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Lusin density and Ceder’s differentiable restrictions
of arbitrary real functions

by
Jack B. Brown (Auburn, Ala.)

Abstract. J. G. Ceder recently proved a theorem from which it follows that if 4 is
an uncountable subset of the reals R, then for every f: A—R, there exists a bilaterally
dense in itself set B C 4 such that f|B is differentiable (infinite derivatives are allowed).
Uncountability of A is necessary, and B cannot be made to have cardinality ¢ (the
cardinality of R). The main purpose of this paper is to characterize those sets A CR
for which it is true that for every f: A-»E, there exists a bilaterally ¢-dense in itself
set W C.4 and a dense in W set B such that f|W is differentiable on B. A new notion
of density results, and this notion is compared to lmown types of categoric density in
metric spaces.

1. Introduction. A set B is bilaterally dense (c-dense) in itself if every
closed interval containing an element of B contains points (¢-many points)
of B. A real function f is differentiable at  if and only if f is continuous
at #, # is a limit point of the domain D; of f, and it is true that there is
an extended number m (possibly 4+ oo or —oo) such that if {w.} is a se-
quence of elements of D,— () converging to o, then {(f(@)—f(@n))/(x— )}
converges to m.

In [4] Ceder gives the following:

TaEOREM C. If A is an uncountable number set, then for every f: A— R,
there ewists a coumtable set O C A such that for each x e A— C there ewists
a bilaterally dense in itself set BC A—C containing @ such thet f|B is
differentiable and monotonic.

B cannot be made to have cardinality ¢. Ceder’s argument for the
monotonicity part of Theorem C has a mistake in it, but a correction
is given in [7], and a short alternative correction is given in this paper.
Tt is easy to show that if A CR is countable, there ewists f: A >R which
has no contimuous restriction to any dense in itself subset of A.

The primary purpose here is to prove the following two theorems:

TEEOREM 1. If A is an L, set, then for every f: A — R, there exisis an L,
set ¢ C A such that for each »e A— C there ewists a bilaterally o-dense in
itself set W C A—C and a dense in W set B containing @ such that f |W is
differentiable on B.

3%
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“T,” and “T,” are notions of “scarcity” and “abundance”, respectively,
analogous to countability and uncountability, respectively, and defined
as follows. A set M is Lusin in o set N if M C N and there is no subset
of M of cardinality ¢ which is nowhere dense in N (N. Lusin showed [9]
that if the Continuum Hypothesis is true, there is a Lusin in B set of
cardinality ¢). An I, sef is the union of countably many sets, each Lusin
in itself, and an L, sef is one which is not an L, set. Properties I, and L,
are termed “measures of Lusin density”.

The phrase “and f|W is monotonic” cannot be added to the end of
the statement of Theorem 1. This author has found it necessary to leave
open the question as to whether the phrase “and f|B is monotonic” can
be added to the end of the statement of Theorem 1.

TaEoREM 2. If A is an L, set, then there exists a function f: A—-R
such that if W C A is bilaterally c-dense in itself and B C W is dense in W,
then f|W is discontinuous at some element of B.

The relationship between Theorem 1 and Ceder’s theorem is analog-
ous to the relationship between the theorems the author presented in [3]
and a theorem of Bradford and Goffman [2] concerning Blumberg’s
theorem [1].

TrEOREM BG [2]. If A is a metric space, the following are equivalent:

1) for every f: A—R, there ewists D, dense in A, such that f|D is
CONTINUOUS,

2) A is Gy [6] (i.6. every set open in A is 2nd category in A).

TreEorREM B. [3]. If A is a separable metric space then the following
are equivalent:

1) for every f: A—R, there ewists a c-dense in A set W and a dense

in W set D such that f|W is continuous on D,
2) A is c-typically dense in itself (i.e. no open in A set is the union
of a 1st category in A set and o Lusin in A set).

The separability of 4 in Theorem B is used only in showing 1)— 2).

In section 3, L, sets, L, sets, and IL,-density are defined for a general
metric space sefting, and these notions are investigated and compared
to ¢-typical density and other forms of categoric density previously
defined. Also, as a postscript, some possible variations of Theorem B are
discussed.

i

2. Differentiable restrictions of real functions. A number z is a lmit
(c-limit) (L,-Timit) point of a number set A if for every open interval I
containing x, I ~ A is infinite (of cardinality ¢) (an I, set). The limits
are termed bilateral if “open” can be replaced by “closed”. Similarly,
a point P of R? is a bilateral limit (c-limit) (L,-limit) point of a function f
if for every square § (includes interior) with a vertical side having center
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P, n(8 ~f) is infinite (of cardinality ¢) (an IL, set), where = denotes
X -projection. A set A is (bilaterally) IL,-dense in itself if each element
of A is a (bilateral) I,-limit point of 4.

It should be remarked that “cardinality ¢” could be replaced by

“cardinality ,” in the definitions and in Theorem 1, but a difficulty would

arise in the proof of the resulting Theorem 2 under this change.

The fact (see Konig’s Theorem [6]) that the union of countably
many sets having cardinality less than ¢ has cardinality less than ¢ is
used repeatedly without so stating.

I, sets and L, sets have certain relationships to each other analogous
to those which hold for countable sets and uncountable sets. Some of
these are expressed in the following lemmas.

LevmA 0. Any set of cardinality less than ¢ is Lusin in itself. Any
subset of & Lusin in itself (respectively L)) set is a Lusin in itself (re-
spectively I,) set. The union of countably many I, sels is an L, set.

Proof. Follows directly from definitions.

Levwa 1. If o is an element of a bilaterally L,-dense tn itself set M,
then there exists a bilaterally c-dense in itself nowhere dense in M subset N
of M containing .

Proof. Suppose # is an element of a bilaterally L,-dense in itgelf
set M. For each positive integer n, 4, = [z, 3+1/n] ~ M is an L, set
and therefore has a nowhere dense in 4, subset B, of cardinality ¢, and B,
will have & bilaterally e-dense in itself subset R,. Similarly, there will
exist a bilaterally c¢-dense in itself subset Ly of [z—1[n, #] ~ M. Then
N=LvIl,v..v{z)uR R u.. is the desired set.

Levwma 2. If A is an L, set, then A = B v O, where B is an L, set and
C is bilaterally L,-dense in itself. ’

Proof. Let B be the set of all points of A which are not bilateral
L,-limit points of A. For each z € 4, let I; be the longest interval con-
taining x such that I ~ A is an I, set. {I;]| # « B} is a collection of a mutu-
ally exclusive intervals and therefore countable. Thus, {I, ~ 4| z e 4}*
= B is an I, set (H* denotes the union of the sets in a collection H of
gets). Then each element of 0 = A— B is a bilateral L,-limit point of 4,
and since B iz an I, set, it follows that O must be bilaterally L,-dense
in itself.

Leyva 3. If A is an Ly set and f is a function from A into B. Then
f contains a bilateral L,-limit point of itself.

Proof. A modification of the proof of Lemma 4 of [5] will be used.
Suppose the lemma is false, and for each z ¢ 4, let S be a square with
a vertical side of length I, having center (#,f(x)> such that =(f~ Sz)
is an I, set. Assume that A’ = {@| <&, f(2)> belongs to the left side of Sz}
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is an L, set. For some positive integer n, B= {w ¢ A'| ls > 1/n} is an L, set.
Therefore, B contains a bilateral L,-limit point of itself, so let # denote
such a point. Then there exists a vertical square 8§ with right side of
length 1/2n and right side having center (z,j/2n)> for some integer j,
such that %(8 ~ f|B) =D is an L, set. Liet 'y e D be a bilateral L,-limit
point of D. Then =(f ~ Sy) is an L, set, and this is a contradiction.

Lmwa 4. If A is an L, set and f is a function from A info R, thenv

there exists an L, subset B of A such that each point of f|(A— B) is a bilateral
L,-limit point of f|(A—B).

Proof. Let B be the set of all points of 4 which are not bilateral
I,-limit points of f. It follows from Lemma 3 that B cannot be an L, set.
Thus, each point of f|(4— B) is a bilateral L,-limit point of f, and since
B is an I, set, it follows that each point of f|(A— B) is a bilateral L,-limit
point of f|(4—B).

LeyuA 5 (Ceder [4, Th. 31). If D is an uncountable set and f is a function
from D into R, then there emists a countable subset I of D such that for each
e D—H,

Dy{f|(D—B), @)~ De(f|(D—E),x) # 0.

Di(f, @) = {m e [—o0, oo m = lima(f(2) —f(a))[(®—@s) for some
increaging sequence {#,} of elements of Dy converging to z}. Dx(f, ®) is
defined similarly for decreasing sequences.

LEMMA 6. If A is an L, set and f is a function from A inio R, then
there ewists an L, subset C of A such that for each » e A— O, there ewists
a bilaterally L,-dense in itself subset M of A—C containing = such thai
f\M is differentiable at .

Proof. Let BC A be the set described in Lemma 4. Then let D
= A—B and let F be the set described in Lemma 5. Now, let (= B v E.
¢ is an I, set, and each point of f|(4— C) is a bilateral IL,-limit point
of f|(4—0). Let xeA— 0. Dif|(A—0), w) mDR(f|(A— 0y, w) # @, s0
let {ws} and {y,} be increasing and decreasing sequences, respectively,
from A—C converging to » such that

Ly (f (@n)— (@))(@n— ) = Limu(f (yn)— F (2))/(yn—2) -

Now, for each integer # > 2, let U, be an L,-dense in itself subset of the
open in A—C sebt {(#,_1+2,)2, (#,+y11)/2) ~ (4—O) such that for
each te Uy, |[f(1)—F(@)}/(t— o) — (f(@n)—F(@))/(@a—@)| < 1fm, and let Vy
be a similar set agsociated with 4,. Then, M = (U,v Uyv ...) v (#) v
v (V,uV,u...) is the desired set.

Proof of Theorem 1. Let 4 be an I, set and f be a function
from A into R. Let ¢ be the set of Lemma 6, and let e A— 0. Let G, be

icm®
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the set whose only element is A— O, and proceed inductively as follows:
Given @, then for each § e Gy, (1) let M5 be a bilaterally L,-dense in
itself subset of § such that f|Ms is differentiable at some element ws
of Mg (make sure zs= @ on the first step), (2) let N5 be a nowhere dense
in Mg subset of Mg containing #s which is bilaterally ¢-d-nse in itself,
(3) let K5 be the collection to which % belongs if and only if % is a non-
empty intersection Mg~ I for some component I of B—Cl(¥s), and
(4) let Gy = {Es| 8eGn}"

Now, let W = {t| there is a positive integer » and a set § in G, such
that t e Ns}, and let B = {t] there is a positive integer » and a set § in Gy
such that t= @s}. Bach set Ny is bilaterally c-dense in itself, so W is
also. To show that B is dense in W, suppose te¢ W and d > 0. There i
a positive integer # and an element S of @, such that { e Ng. N is bilater-
ally c-dense in itself, so there is another element ¢’ of Ns within d>0oft.
There is a set T of Ks which lies between ¢ and .. T € G, 4, and 2zr will
be an element of B within d >0 of & )

Now, let t e B. There is a positive integer # and a set 8 in @, such
that t= @s. f|Ms is differentiable at @5, and M5~ W is open in W,
so f|W is differentiable at . ‘

Proof of Theorem 2. Suppose A is an I, set. Then there exists
a sequence M, M,, ... of sets, each Lusin in itself, such that A=M v
o M, ... Let g: B—R be the function of Zygmund and Sierpinski [8]
which lLas no continuous restriction of cardinality ¢. Let f: A—R be
defined by f() = 2nm4 Arctan(g(z)) if @ e M\ Me. Now, suppose

k<n

W C A is bilaterally ¢-dense in itself, D is dense in W, and f|W is con-
tinuous on D. Let £ be an element of D and »n be the integer such that
t € M,. It follows that there is a set ¥, open in W, which is a subset of M,.
fIV is continuous on a dense subset of ¥, and therefore continuous on
a dense @, subset U of V. Since M, is Lusin in itself, so is V. It follows
that U has cardinality ¢ and f|U is continuous, which is a contradiction.

The remainder of section 2 concerns the monotonicity of f|B in
Ceder’s theorem. )

The problem in Ceder’s argument occurs in his Lemma 3, which
states that if B 4s bilaterally dense in itself and f: B—R is differentiable,
then there exists A C B such that A is bilaterally dense in itself and f|4 is
differentiable and monotonic. Consider the following example. Let B be
the set to which # belongs if and only if there is a sequence {f.}, each
term of which is either —1, 0, or 1 and only finitely many terms of which
are not 0 such that 2= Z,%,10~", in which case, f(z)= Zn(t, 107™)2,
£ hag derivative zero at each point. However, each point of f is a local
proper minimum for f, so f can have no monotonic restriction to a bilater-
ally dense in ilself subset of B.
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In proving the monotonicity part of Theorem C, care must be taken
to avoid local maxima and minima so that the sequences Ceder describes
on lines 7-9 of the argument for Lemma 3 of [4] will exist. Therefore,
define g'(z) = -0 (vespectively —0) if and only if g'(z) = 0, and there
exist sequences {w.} and {y,}, increasing and decreasing, respectively,
with limit # such that {g(zs)} and {g(y.)} are increasing and decreasing
(decreasing and increasing), respectively. Then g 4s monotonically dif-
ferentiable at @ if and only if ¢ is differentiable at 2 and either g'(z) # 0
or else g'(z) = +0. ‘

Notice that if “IL,” and “L,” are replaced by “countable” and “un-
countable”, respectively, in Lemmas 2-6, the resulting statements (to be
referred to as Lemmas 2'-6’, respectively) are true.

Levma 7'. If A CR is uncountable and f: A—R has no uncountable
horizontal restriction, then there ewists a countable set F C A such that if
v e A—TF, there ewists a bilalerally uncountably-dense in dtself subset M
of A—F such that fIM is monotonically differentiable at w.

Proof. Suppose f satisfies the hypothesis, but there exists no bilater-
ally uncountably dense in itself subset M of A such that f|.M is monotonic-
ally differentiable at some element # of M. Let ¢ be the set of Lemma 6.
It follows that for each » ¢ A— C, there exist positive numbers ¢, and d,
such that either U, = {f| # << &+ds and 0< (f(z)—F(5)/(z—1) < s}
or Vo={l] s<ti<aotd, and —ep<<(f(m)—f(1))/(x—1)< 0} is count-
able. Assume that the set B = {# ¢ 4— 0| U, is countable} is uncountable,
and let n be a positive integer such that D= {weB| ¢z >1/n and
dz >1/n} is uncountable. Now, let M be a bilaterally uncountably dense
in itself subset of D such that f|M is differentiable at some element y
of M (Lemma 6"). (f|M)'(y) =0 and (f|M)(y) # —0 and U, is count-
able, 5o there must exist an element # of M such that y—12n <2<y
and 0 < (f(z)—f(y))/e—y) < 1/2n. It follows that U, is uncountable,
and this is a contradiction.

Proof of Theorem O. First it will be proved that there exists
some bilaterally dense in itself subset B of A4 such that f|B is differentiable
and monotonic. If f has an uncountable horizontal restriction, the proof
is frivial, so assume otherwise. Let @ = (4) and make the following
changes in the inductive process of the proof of Theorem 1. Replace “I,”
and “L,” by “countable” and “uncountable”, respectively. On part (1),
make sure f|Mg is monofonically differentiable at xs. On part (2) just
let N5 be a nowhere dense in M s subset of M g containing s as a bilateral
limit point. Ignore W and define B as before. To show that B is bilater-
ally dense in itself, let ¢ B and d > 0. There is & positive integer n and
a set § in @, such that t = 5. 25 is a bilateral limit point of N g, so there
are elements a and b of Ng to the left and right, respectively, of @y and
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within d > 0 of #5. Then there exist sets T and U in @, such that T lies
between a.and #s and U lies between zs and b. Then oz and 2y will be
elements of B to the left and right, respectively, of ¢ within d >0 of 1.

Thus, B is a bilaterally dense in itself subset of 4 and f|B is dif-
ferentiable (proof as before), which is the point to which Ceder arrives
on line 13 of p. 357 of [4]. However, f|B is actually monotonically dif-
ferentiable now, and with this additional hypothesis, Ceder’s Lemma 3
and the rest of his argument for Theorem C is valid with only minor
changes. ‘

3. Lusin density in a metric setting. It is cleaf from Lemma 2 that the
conclusion of Theorem 1 holds for a subset 4 of R if and only if A con-
tains an L,-dense in itself subset. To give a better idea of which sets do
have this property, L,-density will be compared with other types of
categoric density. Because of possible future applications of this concept

- in more general situations, the comparison is given in a general metric

setting.

The definition of a number set M being Lusin in a number set N
could be generalized directly to sets in a metric space, but this leads to
certain complications in non-separable spaces. The author encountered
some of these complications in the preparation of an earlier paper [3],
and the referee of that paper suggested defining the concept as follows:
M is Lusin in N if and only if every nowhere dense in N subset I of M is
a countable union L = L, v Ly u ..., where each L; is of local cardinality
Jess than ¢ (i.e. such that if & e I; for some 7, then there is a neighborhood U
of  such that U ~L; has cardinality less than ¢). The necessity for the
change to “local cardinality” is fairly obvious due to non-separable spaces
such as the following; let X be the unit square disc and & be the metrie
defined by §(<a, b>, <¢, d>) = |b—d| if a = ¢ and 1 otherwise. Then the
set M of points in X with rational ordinates is Lusin in X because M is
itself of local cardinality less than ¢. However, M would not satisfy the
direct generalization of the definition given in Section 1 because M con-
tains nowhere dense in X sets (containing just one point for each abscissa)
with cardinality ¢. In this space, a set M is Lusin in X if and only if each
nowhere dense in X subset L of M is itself of local cardinality less than e.
However, this simplification of the definition would prove unsatisfactory
because of non-separable spaces such as the following; let X be the set
of all number sequences and & be the metric defined by &({za}, {ya})
= 1/2%, where % is the least positive integer such that ay s 5. Then,
the set M of all sequences in X which have even subscripted terms equal
to zero and which terminate in zeros is itself nowhere dense in X but of
local cardinality ¢. However, M —= M; v M, v ... where My= {{zma} ¢ M| 2;
=0 if j =i}, and each M; is locally finite.
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Tirst it will be pointed out that the mew definition does reduce to
the direct generalization of the definition given in Section 1 in separable
spaces.

TaeorEM 3. If M C N C X, where X is separable, then M is Lusin
in N if and only if there is no subset of M of cardinality ¢ which is nowhere
dense in N.

Proof. Suppose M is Lusin in N and L C M is nowhere dense in N.
Then L = I; v Iy v ..., where each I; is of local cardinality less than e.
Since each L; is separable, it follows that each Ly is of cardinaliby less
than ¢. Therefore T = L, v I, u ... is of cardinality less than ¢. The proof
in the opposite direction is obvious.

The notions of an I set and an I, sef, as well as Ly- density are defined
as before but in terms of the generalized notion of a Lusin set. Now, the
notion of a subset M of a metric spaces X being a T, set {(called “first
¢-type?” in [3]) shall mean that it is the union of a first category set and
a Lusin in X set. A T, set (called “second c-type” in [8]) is one which is
not a T, set, and M is T,-dense in X (called “c-typically dense in X7
in [8]) if and only if for every open set @, @ ~ M is a T, set.

TEEoREM 4. A metric space X is Ty-dense in ilself if and only if mo
open set s the union of a first category set and an L, set.

Proof. Suppose X is T,-dense in itself. If X is not Gy, the proof
is immediate, so assume X is Gy, but that there is an open set 0 = K v N,
where K is first category and N is an I, set. Then N= N, v N, v ...,
where each N; is Lusin in itself. Some N; must be second category, so
for each Ny, let N} = {w e Ny| = is an element of some open set in which
N; is dense}. Then K'= K v (N,—Nj) v (N,—N)u ... is still first
category. Let N'= N;u N;u.. Then O= K v N'. Now let @ be
a nowhere dense in X subset of N’. Then if ¢ is a positive integer such
that N} is not empty, N; is a dense subset of some open set U, so that
@ ~ N} is nowhere dense in N; and nowhere dense in ;. Thus, @ » N
= Afu Aiu Al ..., where each A} is of local cardinality less than e.
SoQ=AlvA2U Alu AU Aju i ..., and N'is Lusin in X. There-
fore 0 is a T, set and this is a contradiction. The proof in the opposite
direction is obvious.

Now, a standard version of the Baire Category Theorem states that
every complete metric space is Gy . Hausdorff [6] defines various “density”
or “compactness” properties which are intermediate to completeness
and Gg. It is shown that for metric spaces,

completeness — absolute Gy— Fyy— Gy,

but that none of these implications is reversible. It will now be shown
(using the Continuum Hypothesis OH when necessary) that in perfect
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metric spaces, L,-density and T,-density compare nicely with property Gy
and property Fyy, which means that each perfect set is second category
in itself.

TaeoreM 5. If X is @ perfect (i.e. having mo isolated poinis) melric
space, then

L,-density A

CH 3 .
Fa— Tg-dmszty< e uncountable density,

but none of the implications is reversible.

Proof. Suppose X is Fr but not T,-dense in itself. Then there exists
an open set O such that 0 = Ny v Ny ... v I, where each N; is nowhere
dense and T is Lusin in X. We can assume, withous loss of generality, that
each N is closed and L = O0— (¥, v N, v ...). Since Fr—Gu, I must be
dense in some open set W. Let G; = (W), Pw be a point of W AL, and
proceed inductively as follows: Given G, and P for each J € Gy, then
for each J e @y, (1) let @y be a point of J ~ L distinet from Py, (2) let U
and V be mutually exclusive neighborhoods having centers Py and Q,
respectively, radii less than 1/n, and closures lying in J— Ny, (3) Tename
Pjy= Py and Qs = Py, and (4) let G,,, = {g| for some set J e Gu, ¢ is
either the set U or the set ¥V described in (2)}. Then, the set ¥ =1L~
A (B ~GF ~..) is a separable perfect subset of L. Since N is nowhere
dense in X, it is the union of countable many sets each having cardinality
less than ¢, and since N is separable, it follows that N is of cardinality
less than ¢. Assuming OH, it follows that N is countable. So N is a perfect
subset of X which is not second category in itself. This is a contradiction.

That T,-density implies both IL,-density and G follows immediately
from Theorem 4. Furthermore, if there is a countable open set 0, it follows
that since X is perfect, O is both first category and an I, set, so the last
two implications hold.

To show that the implications are not reversible, assume CH and
consider a Lusin set I which is uncountably dense in B but has no un-
countable nowhere dense subset. Let Cy, C,, ... be a sequence of mutually
exclusive Cantor sets such that €, w €, ... is denge in R, and for each 1,
let 0 be & subset of Oy which is uncountably dense in C; but which hag
no uncountable nowhere dense in ¢ subset. Then, X = C;v Oyv ...
would be uncountably dense in itself but neither I,-dense in itself nor Gm.
Furthermore, L is Gm but not IL,-dense in itself, C=0,vCu..is
L,-dense in itself but not Gm, and Lv ¢ is both Gu and IL,-dense in
itself but not T,-dense in itself. Finally, let B be the set of endpoints
of 0, and ¥ = (R— () v B. Then, Y is T,-dense in itself but not Fr.

CoroLLARY. If the domain A of a real function f contains a perfect
in R set, then the conclusion of Theorem 1 holds. .
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Properties Gu and Fr have been shown to have great significance
in some theorems. For example, it is shown in [6, p. 287] that if A is G,
then every § € H(A) (the collection of pointwise limits of sequences of continu-
ous real valued fumctions with domain A) is at most pointwise discontinuous
(i.e. continuous on & dense subset of A). It follows immediately [6, p. 288]
that if A is Fr, then for every f e B(A) and every closed set M C A, f|M is
at most pointwise discontinuous. ITn a similar manner, Theorems BG, B,
1, 2, and O lead immediately to the following four theorems.

TEE0REM BG+. If 4 is a metric space, then the following are equivalent:

1) for every f: A—~R and perfest M C A, there exists D, dense in M,
such that f|D is continuous,

9) A is Fm.

TaeorEM B+. If A is a sepamifle metric space, then the following
are equivalent:

1) for every f: A—>R and perfect M C A, there ewists a c-dense in M
set W and o dense in W set D such that f|W is continuous on D,

a) every perfect subset of A is Ty-dense in itself.

THEOREM 1. If A C R, the following are equivalent:

1) for every f: A—~R and perfect in A subset M of A, there ewists
a bilaterally c-dense in itself subset W of M and a dense in W set B such
that fIW is differentiable on B, .

by every perfect in A subset of A is an L, set.

TeEoREM O-+. If A CR, the following are equivalent:

1) for every f: A—»R and perfect in A subset M of A, there ewists
o bilaterally dense in itself subset B of M such that f|B is differentiable and
monotonic,

c) every perfect in A subset of A is uncountable,

On the basis of Theorem 5, it is easily seen that condition b and
property Fn are both intermediate in strength to conditions a and c.
It is interesting that the following turns out to be true.

THEOREM 6. In metric spaces A, property Fu and conditions a, b, and ¢
are all equivalent.

Proof. It is easily seen that condition ¢ and Frn are equivalent

[6, p. 336]. So it is necessary to show only that Fx implies condition a.
If condition a fails, it follows that there is a perfect subset M of A such
that M is not T,-dense in itself. Then, as in the first part of the proof
of Theorem 5, it can be shown that there is a countable set N which is per-
fect in M. N will also be perfect in 4, but of first category in itself, so
A is not Frr.

On more possible variation on Theorem B will now be congidered.
It follows from Theorem B that if f: R~ R, there ewists a ¢-dense in R
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set W such that fI|W is af most pointwise discontinuous. Considering the
relationship between pointwise discontinuity and Baire’s first class B,
it is natural to ask, “can W be chosen so that fIW is also in B(W)%¥” To
show the impossibility of this, consider the function f: E—R of Sier-
piniski-and Zygmund constructed in the third paragraph on p. 423 of [8],
except let @ be the family of all real valued Borel functions defined on @,
subsets of B. Suppose WC R is ¢-dense in R and f|W is in B3(W). Let
fis foy - De a sequence of econtinuous functions with domain W con-
verging to f. For each 2, let g, be & continuous extension of f, to a @;
set Mn; let M be the Gy set M= M; ~ M, ..., and for each 2, let
Tin = gn| M. Now, N = {z| hyz), hy(), ... converges} is F, relative to M
[6, . 307]. So if for each n, kn(z) = ha(®) if 2 € N and kq(z) = 0ifx ¢ M—N,
then %, is a Borel function on M, and the pointwise limit % of %, &,, ...
is & Borel function on M and agrees with f on W. But f does not coincide
with any function of the family @ on any set of cardinality e. This is
a contradiction.
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