. By hypothesis and Theorem (3.1) there exigty a mutational
retraction r: U'(X’, P)»U(X, P). Let us put f' = fr: U'(X’, P)-V(Y, Q).
Let us show that f’ is an extension of f. Take an arbitrary map fef,
f: U-V. Since r is a mutation, then by (1.8) there exists an # ¢ p such
that r: U’ U. Let us put f' = fr. Then we have f’ e f', () = fr{z) = f(#)
for every # e X and rangef’ = rangef. Thus, f’ is an extension of fand
the proof is finished.

Let X be a closed subset of a metrizable space X’. We say that X is
a mutational neighbourhood retract of X' if there exists a closed neighbour-
hood W of X in X’ such that X is a mutational retract of W (compare
the definition of the fundamental neighbourhood retract, [3] p. 89, [6] p. 84).
Obviously, this notion is a topological invariant.

By (3.7) we obtain the following

(8.18) CororrarY. If X is a fundamental neighbourhood retract of X'
then X is a mutational neighbourhood retract of X'.

icm
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Remark. The converse of (3.18) is not true. A corresponding example
will be given in § 6.

By Theorem (3.17) we get the following

(3.19) CoroLLARY. If X is & wmutational neighbourhood retract of
a melrizable space X' contained as a closed subset in an ANR(IN)-space P,
then there exists a closed neighbourhood W of X in X' such that for every
mutation f: U(X, P) - V(Y, Q) there exists an extension f': U(W,P)
—+V(Y, Q) of f.

By Theorem (3.16) we obtain the following

(8.20) CororiAwry. If X, is a mulational neighbourhood retract of X

for every te T, then @ X, is a mutational neighbourhood retract of @ X;.
teT el
Remark. For fundamental retracts and fundamental neighbour-

hood retracts theorems analogous to (3.16) and (3.20) are not true.
A corresponding example will be given in § 6. If the set T is finite, then
analogous theorems for fundamental retracts are also true. The simple
proofs are left to the reader (compare the proof of Theorem (4.3) of [10]).

§ 4. Mutational absolute retracts and mutational absolute neighbourhood
retracts. We say that a metrizable space X is a mutational absolute retract
(shortly: MAR) if, for every metrizable space X’ containing X as a closed
subset, the set X is a mutational retract of X’'. A metrizable space X i8
said to be a mutational absolute neighbourhood retract (shortly: MANR)
if for every metrizable space X' containing X as a closed subset, the set X
is a mutational neighbourhood retract of X’ (compare definitions of FAR
and FANR, [3] p. 65, [6] p. 94). By Theorem (3.1) these notions are
topological invariants.

It is obvious that

(4.1) Boery MAR-space is a MANR-space.

It follows by (3.7) that

(4.2) Bvery FAR-space is a MAR-space.

Hence by (22.3) of [6]

(4.3) Every AR(M)-space is MAR-space.

It follows by (3.18) that

(4.4) Bvery FANR-space is o MANR -space.

Hence by (22.3) of [6]

(4.5) Every ANR(IM)-space is a MANR -space.

Remark. The converses of (4.1)-(4.5) are not true. Corresponding
examples will be given in § 6.

(4.6) TEHROREM. Every mutatwnal retract of & MAR-space is « MAR-
space.
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First we prove the lemma concerning the metrizability of the
h
matching X v Y of spaces X and ¥ (see [1], p. 116).

(4.7) LevwA. If X and Y are disjoint metrizable spaces, X, is a closed
subset of X, h: Xy—X is & homeomorphical imbedding such that h(X,) is

h
a closed subset of ¥, then X v Y is a metrizable space.

In [12] (p. 95) J. Nagata has proved the following
(4.8) TemoREM (Nagata). If a topological space R can be represemied
in the form R = 8,, where {8,| a e A} is locally finite and 8, are closed
acd
metrizable subspaces, then R is metrizable.

Proof of Lemma (4.7). Let ¢: X® Y-X Y be a matural
mapping (see [8], p. 83). It follows by the hypotheses that the set ¢(X)
is homeomorphic to X, ¢(¥) iz homeomorphic to ¥ and the sets ¢(X)

) ‘
and ¢(Y) are closed in X C Y. Hence by Theorem (4.8) we obtain

Lemma (4.7).

Proof of Theorem (4.6). Take an arbitrary MAR-space X and
let X, be a mutational retract of X. Take an arbitrary metrizable space X’
containing X, as a closed subset. We can assume that X n X' = X,.
By Lemma (4.7) we can define a metric in the set X v X’ such that the
spaces X and X’ are closed subspaces of X v X’. By the Kuratowski-
Wojdystawski theorem ([1], p. 78) the space X v X' may be considered
as a closed subset of an ANR(I)-space P. By the hypotheses X, is
a mutational retract of X and X, as a MAR-space, is & mutational re-
tract of P. Hence by (3.10) X, is a mutational retract of P. Therefore
there exists a mutational retraction r: U(P, P)— Uy X, , P). Let j: U'(X’, P)
—~U(P, P) be the extension of the inclugion j: X'— P. It is evident that
j: U(X', P)» Uy X,, P) is & mutational retraction. Therefore X, is a mu-
tational retract of every metrizable space X’ containing X as a closed
subset. Thus, X, is a MAR-space and the proof iy concluded.

(4.9) TemorEM. MAR-spaces are the same as mutational retracts of
AR(M) - spaces.

Proof. Take an arbitrary MAR-space X. By the Kuratowski-

Wojdystawski theorem ([1], p. 78) there exists an AR(IM) -space P con-

taining X as a closed subset. Since X is a MAR-space, X is a mutational
retract of P.

Now, suppose that X is a mutational retract of an AR(M)-space P.
By (4.3) P is a MAR-space and hence, by Theorem (4.6), X is a MAR-
space. Thus, the proof is finished. .

By (8.13) and (4.9) we obtain the following
(4.10) CorOLLARY. The shape ShX of a MAR-space X 4s trivial.

©
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(411) TEEOREM. MANR -spaces are the same as mutational retracis of
ANR(IN) - spaces.

Proof. Take an arbitrary MANR-space X. By the Kuratowski-
‘Wojdystawski theorem ([1], p. 78) there exists an ANR(I)-space P
containing X as a closed subset. Since X is a MANR-space, there exists
a closed neighbourhood W of X in P such that there exists a mutational
retraction r: U(W, P)- U(X, P). Let V be an open neighbourhood of X
in P contained in W. By the first theorem of Hanmer ([1], p. 96) V is an
ANR(DN)-space. Let j: U(V,V)~>U(W, P) be the extension of the in-
clusion j: V—W, and let i: U(X,P)—U(X,V) be the extension of the
identity i: X —»X. It is evident that #j: U(V,V)-U(X,V) is a mu-
tational retraction. Thus, X is a mutational retract of the ANR(IN)-
space V.

Now, suppose that X is a mutational retract of an ANR(IN)-space P.
Take an arbitrary metrizable space X' containing X as a closed subset.
We can assume that X’ ~nP = X and by Lemma (4.7) we can define
a metric in the set X’ v P such that the spaces X’ and P are closed sub-
spaces of X’ U P. By the Kuratowski-Wojdystawski theorem ([1], p. 78}
the space X’ u P may be considered as a closed subset of an ANR(IM)-
space @. Since P is an ANR(I)-space, by (4.5) it is a MANR-space.
Therefore there exists a closed neighbourhood W of P in ¢ such that P is
a mutational retract of W. Hence by (3.10) X is a mutational retract
of W, and by (3.18) X is a mutational retract of W ~ X'. Obviously W is
a closed neighbourhood of X in @, therefore W ~ X’ is a closed neighbour-
hood of X in X'. Hence X is & mutational neighbourhood retract of X'.
Thus, X is a MANR-space and the proof is concluded.

(4.12) TEEoREM. Hvery mutational retract of o MANR-space is
a MANR -space.

Proof. Let X, be a mutational retract of a MANR-space X. By
Theorem (4.11) there exists an ANR(It)-space P such that X is a mu-
tational retract of P. Hence by (3.10) X, is a mutational retract of P and,
by Theorem (4.11), X, is a MANR-space.

(4.13) TEroREM. If X; are MANR-spaces for every te T, then @ X;
tel
is a MANR-space.

Proof. By Theorem (4.11) X;is a mutational retract of an ANR(I)-
space P; for every te T. Obviously we can assume that the spaces P:
(t « T) are disjoint. Hence by Theorem (3.16) @ X; is a mutational re-

T

te
tract of @ Ps;. By Theorem (8.1) of [11] (p. 98) @ P; is an ANR(IM)-
teT teT

space. Hence, by Theorem (4.11) @ X; is a MANR-space.
tel
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Remark. For FANR-spaces the theorem analogous to (4.13) is not
true. A corresponding example will be given in § 6. If the set T' is finite,
then the analogous theorem for FANR-spaces is also true. The simple
proof is left to the reader (compare the remark concerning (3.20)).

(4.14) TEEOREM. A melrizable space X is @ MAR-space if and only
if for every metrizable space X' containing X as a closed subset and for every
ANR(I)-space P containing X' as a closed subset and for every mutation
f: UX,P)~V(Y, Q) there ewists an eatension f': U'(X', P)-» V (Y, Q) ) of f.

Proof. Suppose X is a MAR-space. Then the required extension f’
exists by Theorem (3.17).

Now, suppose that the second part of Theorem is satisfied. Consider
the mutation w: U(X, P)—U(X, P) consisting of all inclusions. By hy-
pothesis there exists an extension u': U'(X', P)-»U(X,P) of u. Le wus
dencte by r the collection of all maps 7 e #” such that 7(x) = @ for every
# ¢ X. Let ug show that r is a mutation.

Take an arbitrary map #, e r, 1,: U, —Uy. Take arbitrary neighbour-
hoods U, e U(X’, P) and U, e U(X, P) such that U, C U; and U,C U,.
Consider the map #,: 172—>I72 defined by the formula Vg(w) = 7ry(x) for
every z ¢ U,. Since n, en’ and ' is a mutation, by (1.6) r, e u’. Moreover,
for every #eX we have ry(x) =r(s) = ». Therefore r, er. Thus, the
collection r satisfies the condition (1.6).

Now, take an arbitrary neighbourhood U e U(X,P). Take uen
with range % = U. By the definition of an extension there exists a ' eu’
such that range 4’ = rangew = U and %'(x) = u(x) = & for every ze¢X.
Therefore ' e ¥ and range ' = U. Thus, the collection r satisfies the
condition (1.7). )

Now, take two arbitrary maps rs, 7, € ¥ with a common domain and
a common range, 7,7y Us—Uy. Since 7,7, ew’ and u' is a mutation,
by (1.8) there exists a Uy e U(X’, P) such that #y| Uy, U;. Therefore
the collection r satisfies the condition (1.8). Thus, r is a mutation and,
obviously, it is a mutational retraction. Therefore X is a mutational
retract of X’. Thus, X is a MAR-space, and the proof ig finighed.

(4.15) THBEOREM. A metrizable space X is a MANR-space if and only
if for every metrizable space X' containing X as a closed subset there ewists
a closed neighbowrhood W of X in X' such that for every ANR(IN)-space P
containing X' as a closed subset and for every mutation f: U(X, P)-V(X, Q)
there emists an extension f': U'(W, P)~V(¥,Q) of f.

Proof. Suppose X is a MANR-space and take arbitrary spaces X'
and P satisfying the hypotheses. Then the required neighbourhood W and
an extension f exist by (3.19).

Now, suppose that the second part of Theorem is satisfied. Consider
the mutation u: U(X, P)—~ U(X, P) consisting of all inclugions. By hy-
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pothesis there exists an extension a': U'(W, P)—»U(X, P) of u. Analog-
ously as in the proof of Theorem (4.14) we define the collection r and
prove that r: U'(W, P)->U(X, P) is a mutational retraction. Thus, X is
a MANR-space and the proof is concluded.

§ 5. Compact mutational retracts. Let us prove the following

(5.1) TumorEM. If a compactum X is a mutational retract of a metriz-
able space X', then X is a fundamental retract of X'.

Proof. By hypothesis there exists a mutational retraction r: U'(X’, P)
—U(X, P). By the Kuratowski-Wojdystawski theorem and Theorem (3.1)
we can assume that P e AR(M). Let UrzeUX,P), k=1,2,.., be
a sequence of neighbourhoods of X in P such that

o0

(5.2) U CU, for E=1,2,.. and DlUk=X
Let 74 Uypy—Ug, B=1,2,.., be a constituent of the mutation
obviously we can require that Uj, C Uy_,. Let us define maps 7,2 U~ Uy,
k=1,2,.., setting 7= 7,|Ug.

Now, we shall define by induction a sequence of neighbourhoods
UL e U'(X', P) and a sequence of maps ri: U, T, for i=1,2, -
and k= 1,2, ... satisfying the following conditions:

(5.3) T/CUL AT, for k=2,3,.,
(5.4) 78 = Fy| U}, for k=1,2,..,

(6.5) ri(z) = r{(z) for zeUj and i<j<k,
(5.6) rierd U U, for i<kandi<l.

Let us put Uy = U, and rt=7;: U;—>U,. Consider the maps
72 U!—»T, and 7y U;-T,. Since # and 7, are restrictions of the con-
stituents 7,2 U, — U, and r,: U;— U, of rand U, C U, there exists a neigh-
bourhood Uj € U'(X’, P) such that T,’ C U, and

7Ty ~7|U,  in Ty

Let us put 12 = 7| UL': U4 —T,. Since U, e ANR(M) and 7]T; has the
extension 7: U, -+U;, by Borsuk’s hﬂmotopy extension theorem ([1],
p. 94) the map MU” has an extension ri: U;'—»U, such that Pl Py = 1.
Therefore, the neighbourhoods Uy, U;' and the maps 17, 73, 73 satisly the
required conditions (5.3)-(5.6).

Now, suppose that we have defined neighbourhoods Uy and maps
vi: Of >, for k=1,2,..,n and i=1,2, ..,k in & such manner that
the conditions (5.3)-(5. 6) are satisfied. We shall define a neighbour-
hood Uy, and maps 7f,, for i=1,2,..,n+1 satisfying the required
conditions.
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Consider the maps 7,: Up—U, and 7,42 U, —>U,.,. Sinee these
maps are restrictions of the constituents ,: U,_, - U, and 7, +1: Up—>U,yy
of rand U,y; C U,, there exists a neighbourhood U,’l'Jr1 e U'(X', P) such

. that Uylyy C Uy A Upyy.and

- .
n] n+1‘— n+1]U1lz+1 mn U'n N

Let us put 725 = 7,1, Uy/yat Uplys— Upyy. Since 12 = 7| U, is an extension

of #,|U,s,; by Borsuk’s homo‘ropy extension theorem the map 7,.,|T,
has an extension 75, 4: U, - U, such that %, = ¢,. Therefore, the neigh-
bourhood U, and the maps 921} and 7%, satisfy the required conditions
(5.3)-(5.6).

Now, suppose that we have defined maps r,,+1,1n+1, oy T8,y sabis-
tying the conditions (5.4)-(5.6). We shall define 7,7}. By (5.6) we have
1i ook Uy - U, and by (5.5) the map 7} considered as a map into U,_,
has the extensmn 73t U, ,-U,;_,. Hence by Borsuk’s homotopy ex-
tension - theorem the map #? 41 has ah extensmn i 3 U/ .,-U,_,
homotopic to #i*. Therefore, the map 77} satisties the required
conditions. Thus, the sequences of neighbourhoods Uj and maps 7§ de-
fined above satisfy the conditions (6.3)-(6.6).

Since P ¢ AR (M), for every k= 1, 2, ... there exists a map 71: P— P
such that *®

7oz) = ri(z) for every we U,

Let us prove that 7 = {#,, X', X}pp is a fundamental retraction. Take
an arbifrary neighbourhood U e U(X, P). By (5.2) and the compactness
of X there exists a natural number n such that Uy C U for & > n. Let us
observe that
(5.7) UL ¥ U in Uy for k>an.
Indeed, by (5.4) we obtain
ROy =Ty =13 U -0,
fk+1[U = 15l U, = it Uy =0,

Hence by (5.6) we obtain (5.7). Therefore, 7 is a fundamental sequence.
Since r is a mutational 1etract10n, by (5.4), (5.5) and the definition
of 71 it follows at once that #4(x) = = for every we X. Thus, 7 is a funda-

mental retraction and the proof is concluded.

Theorem (5.1) implies at once the following

(5.8) CoroLLARY. Hwery compact MAR-space is a FAR-space and
every compact MANR -space is a FANR -space.

§ 6. Examples. First we give an example of a space which is not
a MANR-space.

(6.1) Solenoids of Van Danteig are not MANR - spaces.
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Proof. By (1.3) of [7] solenoids are not movable (for the definition
of movability see [7], p. 187). Therefore by (3.12) of [7] they are not
FANR -spaces. Hence by Corollary (5.8) and the compactness of solenoids
we obtain (6.1).

Now, we give an example of a MAR-space which is not a FAR-
space.

Let us denote by 4, (for n=1,2,..) the closed half-line lying in
the plane E? with the end-point (0, 0) and containing the point (n, 1),
and by 4, the half-line with the end-point (0, 0) and containing the

point (1, 0). Consider the subspace X = [ J 4, of E?. Let us prove that

n=0
(6.2) The space X is a MAR-space and it is not a FAR-space.

Proof. Obviously X is a cloged subset of B It is easy to see that
for every neighbourhood U of X in E? there exists a homeomorphical
imbedding 7: B2— U such that r(2y = » for every # ¢ X. The collection r of
all maps r obtained in this way is a mutational retraction r: V(E2, E?)
- U(X, BE?). Hence by Theorem (4.9) X is a MAR-space.

Now suppose, on the contrary, that X is a FAR-space. Then there
exists a fundamental retraction r = {ry, B?, X}p z. It follows by the
definitions that

(6.3) ri(x) =« for every #e¢ X and every k=1,2,..

and

(6.4) for every neighbourhood U of X in E? yy~r,,, in U for almost
all %.

Denote by Bp (for £=1,2,...) the closed square with vertices
(%, 0), (k+1,0), (5+1,1), (k,1). Let us show that

(6.5) BynrgB—X # @ for every k=1,2, ...

Since By is a locally connected continuum and r; is continuous,
r%(Bx) is a locally connected continuum. It follows by (6.3) that By ~n X
C r4(By). Therefore ri(Bg) contains some points belonging to Bz which
do not belong to By n X, otherwise 7x(Bx) would not be locally connected.
Thus 7%(Bx) » By— X # @ and hence we obtain (6.5).

Take an arbitrary point ap ¢ (Bp nry(B?)—X) for k=1,2,.. The

o]
set | {#x} is closed in E?, because it has no accumulation points. There-
k=1

fore the set U= E?— |J {2z} is a neighbourhood of X in E2 Since
B=1

@k € rx(E?), r5(E?) is not contained in U for any k =1, 2, ..., which contra-
dicts (6.4). Thus, X is not a FAR-space and the proof is concluded.
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The same example shows that the converses of (3.7) and (4.2) are
not true.

Now, we give an example of a MANR-space which is not a FANR-
space. This example, due to 8. Nowak, was described for other purposes
in [10].

Consider the subset Z of the plane E? which is the closure of the
set consisting of all points (#,y) e E* such that y= cos(w/w) where
—1<a<1and & # 0 and of all points (@, y) « E* such that 22+ (y-+1)2
=1 and y < —1. Denote by N the set of natural numbers with the
diserete topology and put X = Z X N. Let us prove that

(6.6) The space X is & MANR-space and il is not a FANR-space.

oo

Proof. Let X,= Zx{n} for n=1,2,.. Obviously X =@ X,.
n=1
By Theorem (3.1) of [3] Z is a fundamental retract of an annulus. Hence
by (3.7) Z is a mutational retract of an annulus, and by Theorem (4.11),
it is a MANR-space; therefore so is Xj. Thus, by Theorem (4.13), X ig
a MANR-space. .

Now suppose, on the contrary, that X is a FANR-space. Obviously,
we can assume that X is a closed subset of B2 Then there exists a closed
neighbourhood U of X in FE? such that X iz a fundamental retract of U.
The neighbourhood U contains a closed neighbourhood V of X which is
the union of a countable family of mutually digjoint annula. Therefore
X is a fundamental retract of V. Hence, by Theorem (18.2) of [6],
Sh(X) < Sh(V).

Let 8 be a circle and put ¥ = §x N. The spaces V and Y are of
the same homotopy type; therefore Sh (V) = Sh(Y). Hence Sh(X) < Sh(X).
In [10] 8. Nowak has proved that the shapes Sh(X) and Sh(Y) are in-
comparable, which contradicts the inequality obtained.” Thus, X is mot
a FANR-gpace and the proof is finished.

The same example shows that for non-compact spaces (3.14) is not
true if we put X' =7V, where V is defined in the last proof.

Also the same example shows that the converse of (3.18) is not true.
Namely, the space X may be considered as a closed subset of the plane E2.
Since X is as MANR -space, it iy a mutational neighbourhood retract of E2.
But, as we have shown, X is not a fundamental neighbourhood retract
of E2.

This example shows also that for fundamental retracts, fundamental
neighbourhood retracts, and FANR-spaces theorems analogous to (3.16),
(3.20) and (4.13), respectively, are not true.

It follows by the same example that the converse of (4.1) is not
true, i.e. that

(6.7) The space X s not o MAR-space.
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Proof. Suppose, on the contrary, that X is a MAR-space. We can
consider X as a closed subset of B Then there exists a mutational re-
traction r: V(B E2)—»U(X, E?). Take a neighbourhood U e U(X,E?)
which is a union of a countable family of mutually disjoint annula U,
(n=1,2,...). By (1.7) there exists an r ¢ r such that r: B2~ U. Moreover,
r(x) = @ for every x ¢ X. Therefore r(B?) n Uy # @ for every n=1,2, ...
Hence r(E?) is not connected, which is not possible. Thus we have ob-
tained a contradiction and the proof is finished.
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