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On internal composants of indecomposable
plane continua

by

J. Krasinkiewicz (Warszawa)

Abstract. In [3] the author introduced the concept of internal composant and proved
that the union of internal composants of an indecomposable continuum X is a second
category subset of X. In the present paper we obtain some new results on internal com-
posants. The main theorem states that the union of internal composants is a G5-subset
of X. If X denotes the simplest indecomposable continuum defined by Knaster, then
all composants of X, except one, are internal.

1. Introduction. Throughout this paper all sets are assumed to be
subsets of the sphere 82 Let X be a continuum lying in this sphere. The
union of -all proper subcontinua of X containing a fixed point x ¢ X is
denoted by C(#) and is called a composant of X. If X is an indecomposable
continnum, then the collection of all composants of X constitute a par-
tition of X into ¢ connected dense and pairwise disjoint sets, with ¢ de-
noting the cardinal of the continuum. At first sight there is no difference
between two distinet composants of X. However, as we shall see in the
sequel, one can distingmish several important classes of composants.

The process of distinguishing composants in an indecomposable
plane continmum was initiated by 8. Mazurkiewicz in 1929, when he
showed that the union of accessible composants of an indecomposable
plane continuum X is a first category subsets of X (answering a guestion
of Kuratowski). Let nus reeall that a composant € of X is said to be acces-
sible provided there exist a point p e ¢ and a non-degenerate continuum I
such that L ~ X = {p}. Otherwise it is inaccessible. The above theorem
found some applications in plane topology (see for example [2] and [3]).
In the same year K. Kuratowski [7] defined a class of composants larger
than that of accessible ones. Namely a composant ¢ of X is called
& K-composant [5] ‘provided that there exist a continuwum D C ¢ and
a continunm I such that T~ X =D and INX #@. K. Kuratowski
proved an analogue of the Mazurkiewicz theorem for the class of K -com-
posants. Precisely, the nnion of K-composants is a first category subset
of X. Up to now, these results have been the best known. In a conver-
safiion with the author, A. Lelek raised the question whether or not there
6 — Fundamenta Mathematicae LXXXIV


GUEST


256 J. Krasinkiewicz

exists in every indecomposable plane continuum X a composant ¢ such
that any arc intersecting both € and the complement of X has at least
two distinet points in common with C. In 1964 H. Cook [1] proved a theo-
rem which asserts that if X is an indecomposable continnum (not neces-
sarily lying in 8%) and if F is a closed subset which intersects all compo-
sants of X, then there exists a non-empty closed subset 4 of F' such that
€ ~ 4 is dense in 4, for every composant ¢ of X. These facts were the
starting point of the notion of an internal composant introduced by the
author in [3]. Let us recall that a composant ¢ of X is called internal
if every continunm L intersecting both ¢ and the complement of X inter-
sects all composants of X. Otherwise it is external. Hence to solve Lelek’s
problem we had only to prove that every indecomposable continuum
contains an internal composant. This was done in [3]. Thus, the answer
to Lelek’s problem is positive. In [3] we have proved more: The union
of external composants of an indecomposable continuum is a subset of
the first category in this continuum. Since every accessible composant
or K-composant is external, this result generalizes simultaneously the
classical results of Magurkiewicz and Kuratowski. An easy and unexpected
consequence of this theorem is this: every composant of X is a cut of 8.

Let X be an indecomposable continuum. By E we denote the collection
of all external composants of X and by I the collection of internal com-
posants. It is not known whether or not is the nnion of accessible com-
posants (or K -composants) of X an F, subset of X. One of the most
important properties of external composants which we shall establish
in this paper states that the mnion of external composants, i.e. E¥ is
an F, subset of X. At the end of this paper we prove that the simplest
indecomposable plane continuum defined by Knaster contains exactly
one external composant.

The concept of internality has found interesting applications in
investigations of the boundaries of plane continua [4]. Relations of this
notion to other notions were studied in [5].

2. Auxiliary properties of inaccessible composants. The letter X de-
notes an indecomposable non-degenerate continuum lying in S%

2.1. Every composant of X is a first category subset of X (see [6],
p. 212).

The following theorem states a fundamental property of inaccessible
eompo§ants.

22. [3]. Let K and K' be disjoint open dises intersecting X and let
q¢ Kv X. If O is an inaccessible composant of X, then there ewist two
continua A C C and BC K and a point p e X' n X such that A v B sepa-
rates §* between p and q and BNA C K. In particular, A separates 8™\K
between p and q.
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2.3. Let K be an open disc intersecting X and let R be a collection of
composants of X. Let L be a continuum disjoint with K and intersecting
every member of R. For each Ce R let poel ~C and denote by Dy the
component of XNK which contains py. We assume that

@=UDg
CeR
is not nowhere dense in X. Then, if ¢ is an inaccessible composant of X,
there exists a continuum A C O which separates S™K between two points of L.

Proof. It is easy to see that Q\{ is not nowhere dense in X ; hence
there exists an open disc K’ disjoint with X and such that

1) G#EK ~AXCOD.

Since Dy C ¢ and every composant is a boundary subset of X , R containg
at least two composamts. It follows that L ¢ X because X is irreducible
between any two points from distinet composants. Let ¢ e INX. Then
g¢K v X, hence by (1) and 2.2 there exist a continuum A C @& and
a point p e K’ ~ X such that

(2) 4 separates S™\K between p and g.

Let M be the component of S2\(X w A) which contains p. Since S™NE is
locally connected, M is open relative to this space. Furthermore, "M ~
N K'~ X is an open non-empty subset of X because this set contains P
and K A;K’ =@. By (1) we have M ~n K’ A X C @—\_C' This implies that
M ~(Q\C) # @; hence there exists a composant ¢ belonging to R which
satisfies the conditions

(3) Do nM+0
and
(4) Cn0o=0.

Then Dy C 8K and by (4), 4 ~ Dy = @. By (3) and {2) we infer that
D¢ C M. Applying (2) we conclude that A separates S°™\K between D,
and ¢. Thus 4 separates S™\K between two distinct points of I because
gelL and po e L~ Dg. This finishes the proof.

2.4. Let U be an inacoessible composant of X and let R be a collection
of composants of X such that R* is a second category subset of X, i.e. is not
of the first category. If L is a continuum which intersects all COMPOSANLS
belonging to R and does not contain X, then there exist am open neighbor-
hood U of L (an open disc) and a continuum AC O which separates U
between two distinet points of L. :
pu
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Proof. By hypothesis there exists a_point r e_X\L. Let K, K,, ...
be a sequence of open dises with diameters converging to zero such that

&y

For each composant C e R and for each index n let pgel ~ C and let
Dy, denote the component of X\K, which contains pg.

@ RNO() C U U Dy -

n CeR

for each integer n, * ¢ Ky and I n K,=@.

Let z¢ R\C(r) and let ¢ be the member of R which containg ». Let
DC C be a continmum joining 2 and pg. Since O Q(r) = d, we have
7 ¢ D. There exists an integer # such that K, is disjoint with D. Hence
eDCD which proves (2).
‘ By 2?’1n,the set I()J(a') is of the first category; hence R*\C (r)‘ is still
a second category subset of X. Thus (2) implies the existence of an index o)
with the property that the set cUch’”“ is not nowhere denge in X. This
€

result together with both (1) and 2.3 imply that there exists a eontinugm
A C (¢ which separates §™\K,, between two distinet points of . Settm.g
U= ;S’z\K_'m, we obtain by (1) the desired open neighborhood of L. This
completes the proof.

3. Properties of internal composants. In this section we list only some
of the most important properties of internal composants of an inde-
composable continuum X; their proofs are presented in the next section.

3.1. The union of external composants of X, i.e. E¥, is a first category
subset of X.

3.2, The set E* is an F,-set in X. Consequently, the union of internal
composanis of X, i.e. I%, is a Gy-set dense in X.

3.3. The collection of internal composanis of X is of the power of the
continuum.

3.4. If L is a continuum which inlersects both an internal composant
of X and the complement of X, then there ewists a non-empty closed subset A
of L such that € ~ A 1is dense in A for every composant O of X.

3.5. If L is an arc intersecting both an internal composant of X and
the complement of X, then there exists a Cantor set A in L such that for every
composant C the set O~ A is dense in A.

3.6. Let O be an internal composant. If L is a continuum which inter-
sects both C and the complement of X and does not contain X, then there
exist an open neighbourhood U of T and a continuum A C C which sepa-
rates U between two distinct points of L.

3.7. Let C be an internal composant of X. If Ly, Dy, ... 18 & sequence
of continua converging topologically to o continuum L and if for each integer m
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the set Ly is disjoint with C, then L is also disjoint with C provided that
X¢LgZX.

3.8. Let O be an internal composant. Let V be an open set (in 8?) inter-
sedting X and let D be a compact set lying in the complement of X, i.e.
D C 8NX. Consider the set F' consisting of all those points = of X for which
there ewisis a continuum lying in SNV, containing ®, intersecting D and
disjoint with C. Then F is a closed subset of X.

3.9. Bach internal composant is inaccessible.

4. Proofs of the properties from section 3.

Proof of 3.1. See [3], Main Theorem.

Proof of 3.4. This follows from the Second Theorem in [3].

Proof of 3.5. Let 4 be as in 3.4. Then A is 0-dimensional for other-
wise there would exist an arc M in 4. Then Int, M would be non-empty
and M would be a subset of a composant of X, which is impossible. Since
A is compact, to prove that 4 is a Cantor set it remaing to show only
that 4 is dense in itself. Let # ¢ A. We have to prove that z em.
But ACX, hence #eC(z). If C is a composant of X distinct from

O(a), then we have z e A= C ~ AC(X\C(s)) ~ A C AN{z}, which com-
pletes the proof.

Proof of 3.9. This fact is an immediate consequence of the defini-
tion of internal composant.

Proof of 3.6. According to 8.9 the composant ¢ is inaccessible,
By the assumptions on. ¢ and I the sebt T intersects all composants of X.
Hence 3.6 follows at once from 2.4, where we substitute for R the collec-
tion of all composants of X.

Proof of 3.7. Suppose L intersects €. Then I intersects both ¢ and
the complement of X and does not contain X. By 3.6 there exist an open
neighbourhood U of L and a continuum A4 C ¢ which separates U between
two distinet points of I, say p and ¢. Hence we can write
(1) UN\Ad=GuH, peGandqeH,
where ¢ and H are open and disjoint. Then B(U, G, H) (1) is an open
subset of 25 containing I and LimZI, = I, hence for some index n we
have Ly, ¢ B(U, &, H). This means that L, C U and Ly ~ @ %= @ # L, ~ H.
By (1) the set Ly intersects .4 and therefore ¢, contrary to our assumptions
on L,. This finishes the proof. .

(*) Symbol 2% denotes the set-of all non-empty closed subsets of X with the ex-
ponential topology. Then B (G, Gy, ..., @) denotes the set of all elements of 2% which
are contained in @, and intersect all @y, for 1 < Jj<n (see [8], p. 45).
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Proot of 3.8. Let @y, &y, ... be a sequence of points belonging to ¥
and converging to z. We have to show that # ¢ F. For each integer.n there
exists a continuum L, such that . .

@) p € Ly C 8NV,
(2)- . IynD#Q
and ‘ ’

(3) Iy 0-—-\!25.

Without loss of generality we may assume that {I.} is a convergent
sequence with the limit continuum I (for otherwige we may choose a con-
vergent subsequence of {Ln}). By (1), e LC 8™V and by (2) the set L
intersects D. Hence X ¢ L ¢ X. Thus by (3) and 3.7 wé infer that L is
disjoint with (. But these facts together imply that @ is a point of F,
which completes the proof.

Proof of 3.2. We have to show that E* is an F,-set. By 3.1 there
exists an internal composant in X, say Cp. Let SNX =D, v D, v ... be
the union of compact subsets of the sphere. There exists a sequence
K, K,, ... of open dises intersecting X with diameters converging to
zero such that the sets Up= Kn ~n X # @ constitute a base for X. For
each pair of integers ., i let Flps be the subset of X consisting of all those
points # ¢ X for which there exists » continnum lying in 8\K, which
contains x, intersects Dy and is disjoint with C,. By 3.8, Fu; is cloged in X
and it is obvious that Fy; is & subset of E*. So, to prove the whole theorem,
we need only to show that E* is contained in |J Fus, because this will

n,i

impty that E* is an F,-set. Let z ¢ E* and let ¢ be the external composant
which contains . Hence there exists a continumm M which infersects
both ¢ and the complement of X and not all composants of X are inter-
sected by it. Tt follows that M is disjoint will Cy. There exists an index %
snch that M ~ D; # @. Let N be a subcontinuum of ¢ containing & and
intersecting M. Put L= M v N. The set X\L is non-empty because it
contains ;. Hence there exigts an index n such that L is a subset of
S§™\K,. Moreover, I contains «# and intersects, D;. Since I is disjoint
with 0y, these results imply that  belongs to Fj;, which finishes the
proof. ’

Proof of 3.3. In [1] Cook proved that if M iy a Gj-set, in an inde-

composable continuum ¥, which contains a composant~of ¥, then M.

contains ¢ eomposants of ¥. Henee by 3.1 and 3.2 the set I contains at
least ¢ composants, and therefore card I = ¢ because everyindecomposable
non-degenerate continuum contains exactly ¢ distinet composants.

5. An example. In this final section we shall show that all eompbsa.uts
of the simplest indecomposable plane continnum X,, defined by Knaster
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(see [6], p. 204), except the accessible one, are internal. Let us recall the
construction of X,. This continuum counsists of

(i) all semi-circles with ordinates >0 and centre (1/2,0) which
pass through every point. of the Cantor set C.

(ii) all semi-circles with ordinates <0, which have for n = 1 the
centre at (5/2-3" 0) and pass through each point of the set C lying in the
interval 2/3" < @ < 1/3"".

Let p = (0,0) and, for each integer n > 1, let p, = (1/3"%, 0). By
0, we denote the composant of X, which contains p. Hence (, i3 acces-
sible and therefore it is an external composants of X,. For each n>1
let Ly, be the arc in ¢, which joins » and p,, and let M, be the semi-circle
with ordinates <0 and centre at (1/2-3"7, 0). Clearly, each M, contains p.
Denote by Dy the closed dise bounded by the simple closed curve Ly, v M,.
Hence Dy’s constitute a decreasing sequence of dises such that

(1) Xo=[) Dau
n
(see Figure 1).

M,

Fig. 1

We now are ready to prove the mentioned theorem.
THEOREM. Every composant C, of X, distinct from C, is internal.
Proof. Let A be a plane continuum which intersects both ¢, and

the complement of X,. Let a e A ~ C;. We have to show that A inter-
sects all composants. Consider two following cases.
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(I) For each open neighbourhood V of p which does not contain
a the component of ANV which contains & is contained in X,.

Since @ and p lie in distinet composants, then X, is irreducible between
them. Let Vy, Vs, ... be open neighbonrhoods of p with diameters con-
verging to zero such that no ¥, contains a, and let A, be the component
of ANV, which contains a. Since A4 intersects V, (otherwise A would be

a subset of X), A, intersects the boundaxy of ¥, . It follows that B= [J 4n

n
is a subeontinuum of X, containing both « and p. Hence B= X,. On
the other hand B is a subset of 4 and therefore X,C A4, which proves
our theorem in the first case. :

(IT) There exists an open mneighbourhood V of p which does mnot
contain 4 and such that the component. of ANV which contains & inter-
sects the complement of X,.

Without loss of generality we may assume that V is a circular open
disc with centre at p and 4 is a continuum disjoint with V, ie.

(2) AnV=0.

Let beA\X,. Since diameters of M,’s converge to zero, then by (1),
there exists a sufficiently large index m, such that

3) : b ¢ Dy,
and '
) M, CV.

Put D = Dy, L= Ly, and M= My,. Since LC Gy, a € 0y, and M~X,CL,
then

(5) aeIntD,
hence by (3) and (5) we obtain
(6) ILwv M separates the plane between a and b.

Let ¢ be an arbitrary composant of X,. By the construction of X, and
by (4) it is easy to show that there exists a homotopy

) F: (M oL)x I>FE\{a, b}
satisfying the conditions

(7 F(z,0)=x, for every xeMvL,
(8) - M;=F(Mx{1})CV
and

L L=FIx{1})CC.
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By (6) and (7) we infer that I; w M, separates the plane between a and b
(s,ee [6]3 p. 473). Since 4 is a connected set joining @ and b, A intersects
Iy v M. But, by (2) and (8), 4 is disjoint with M. Hence 4 intersects I’
and therefore by (9) the set A intersects ¢, which completes the proo%
of the theorem.
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