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Set existence principles of Shoenfield, Ackermann,
and Powell

by
W. N. Reinhardt (Colorado)

Abstract. The author proposes a formalization of an informal set existence prine-
iple of Shoenfield. Some consequences of the axioms are developed and comparisons
are made with other axiomatic theories which have been proposed. The author also
makes some general remarks about the problem of axiomatic principles in mathematies.

Introduction. Shoenfield has formulated the following principle §
for the existence of sets. The prineiple assumes that sets are built up in
cumulative stages, and that there is an ordering on the stages as they
are built up.

8 If P is a property of stages, and if we can imagine a situation in
which all the stages having P have been built up, then there ewisis
a stage s beyond all the stages which have P.

‘We remark at the ountset that one can read § in either (i) a more or (ii)
a less constructive way, namely (i) that the stage s exists mathematically
because of (or in) the act of imagination, which is thus a sort of construction
of s, or (ii) that what can be imagined is but an-indication of what has
mathematical existence, so that the latter can retain a certain changeless
Platonic impregnability or Cantorian absoluteness. It is (if) which seems
appropriate to this author in the context of classical set theory. (Bvidently
this does not preclude consideration of processes, eonstructions, and the
like, only they are not to be regarded as more primitive than existence.)

Although § is certainly vague, Shoenfield has wused it rather
convincingly to derive a number of the usual axioms of set theory [10].
The purpose of this paper is to propose » formalization of this principle,
(§ 1, § 5) and to deduce some of its consequences, the most striking being

_the existence of measurable cardinals (see § 5, Theorem 5.12). The formali-

zation proposed will bear a close relation to two other set theories, one
due to Ackermann and one to Powell, (see § 2, § 5 Remark 5.13 and § 6).
Tn a sense, adding arbitrary properties of sets to Ackermann’s theory
yields measurable cardinals (see 5.13).
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In stating Shoenfield’s principle I have taken the liberty of speaking
of properties of stages rather than collections of stages. Quoting directly
from notes of Shoenfield, “If C is a collection of stages, -and if we can
imagine a situation in which all of the stages in C have been completed,
then there is to be a stage § after all the stages in (¢ (private communi-
cation). A similar (*) principle appears in Shoenfield [10, p.234]: given a col-
lection of stages... there is a stage which follows every stage in the col-
lection... whenever we can visualize a situation in which all the gtages
in the collection are completed.

We remark that various authors have suggested set theory should
in some sense accomodate everything that can be imagined. (This tendency
in thought undoubtedly goes back to Leibniz, who formulated various
maximality principles for existence. This in turn presumably goes back
to medieval ideas of plenitude.) A recent expression of such an attitude
may be found in Tarski [11], p. 134, last paragraph. The only such formu-
Iation I know of which seems sharp enough to suggest a precise formal
axiom, however, is the principle §.

A number of results of this paper were obtained independently by
Powell and will be included in his thesis.

§ 1. The theory S. The formal theory S is introduced to express more
precisely (part of) the intuitive prineiple 8. This theory is formalized in
a first order langmage with the usual logical symbols (including H, =)
together with one binary relation symbol ¢, and one individual constant

symbol V. It will also be convenient to have a unary predicate symbol U

to indicate the range of the quantifier H (the universal predicate).

We now indicate what the intuitive meanings of these symbols are,
and-how the principle 8§ is to be expressed in terms of these. First, ¢ will
as usual mean “belongs to”, and U will mean “set”. For our purposes
the objects (situations and stages) referred to in S may be congidered
sets. Some of the terms occuring in the principle 8§ can be expressed
using e and U. We interpret “» has been built up in situation (or stage) ¢
a8 “z e¢y”, and “s, is beyond s,” as “s, € 5,”. It would be possible to take
“stage” as primitive, or to define it from e (see § 3), but it will not be
necessary to distinguish stages from other objects in order to state the

(*) Only “similar” because we choose here to pursue the sense of “imagine”
according to which Existing = Real C Imaginary rather than that according to which
Imaginable = Visualizable L (mathematically) Existing. To choose the latter would
turn § into a tautology (or an exhortation to visualize!) and require for its usefulness
2 criterion for visualizability. One can read the axioms for § as such criteria, taking 7
to be the visualizable sets. Then (33) gives a condition under which @ will provide
a “visnalization” of a set. The axioms so read may be plausible for some kind of
“visualizability” (such a concept of “visualizable” seems cloge to definable). However,
I have trouble seeing that each # C w is visualizable.
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axioms (except for the regularity axiom in § 3). The principle 8§ distin-
guishes between “imagine” and “exist”. We shall do this formally for sets
by treating “imagine” as the quantifier and “exist” as -quantification
relativized to a certain predicate. (Consequently we should not eall & the
existential quantifier, but a generalized existential quantifier. We keep
the usual logic for ®, however. We do not consider the possibility of
2 non-classical logic for “imaginary” objects.) We suppose that we can
imagine the set of all existing sets; ¥ denotes this imaginary set. We
have yeb to explain the term “property”. Generally, formulas corregpqnd
to properties of sets. Notice that the principle 8 only refers to. ems_tmg
properties, not imaginary ones (taking “is” not in the scope of “imagine”
to have existential force). Formulas in which all parameters are
existing sets will correspond to existing properties (we dq not. assume
the correspondence is onto). Formulas involving merel.y _mmgmed _ob—
jects z, such as “f e 27, will not in general correspond to existing properties.
Note in particular that we must not assume that ¥ exists, and eongequgntly
the property P such that f e ¥V« P(t) must not be assumed to exisb elthe?.

Our formalization of “there exists a set z such that..” is
“Hp(peV &..)". (In other words, “z exists and is a set” is formalized
%z ¢ V") This differs from the usual formalization, which WO'IlAld. be
“Hy(U(z) & ..J7 or “Ha(..)” (since we understand fche quantlﬁer' .to
range over U). This usual formalization automatically gives the quantifier
the meaning of existence. (In other words, “z exist_-s and is a set” would
usually be formalized simply by “Ul(«)”, or, eguxvalently, “Hy(U(y)_&,
&z =y)" or “Bylz=y)") The justification Offered for. 1'3he peculiar
treatment of existenee i 1). Tt works smoothly in formalizing 8. 2) In
section B we introduce for every X CV a corresponding property Q .(so
that each imaginable set of existing sets eorrespox%ds to an ex1.st1ng
property of imaginable sets). In the case X =V, this property Wl]l'be
expressed by Hy(y = @), not by z ¢ V. (So that the property correspondm‘gr
to the imagined set of all existing sets is expressed by the nsual formali-
zation of “z exists and is a set”.) . .

After stating the axioms we will indicate some other ways of reading
our Tz and zeV. _

Although in § 3 we shall introduce (existing) pr?pertles Q co%‘respond-
ing to arbitrary X CV, no attempt is made in thlr?‘ paper to }ntroduce
such properties corresponding to arbitrary expressions involving V' (as
=7V, ©eJV, ete.).

We now give the axioms.

We assame extensionality for all entities:

(30) Vi(texrtey)>2=19.

This is in accord with the unsual xmderstanding of set.
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About V we assume thatb

(81) teahweV—>teV, tCaxrpeV—>icV,

where of course tC  is Vu(u e t—u e ). These express in part the com-
pleteness we expect of what exists when existence is coneeived in the
classical way rather than as what we can construct. It would also be
appropriate here to include the Cantorian

2eVAIC VAotV

(This says that mathematical existence is mnot affected when existing
entities are replaced pointwise by existing entities. We shall be interested
in approaching the replacement axiom in a different way, 8o omit this
strengthening.) We employ the familiar Zermelo principle o give a supply
of “imagined entities” z (including “situations”)

(82) HeVi(l ez 0Nt e )

where 6 is any formula not involving 2. Here we indicate further the
decision to proceed in a perfectly classical manner with the treatment
of gets, including merely “imaginable” sets.

Finally, for the principle § itself we take (83) below. To make clearer
the connection with 8§ we give the following intermediate formulation of §:

Suppose imaginable an # such that » is a situation and for any ¢,
if tis a stage and ¢ has property P, then ¢ has been built up in sitnation z;
then a stage s exists such that for every %, if ¢ hag P then s is beyond ?.

Now replace “x can be imagined” by “Hz”, “x exists” by “weV”,
“t has P? by “p(ay, ..., an, t)” (where the a; exist). Ignoring the distinction
between stages and other objects, this yields

(S3)  @yy e, G € VAHSVEp(ay, ey Ony 1)1 € 2)

~®sls e VAVi(p(ay, ..., an, 1)t e 5)]

where @ is any e-formula (i.e. any formula of L) with free variables among
@yy ooy Oy B, and o is distinet from all these.

DErINITION 1. S is the theory whose axioms are (80), (S1), (S2),
and (S3).

Remark. Regunlarity is discussed in § 3. Choice could be added to S
but will play no role in onr considerations. However, Powell pointed out
that it could be used in lien of regularity, for example in Theorem 4.1.
Both can be avoided if (S3) is replaced by a suitable reflection principle
(see Remark 4.3).

If the reader is unhappy with the quantifier “imaginable” and the
subsequent distinction between “existing” and “imaginable” sets, he
may prefer to read “imagine” and “exist” as follows. First suppose thab
all existing sets and properties of sets are split into cumulative levels
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(say according to their degree of abstractness). Now take “exists” to mean
“exists at a certain level”, “imagine” to mean “exists, but possibly only
at higher levels”. This seems to amount to the same thing, but retains
the usual interpretation of ®. Since the plausibility of the axioms we
consider rests (in the first interpretation) on the completeness or fullness
in some sense of what exists, this second reading rests correspondingly
on the existence of a “certain level” which incorporates the completeness
(with respect to existence) which we expect mathematical existence to
have with respect to “imaginable”. This of course is an approach which
is familiar from reflection principles. Read in this way, Shoenfield’s
principle says, of a certain level (indicated by V), that if it or a higher
level sitnation collects all stages having a strictly lower level property,
then already some strictly lower level stage iy beyond all of them. Another
possibility is to interpret “imaginable set” as “class” or “set of second
type”, and “existing set” as “set”. This is-like the interpretation Acker-
mann indicates for his theory [1]. “Existing” properties may then be
interpreted as those properties of classes whose existence does not depend
on the existence of the class of all sets (or any class of as great rank).
For short we may call such properties independent. On this interpretation,
Shoenfield’s prineciple says that if P is an independent property of classes,
and there exists a class « with P C @, then there exists a set # such that
P C ». Again this seerns to amount to the same thing. Here the plausibility
of the axioms rests on type distinetions (notably set-class) and on the
fullness of the independent properties. The plansibility of this approach
is perhaps impaired by the fact that the concept of “independent prop-
erty” does not seem to be uniquely determined.

There is an alternative interpretation of ¥ which is eompatible
with §, and even suggested by the terminology of 8 (which conveys the
idea of process and change). Namely, we may conceive of V, the class of
all sets which exist or have been built up, the “available” sets, having
definite membership, as a variable in the old fashioned senge of a “quantity
which varies”, (ie., a function on the ordering of stages taking sets as
values). V itself does not have definite membership and is not available.
Thus the extent of ¥ varies along the ordering of stages. Similarly the
properties of sets which are available becnmes a variable (of suitable
tiype). In this picture ¥ contains the sets actually built up in the “process”
of generating sets along the ordering of stages. Thas, thinking of the
order “temporally”, V changes from “moment to momeunt”. It is clear
in this picture that ¢ eV should not be allowed as a detinite property of.
sets, since the question whether ¢ eV or not depends on the particular
value which V assumes among many possible ‘values. This picture can
probably not be used to justify or render plausible the axioms of S.
(B.g. V must grow by leaps and bounds, if the axioms of S are to hold,
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and these jumps will be difficult to deseribe.) Nevertheless it seems to
be very suggestive. It is possible to regard V as the least By compatible
with what can be truly expressed about the Cantorian universe by means
of language L. Since the language at our disposal does not seem fixed
(the simplest case is addition of a truth predicate to L), there seems to
be an essential variation here. Moreover since we are always caught in
some I, it appears impossible to distinguish Ry from the Cantorian uni-
verse V= R, by any absolute means.

§ 2. Relation to ZF and to Ackermann’s set theory. Ackermann [1, also
see 7] has formulated a set theory A in the langnage I'. The schema (83} is
stronger than the main schema of Ackermann’s seb theory, which is

() @y ey O e VAT (a1, o0 Gy 1) 5 € V)

~Wsls e VAVHp(ay, ..., an, 1) =t €3]] .
(same restrictions on ¢ as in (83)). Thus the “imaginable sets” in the
interpretation of S correspond to what Ackermann called classes, and

V to his class of all sets. The other axioms of Ackermann are immediate
from (80)-(82). Lévy and Vaught [8] have shown that A with regularity

(A% is consistent relative to A. Since it is known that A* ig ag strong

as ZF [9], assuming regularity we get (relativized to V) all the axioms
of ZF. We will also see (§ 4) that the axioms of ZF hold outright, without
relativization to V. In the other direction, Lévy [7] has given a (finitary)
proof of the consistency of A relative to ZF which yields also the con-
sistency of S relative to ZF. Indeed, we will see that S with regularity (8™
coincides with the theory Sh used in that proof (Theorem 4.1). However,
the first ordinal » which provides a (natural) model for S is larger than
the first providing a model for ZF (see § 7).

The arguments in S or A for the axioms of Zermelo (excluding regu-
larity) are easy, and are not so different from the informal arguments
Shoenfield gives using 8. (Perhaps the chief difference is that in Shoen-
field’s arguments the emphagis is on asking the reader to imagine a suit-
able situation, whereas in the formal arguments, the emphasgis is on
seeing that the imagined situation is suitable — that is, all stages having P
have indeed been built up.) On the other hand, the replacement schema
presents technical difficulties. These suggest a strengthening of S which
better captures the (relatively simple) intuitive argument for replacement
which can be given using § (see § 5,4). In order to get the regularity axiom
one must of courge restrict to the regular sets. The only proofs I know
of the replacement schema of ZF also require this restriction. Regularity can
be avoided by exchanging (83) for a suitable reflection schema (see 4.3).

The existence for a, b ¢ V of the empty set O, unordered pair {a, b},
power set Ta, and union | Ja are all proved as follows. In each case there
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is an e-formula ¢(a, b, t) which expresses membership of ¢ in the desired
get. Tn each case one has (possibly with the help of (81))
1) Vilpla,b,t)>teV).
Thus by (32) one can at least imagine the desived set 2= {t: ¢(a, b, )}
By (83) and (1), there is s ¢ ¥ 50 2 C 5. Thus, by (S1), 2 V, and the desired
set exists. The axiom of infinity is proved similarly by showing thab
w=\{t: 0 etAVu(uet—>uv {u}et)}

exists, this time using union and pairing axioms to see w cv.

§ 3. Regularity; the theory S™. Let us call # & stage, and write S(=),

if there is an ordinal o such that ¢ e » iff ¢ is of rank <<a. We show in this
section that § may be expressed by an ¢-formula in such a way that

S@)Ateyez—ten,

(84.1) S@)AMCyeaten,
S@)A8(y)»aCyvyCx,
(84.2) 2 # OAVa(z ez S(@) > (Hp e 2) (Vo' e2)a C o’

are provable in S, and moreover that the theory S* obtained from S by
adding the regularity axiom

(84.3) Voly(8(@) Az y)

is interpretable in- S Dy restricting the universe to 2’8 such that
Hy (S(y)Aw € 7). Therefore in discussing the replacement schema we will
assume (34.1), (84.2), (84.3). In any case these are natural agsumptions
in this setting. Indeed, we could take the notion of “stage” as primitive
and assume (S4.1), (S4.2), (84.3) as axioms, where § is a new unary predi-
cate which is allowed in the schemata of the theory S. What we do with
the theory S* goes through for this theory algo. It is not hard to see that
so read, (S84.1), (84.2), (84.3) are compatible with a variety of failures of
regularity. However, if § is a formula expressing “Taz e R, then (84.3)
expresses regularity. By (34) we understand this version of (S4.3). More
precisely, let Rn(z, y) be a formula expressing “z is an ordinal and y is
the sets of rank less than #”. (For an explicit formulation of Rn, see
e.g. Lévy and Vaught [8, p. 1047]). Then the regularity axiom can be
given as )

(84) Voly, s(Ruly, 2)Az e2) .

Of course, assuming replacement it is possible to show that (34) is equiva-
Jent to the following axiom (frequently called the axiom of regularity)
1) - 2% 0 (Huex)(Viex)(téu).

However, in S we are only able to show (without use of (84.1), (S4.2),
(84.3)) that (1) implies regularity for seis, ie. (84) holds for zeV.
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Let Ord(x) be an e-formula saying that iy a transitive set and
that z is well ordered by e (i.e. that # is a Von Neumann ordinal). Let
Ra(z, y) be as above. We need to know the following fact in S:

a) Ord (#)AOrd(y) > eyVy exVL =14.

Nowa) is provable in S in the usual way, because the usual proof uses
only (S0) and (S1). It is easy to see using a)and (82) that any transitive
set of ordinalg is an ordinal, and that the ordinals are well ordered. Using
this and (80), (82), induction on ordinals establishes

Ro(z, y)ARn(z, y) -y =y
Combining these facts with the logical validities
Rn(z, y)Ax’ co-Hy'ly’ e yARu(a', y"),
Bn(z,y)AtCuey—tey,
Ro(z,y)rteuey-tey

we see that (S4) is satisfied if S(z) is the formula HyRn(y, ).

‘We need some lemmas for S analogous to facts known for A. Although
the proofs are nearly the same the results for S do not seem to follow
from those for A.

Lemya 3.1. Let 6( ;3,
m S we have

@ e VAT{OTd(Bo) A 6 (8o, ®) > (Epy € V) (Ord (B1) A O (B, @)) -

Proof. Let p(y) be the formula Ord(y)A(Vy' < p)— 0(y, ). Let g,
be such that Ord(B,)A6(By, «). Now we claim that Vy (p(y, 2)—>yepy).
For suppose that y(y, #). Then Ord(y), and hence y € f, or f, € y or B, = y.
The last two cases are excluded because. 0(8y, #). Therefore y ¢f, as
desired. Since the formula 9 involves only z, and we assume z ¢V, the
schema (83) gives (HB e V) Vylp(y, #) >y ef).

Now let g, = {y e 8: w(y, #)}. Clearly 8, e V. Moreover g, ig an ordinal:
it is obviously transitive, and by remarks above any transitive set of
ordinals is an ordinal. We have f, €8, or fyep, or g, =
two cases, clearly Tly(f,), sinee 6(8,, ). In the first case, if (B,) then
B1 € B, which is impossible (by the deﬁnition of ordinal). Hence ~Tp(8,).
Since y ep, implies 716(y, #), this means we must have 0(8,, ). Thus
B e VAOrd (B A 0(8;, ), as desired.

COROLLARY 8.2. a) (Vo e V)(Hy ¢ V)Ru(z,y), b) Vo HyRn(z, y).

Proof. a) follows from the remarks of § 2, since it is a theorem of A.
Alternatively, a) is easily proved by induction using the schema (S3).
b) then follows by Lemma 3.1.
~ Tawormw 3.3. Let Ulx) be the formula Hy(S(y)Amey). Then S* is
interpretable in S by interpreting Wi ... as Ta(T(z)A...), € as ¢, and V as
{weV: U)}

) be an e-formula with free variables B, . Then

Bo. In the lagt -
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Proof. First we show that if a = {& ¢ V: Ord(#)}, then B, = {zeV:
U ()} (clearly o is an ordinal). Note that if § € a, then R, e V. Thus since
R, = URﬁ, we have R,CV. Clearly then, B, C{zeV: Ul (@)} (Recall

that S (w)«> Epx = B,). Now suppose that zeV and Hpx e Ry By
Temma 3.1 (applied to the formula e R;) there must be eV so that
% e R,. But then zeR,, s0o B, = {zeV: Ulz (#)}, as desired.

Next we show that U(R,). In fact, for all 8, Ord(8)— U (E,): by 3.1 it
is enough to check that (VB € a) U(R,), which is easy using Corollary 3.2a
and § 2.

Now since S| U(z)Ay e T (y), it is easy to see that the interpre-
tation of (80) is provable in S. (S1) is also easy. Use St U(@)AyCa—~U(y)
to get (S2). We now check (83). Suppose

Gy, oy O € BAET5VTE (0 (ay,

where the superseript U indicates relativization of quantifiers to the
formula U(x). Clearly a,, ..., @, ¢ V. Also

o Vi{pT(ay, ..., DAT(H) >t )

o Gny B> tea),

and U is an e-formula, so (83) gives
Ho e Ve (ay, .. )AT{H)—lea).
Evidently if o' = {t e w: U(f)}, we still have
Vi{pUlay, AT () >t ea’).

Moreover, &' C R, = {t « V: U(t)}, s0 that &’ ¢ R,,, and hence U(2'). Thus
since 2’ Cw eV, o' ¢ R, and

(Ea' e R)Vt{e"(ay, -
which shows that the interpretation of (83) is provable in S.

—)ieﬂ)‘)

§ 4. Replacement and related topics.
TaroREM 4.1. The theory S* satisfies the reflection schema

S* - gy ey n e V(¢ 5)

where @ is any e-formula with free variables amonyg @y, ...,
obtained from @ by relativizing all quantifiers to V.
COROLLARY 4.2. If o is any theorem of ZF, then S*— o and S*-o”.
Proof of Corollary 4.2. See e.g. [7]. Because of its relevance to
the next section we give here a simple argument for the replacement
axiom (the technicalities mentioned in § 2 are taken care of by Theo-
rem 4.1). This argument is due to Ackermann and is close to an intuitive
argument given by Shoenfield using 8. The situation is rather curious

an, and ¢¥ is
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because one feels the intuitive argument shows that V satisfies the full
replacement; axiom (any function F CV with domain in ¥ is in V), but
for technical reasons in S* it only gives the replacement schema of ZF.
First suppose that ¢(z, y) gives y as a function of z, where ¢ is an
e-formula, and that if 2V and ¢(x,y) then y e V. Then for all a ¢V,
{y: (Ewea)p(z,y)} CV, and hence the image of @ under the function
exists in V. (Evidently the argnment still works if ¢ has parameters
from V.) Clearly if every function F C V were represented by such a formula,
or even by a property to which Schoenfield’s principle applies, this argu-
ment would give the replacement axiom. The replacement schema of ZF
involves formulas in which (according to the interpretation of “z exists”
as “z € V?) all quantifiers are relativized to V. Thus to make the argument
yield the ZF replacement schema here, we must apply Theorem 4.1.
Proof of Theorem 4.1. It is enough to show that

(1) Byy ooy B € VABZ 9> (Hzg e Vg,

for any e-formula with free variables among #,, ..., #x. So suppose that
Hzyp. By regularity, (84.3) we may choose ¥, so that 8(v,), #, € ¥, and ¢,
and 2 so that y, ez and S(2). Let 2z, = {y cz: S(y)A(Hx, e y)p}. Now
Yy €2y, 50 by regularity, (34.2) there is ¥, €2, 50 that ¥ e 2,~y, C y. For ¢,
we have

(2) tey o Vy(S@A (B cy)p-tey).

From left to right is because y,e2,. For the other direction suppose
S)A(Hay e y)p. Either yCyy or 4, Cy. I yCyy ez, then yezrS(2),
50 ¥ € z. But then y e 2, and so y, Cy. If y, C v, then since 1, € 2y, 4, C 4. C 9.

Now from (2) and (83) it follows that there is y ¢ ¥ so that y, C 'sz.
Since yyez,, (Hz, eyp)e and thus by (S1), (Hw, e V)e as desired.

Remark 4.3. Theorem 4.1 shows that the theory S* is the same
as the theory Sb of Lévy and Vaught [7]. Thus only the axiomatization
i3 new. In [9] this theory is called ZA. Notice that the schema (1) is osten-
sibly stronger than (S3), but is a natural reflection principle. Exchanging
(83) for (1) yields an axiomatic theory S’ which works more smoothly
than S (regularity is no longer needed for Theorem 4.1). I do not know
if 8’ is actually stronger than S.

§ 5. Axiomatizing properties; the theory S*. In this section we extend

the theory S* to a new theory S* by enriching the notion of property. -

Moreover, this is done in such a way that the intuitive argument (§ 4)
for the replacement axiom in ¥ will work directly in $* (Theorem 5.8).
We also indicate how to make a similar extension of A* (Remark 5.13).
In Theorems 5.7, 511 and the discussion following Definition 5.3 we
analyze the way in which St extends S*

e ©
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For the language of S* it will be convenient (but not essential; see
5.5, 5.6) to introduce (in addition to e, V) two new unary predicate
symbols U and P. The interpretation of U(wz) (in S*) will be the same
as the interpretation of the formula U(z) of Theorem 3.3, namely “z is
regular.” We interpret P(z) as “z is an (existing) property of sets”.
‘Whereas the duantiﬁers of S* ranged over “imaginable” sets x satisfying
U(x), the quantifiers in St range over U v P. In stating the axioms,
and in the sequel, we assume the upper case letter @ (with or without sub-
seripts or superscripts) is relativized to P; that is, HQ means HQ (P@)A...).
Relativization to U or V, respectively E[w(U(m)A...) or Hz(zeVA..),
is indicated by @Yz or H"z. A1l free variables are understood to be univers-
ally quantified.

The axioms of St are:
(S0) (extensionality)

Vi(tezotey)mo=19,

(81) (closure of V)

teurveV-1eV, zCuluveV-ozeV
where # C u is the formula Vi(iez—1eu).
(82) (Zermelo principle)
. VUrHU2Vi(t e 2>t eTAO)

where 8 is any formula not involving 2.

(88.1) (construction of properfies)

Ugy ooey Un € VEQVTr{r € Q> 07(Qy, vvvy @y thyy ooy tmy 7))

where 6 is any e-formula whose free variables are among Q, s Q”’
Usy weey Un, r and @ is distinet from all these. 6V has all quantifiers
relativized to U.

(83.2)  (Shoenfield principle)
AUV eQover) T uVo(weQ—veu).
Notice that (33.2) generalizes (83) (because of (S3.1)).
(83.3)  (non-constructive property existence principle)
wCV->EQV i(tewteq),

(84)  (regularity)
Vaoly, u(Bn(y, ¥) At € )
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where Rn(y, u) is a formula expressing “y is an ordinal and u is the sets
of rank less than y" (see § 3).

(85) T,
(86)  (normalization)
vey—-U(z), P)vU(z).

DerINITION 5.1. a) If L is any language including symbolse, V, U, P,
then S*(L) is the theory whose axioms are (80)-(36), where 0 in the
schema (S2) is any L-formula not involving .

b) In case L contains only e V, to get S7(L) read U(z) as s =7Vv
VHy (2 ey) and P(z) a8 £ e VVVy(wé y) (see 5.5, 5.6).

Remark 5.2. a) In (83.1) the restriction to e-formulas 6 is essential:
we cannot allow a property @ such that VUr (r e @Q>r ¢ V), as this would
give VeV by (83.3), (S5) (contradicting regularity). Similarly, since
2 e VaHQVi(t e Qot= ), all quantifiers in 6 must be relativized to U.

1) It is essential in the above axioms that the variables 7,z be
relativized to U. If r is not, the theory becomes inconsistent; if # is not
it is weakened.

¢) The axioms of ST can be read treating lower case variables as
having range U. (If this is done one can still assume (86), by reading
“pey” as “@eyAU(x)” and restricting all quantifiers to P(z)v U(z);
all the other axioms are preserved). This has the effect of dropping the
following two assumptions:

1. extensionality for properties (S0),

© 2. QCteV is identified with a set in ¥V (S1).

To clarify the role that properties play in the arguments of this section,
we avoid these assumptions when possible (e.g. in Theorems 5.8, 5.12).

To facilitate comparison with other theories, we consider two sub-
theories of S*.

DEFINITION 5.3. The theory St is obtained from St by weakening the
Zermelo schema (82). Namely, it is required that all quantifiers in 6 be
relativized to U; 6 may however have free property wvariables. The
theory S° in addition omits (S3.3).

Note. The weakened version of (S2) which S° has is redundant in
the language with ¢, V as it follows from (S3.1) and (S1).

The theories S°, S' clarify the way in which S* strengthens S*.
S¢ introduces properties as objects, but is an inessential extension of S*
in the same way that Godel-Bernays (GB) is an inessential extension
of ZF. Namely, if M is any model of S*, and P is taken to be the collection
of all subsets of M definable using parameters from V, then M v P is
a model of S (see Theorem 5.7). Indeed, the theories S° and St are very
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closely related to GB (Theorem 5.11). The (non constructive) principle
(83.3) for the existence of properties makes it possible to carry out in S*
the intuitive argument (given in § 4) for the replacement axiom over V.
(Moreover, the assumption (83.3) seems to be exactly what is needed
to make the argument work.) ST differs from St only by having the full
Zermelo schema rather than the weakened version necessary for Theo-
rem 5.7. It turns out however that S greatly strengthens S* (Theorems
.12, 7.3). This circumstance perhaps makes i easier to judge the merits
of (83.3). One could suggest that (93.3) rests on a confusion of two notions,
that of “class” and that of “property” (the latter necessarily agsociated
with formulag), Tather than on an insight into the nature of properties.
If this is so, one might (*) expect something to be wrong with St. The
relative wealkmess of St seems to indicate this is not the case. In this con-
nection it should be mentioned -that Solovay has shown thatb %> (@)=
yields models of 8 in which V= E, and a<x; from this and work of
Silver it follows that S* is compatible with V = L. )
Since ST is obtained from S' by a separation schema, a comment
on Zermelo’s principle seems appropriate here. In the Zermelo principle

V7B 2Vi(t e st e xA0),
or even in
WP Vit ezt CVAD),

any restriction whatever on the language in which 0 is formulated is
extremely unnatural (**). The only condition ghould be that for each teV
(resp. 1C V), 0 makes a meaningful agsertion (true or false) about &. Of
course if 6 is indefinite in the sense that its meaning depends on some
hidden parameter, the parameter should be fixed.

We observe that S° does extend S:

THROREM 5.4. If S* - o, and o7 is obtained from o by relativizing oll
quantifiers to U, then S°-o¥..

Proof. Notice that because of (36), in the axioms of ST it does not
matter whether the variables ¢,u,v are relativized to U or not. The
axioms are now immediate; because of (83.1) every formula oceurring
in the schema (83) is represented by a property, so (83.2) yields (83).

TEEOREM 5.5. In S°

iy T(X)HdY (X Y),

i) U(X)o X=VVvEY (X ¢T),

iii) P(X)e>XeVV LY (X € Y).

(*) Caution is needed here; there are of courst%consistent get theories with no
natural models.

(**) See Zermelo, Uber G'renzzahleq/umd\lklmgenbereiche, Fund. Math. 16 (1930),
p. 30, footnote. |
2 — Fundamenta Mathematicae, T. LXXXI'

T
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Proof, i) is immediate from Theorem 5.3 and the assumption
X e Y- U(X). Thus ii) follows from 85. To see iii) first argue from left
to right. Suppose P(Q) and HY(Q ¢ ¥). Then by i) U(Q). But Va(z e
sz eQ) so by (83.2) there is w eV so that Vo(ze@—zeu). By (82)
there is %' ¢ V so0 that Va(z e Qo w eu’), 80 by (S0) @ = u'. Thus Q7.
Next suppose the right hand side. If THY (X ¢ ¥), then by i) T1U(X),
go since P(X)vU(X), P(X) as desired. If X eV, then by (83.1)
HQVi(te X1 eQ), so by (S0), X =@ and hence P(X).

Remark 5.6. If U, P are not taken as new symbols, but defined
by ii), iii) above, then X ¢ ¥ — U (X) and P(X)v@(X) follow immediately,
as well as (S5).

TEEOREM 5.7. Let M = (My, &, V™ be any model of S* (but for
convenience assume X C Mo—~X ¢ My). Let P={XC My: X is definabdle
in (M,a),e), where' A= {aeMy aVM. Identify aeV™ with
{te My: te™a} e P. Suppose that N = (N, ¥, VM, U¥, PNy is given by

1) Ny= M,wP; U= M,, PP=P,

2) @ y iff either w,ye M, and oMy, or we M, yeP and wey.

Then N 4s a model of S°.

Proof. Immediate from the axioms of §° and S*.

In the next theorem we use the argument of Corollary 4.2 (and
regularity) to show that the replacement axiom holds.

TrEOREM 5.8. (Replacement axiom). In S* (indeed in SY) we can
prove: If fCV is a funclion and % eV, then {f(): tea}eV.

Proof. First suppose that f: V' - %, where » = {a ¢ V: a i3 an ordinal}.
By (83.3) we choose a property @ so that

1) VVe(zeferzeq’).
Now it is not immediate that @ is a function, i.e. that
yay, ¢ a'>deQFa=d.
However, by (83.1) there is a property @’ so that
&y ey eQ' o> Ord(a)ALt, ey e QA(Va' < a){t, a'> ¢ @',

and‘ it is immediate t}laﬂ: Q' is a function (using the comparability of
orc}mals). Moreover we still have (1) when @ is replaced by @’. Now
evidently for each z €V,

(Htex){dyaye@ —aexCV,

becanse for £V, <, ay < @' implies a = f(t), and f: V> x. Th
= : ». Thus by (83.1
(83.2) there is A4 ex such that 7 v y

(Htea){t, o) e@Q —ael,

e © :
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and therefore
{f(t): tew} = {a: (Htex){, a) e@QICAeV.

By (81) this implies {f(f): e @} ¢V as desired.

So far the proof is very close to the intuitive argument of § 4.
However, to take care of arbitrary g: V-V, we use regularity. For each
t <V we can by regularity choose a e 0 that g(t) e R,. Let f(I) be the
least such ordinal a. Now if zeV, A= |J{f({): tex} eV, and clearly
{g(t): tex} C Ry eV, so by (S1) the ¢ image of # is in V. This completes
the proof.

Remark. Theorem 5.8 shows that axiom (83.3) is sufficient to make
the intuitive argument for replacement work in the setting of S° It is
not easy to think of a reasonable weaker agsumption with the same
effect. (Although it can be done; D. Perlis recently formulated such
assumptions.) However, with (82), (83.3) already leads to assumptions
much stronger than inaccessible cardinals. In Theorem 5.12 we show ib
yields measurable cardinals.

Next we observe that a reflection principle holds in S*.

TemorEM 5.9. In St (or S%) we have

8) B7(x < Q)& o(@ < Q),

b) Ve Q-Tx(z Q).

Proof. Suppose % e @ and U(). Then by regularity there is a stage s
(or ordinal «, and put s = R,) such that s and U(s). There is in fact
a least such stage s, and this s corresponds to a property €. Indeed,

wese Vs[S()A(Hz e 8) (@ e@)>uea]
%0 by (83.1) there is a property @, such that
Vu(ueseueqy) -

Thus sinee U (s), (83.2) gives an s" « V such that Vu{u e@—ues’). Hence
sCs'eV, and 50 seV. But by choice of s, (Hz e s)(x €@), 80 "z (2 Q)
as desired. Part b) is immediate from a) since U(V).

Remark. As in Remark 4.3, exchanging (83.2) for the reflection
principle 5.9a yields an alternative axiomatization of S* (or S9).

COROILARY 5.10. In ST (or S°) we have the schema

@yy wery B eVol07(Qry oy Quy Ty vy D) e 079(Q1y very Oy Zay oovy )]
where 0 is an e-formula, and the @i, exhaust the free variables of 6.

Proof. It is enough to show that

E{Uml HU(QI, ey Quy 1,y .f.,‘ﬂ?n)"’ﬂvwleU(Qu wvey Quy Tyy vy Tn)

9%
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for z; € V. But 87(Q, ...) is represented by a property @, and the hypothesis
asserts MUz (w, €Q), so by Theorem 5.9, U’z (% @), and the con-
clusion holds.

Recall that Godel-Bernays set theory GB (a8 presented in [3]) is
formulated in a language with similarity type (i.e. nonlogical symbols)
t={e, M, Ols}, where P (») means “x is a set”, and Cls(x) means “z is
a class”. In the interpretation in [3] (see p. 2), classes are what appear
in Zermelo’s formulation as “definite Eigenschaften”. The type of St is
s={e,V,U, P} In S*, ¥V may be considered as a unary. predicate
(V(#)«>2 ¢ V) rather than an individual constant; this will facilitate
comparisons of structures of types ¢ and s. The role of Cls in GB is played
by P in S*. However, the role of 9t in GB splits into two roles in S*:
the role of V' and the role of U. This is made precise in the next theorem.

Given a structure M of type ¢, it induces a structure M, of type ¢
(with universe Cls™) by the rule (e, V, U, P)—(e, M, M, Ols). A strue-
ture N of type s induces structures N, Ny, of type ¢ (with the same
universe as N) by the rules (e, M, Cls) —» (¢, V', P), — (e, U, P) respectively.

In the next theorem we suppose that N, N, are structures of type s,
and M, M, are of type ¢. Also we assume Ny = M,, M, = N,,, M, = N,,
and that in N, P(z)vV(z)v U(z). Recall that GB has among its axioms

(A1) M () — Cls () ,
(A2) Ols(z)ACls(y)Aw e y > M (2) ,

and also an axiom of choice (axiom E). The theory GB; has the axioms
of GB except choice, and has also a modification of (A2).

(A27) 2 e yADM(y) »M(z) .
GB, omits both B and (A1), but has
(A2") z ey A[M(y) vOls(y)] »M(x) .

(Tt is not assumed in GB that Va[Cls(w)yIM(x)].)
. THEOREM 5.11. a) Suppose M is a model of GB. Then N, (see above)
s a model of the awioms of S* except for (S5).
b) If N is a model of S, then M, is & model of GB,, and M, of GB,.
(?) If N satisfies (33) and also M,, M, are models of GB,, GB, re-
spectively, then N is a model of S°. Bwplicitly, (SB) is

BVt e 2V (1)) .

Proof of a), b). Part a) is immediate from the axioms. Part b)
follows from Theorem 5.8 (replacement) and Corollary 5.10 (reflection)
as fo]lqws. For M,, the axioms of group B (class existence axioms) are
immediate from (83.1), (A2") from (86), (A3) (extensionality) from (S0)
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and (86), and D (regularity) from (S4) and (S6). For M;, the axioms
of group C (set existence axioms) are immediate by Theorem 5.4 and
Theorem 5.8, as is (A4) (pairing); Al follows from (83.1) and (S0) or (S1).
Now by Corollary 5.10, (A4) and the axioms of € go up to M,, and (A3)
and D go down to M;. The axioms of group B go down to M, because
by (86), 3 ¢ VU (z). (A2") is contained in (S1).

Proof of e¢). First we check (86). By (85) there is v so that U(v)
and V() =1 ¢ ». Thus by (A2"), ¥ ()~ U (). Now since the universe of ¥
is PY v UY o V¥, we clearly have P(z)v U(z) in N. Now suppose ¥ e &.
By (A2") we must have U (y). Using (36), (S0) follows immediately from
the extensionality axiom (A3) for M,.

Next we observe that (83.1) holds. The axioms of group B for M, yield

1) TQVr(r Qe 67(Q1; s Qu)) 5
where the @; are in P. (This can be seen by checking through the proof
in [3] of M1, p. 8.) Since (A1) for M, assures V C P, (83.1) follows. Of
course, (1) holds also with U replaced by V.

Because of the extensionality axiom for M;, we have for each pro-
perty @ that

HUs(r Q)T a(zeQ) .
Using this and (1) for M;, M, it is easy to check that
(2) 07 (@1y +vvs Qa) = 07(Q1; s @n) -

(Use the transitivity of ¥ given by (A2') for M, and the pairing axioms
for M, and M,). .

‘We have observed the transitivity of V, z ey e V—oa ¢ V. To see (31)
we must check that #Cy eV —z<V. By the power set axiom for M,,
there is p ¢V so that

(3) ViteprtCy)
holds in V. Since p is nniquely determined by (3), and (2) holds, the same p
must satisfy (3) in U. Thus

zCynU(@)—>2ep .
But since p ¢ V, the transitivity of V gives 2 ¢ V. If # CyA P(=), then by
the replacement axiom for M, (or the weaker Aussonderungs) zeV.
This shows (S1) holds. Combining (33.1) with this gives the weak version

of (82) needed for S°.
To prove (83.2) we must show

QCaAT(@)~(Hy eV)(QCy) -
Let @' be the property defined (using (S3.1)) by
z eQ’«—)VUt(telQ—)tem) .
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Since Az ¢ @', we have (Hz e V) (2 € @’), which shows (83.2). In particu-
lar, it U(z)AP(»), then weV.

Regularity now follows eagily from axiom D of GB.

TurEoREM 5.12 (Proved in S*). Let x = {a ¢ V: a is an ordinal}. Then
% is a measurable cardinal, and moreover {aex: a is measurable} has
normal measure 1.

Proof. We define a x-complete nonprinciple wltrafilter D C Fx as
follows. For each X C», there is by (83.2) a property @ such that

1) VVu(ue Xt eQ) .

We write X = @7 if (1) holds; by extensionality, X is determined by ¢.
Put X e D if and only if » € @ for some ¢ such that X = Q7. This defines D.

First we note that if Q] = @}, then x e Q,«>» ¢ @,. If not, then the
symmetric difference @; 4Q, is non empty, and so by the reflection prin-
ciple, (Hu eV)(weQ,4Q,). This means u € (@,49,)" = Q7 4QY = 0, a con-
tradiction.

Now we show that D is an ultrafilter. Evidently for each ¢ with
Q" Cx (~QV =x~Q". Thus for each X Cx, XeD or (x~X)eD.
Suppose that 1< %, and X, (»<<1) are in D. Define F by

F={,oyeV:v<land zeX)}.

Olearly for » < 4, F*(») = X,. Choose @,, so that F = Q¥. Consider a pro-
perty @, given by
e Qe (Vr <A (<, udeQ) .

Olearly Qf = QAX,,. For » << .A, consider a property @, given by

’ UeQ v, udeQ. |
Clearly for such @,, Q) = X,. Since X, ¢ D, this means x ¢ X,, and hence‘
<y #) € Q. Consequently (Vv << 2){((v, #y € @), 80 % €Q,. Since Q] = [ X,,
M X, e D. This shows that D is x-complete. "

v<i
To see D ]:S non-prineiple, let » € » and suppose that @” = {»}. Now
by the reflection principle, » e QA # »— (Ta< %)(a e QAa # »), which
means that Q¥ = {»}. Thus » ¢ Q, so {»} ¢ D.
Next we observe that .D is normal. Suppose that fr = x, and that
X={vewn: fo)<w}eD.
Choose @y, @, so that @7 = f, and
Vo, t({uy ty e Quevu=1). |
Now let Q satisfy

Vv(v eQolr ({v, z) eQhz< 'u)) .
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Clearly Q¥ = X. Thus since X e D,
Har({n, 2y e @iz < 2,
say A< % and (e, Ay € Q. Now let @, satisfy
TeQueslz, > e .
Clearly » €@, 50 @ ¢ D. This means that
{ven: w2y eQt={pen: f(»)=12eD,
and hence that D is normal. '

Finally we show that X = {» < »: » is measurable} e D. To see this
it suffices to observe that if

% € Q>x is a measurable cardinal,
then @7 = X, and moreover » Q. This completes the proof.

Remark 5.13. It is easy to formulate a theory T bearing the same
relation to Ackermann’s theory A* (with vegularity) that S* does to s,
in particular so that an analogue of Theorem 5.7 holds. It turns out that
most of the results of this section hold for T. In particular, Theorems 5.8
and 5.9b hold, and the proofs are essentially the same. When working
in such a theory one must use the special definition of ordinal devised
by Lévy and Vaught [8] in order that »= {aeV: Ord(a)} will be an
ordinal comparable with every ordinal. In the proof of 5.8, one must write

0rd(a) & VA (0rd(f) ~»aepVp cava=f)
instead of Ord(a). ‘ ‘
Explicitly, the axioms of T are those of 8*, but (82) and (83.2) are
replaced by
) AUVt e 20t e VA D)
(where 8 is any formula not involving 2) and
VoweQoveV)>T uVo(veQ—veu)
respectively.
To obtain Theorem 5.12 one must replace (1) by
HUVi(t e 22t CVAG),
6 any formula not involving z.

§ 6. The set theory of Powell. A very elegant axiomatization of set
theory has been introduced recently by W. Powell (see [4]). Although
the axioms for this theory appear rather different from those of S*, it
can conveniently be described in terms of S*. Indeed, it is egsentially
equivalent to St (Theorem 6.1). :
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Because of (83.3), for each X CV there is a property @ with X
= {weV: ®e@Q}=Q". Moreover, because of extensionality and the re-
flection principle

Q=0Q oViteQteq’).

Thus the correspondence @ Q" is 1-1 and onto. If we identify properties
with subsets of V' via this correspondence, then the universe of discourse
is again U rather than U w P. To express te@ for £ ¢ V, however, we
must introduce a new binary relation (called predication, and written »
in Powell’s theory) such that

teQoQV st
‘We can then define properﬁes to be subsets of V:

Px)eVitex—teV).

When this is done we get the following (using @, @; ete. as before to range .

over properties). From extensionality:

(P0) ViteQoteQ)—Q =@
From (81),
(P1) seyYAyeVomeV.

From (82) we get the Zermelo schema
(P2) ValzVi(t ezt e A D)

for any formula 6 not involving 2. Let us call an e-formula 6 normalized
p.rovided that i) if  is free in 0, # e yisnot a subformula of 6, and ii) equa-
lity does not oceur in §. Any e-formula may be normalized by replacihg
subformulas 4 ey by ®u(u = wAw ey), and then replacing subformulas
#=19 by Vi(tewotey). Now if 6 is any normalized e-formula with

free variables Q,, ..., Qu, #y, ..., #n, t (distinet from @), then (83.1) trans-
- lates as

(P3) Byy ooy Bn € Vo HQVHQ 5 156(Qy, vovy @y 4,y o, znt)),

where 5 is obtained from 6 by replacing X e Q: by Qs> X. Wo also have
regularity, (P4) = (84), and

(P5) VViH(Psterte P)

which is immediate from the definition of ».

The axioms of Powell’s theory P are (P0), (P1), (P3), (P4), and (P5)

(together with choice, which we do not congider here). We now have the
following.

©
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TaEorEM 6.1. a) Under the interpretation of » described above, any
model of St becomes a model of P.

b) Comversely, any model of P becomes a model of S* under the inverse
process.

¢) Similarly, ST is equivalent to P4-(P2).

Proof. We have just observed a). We prove the converse. If M is
any model of P, and A ={Qe M: MFQCV}, let P={Q: Qe A} Dbe
any copy of A disjoint from M, and put te Q'@ > ¢ (and ? e M). Now
(83.1), (83.3), (S4), (85), and (36) are immediate. Powell has shown that
ZF C P, and moreover that the translation of Corollary 5.10 is provable
in P. Corollary 5.10 gives (S0) immediately (from (P0)). To see (S1), note
that by the power set axiom of ZF; s CueV-zew' eV, so by (P1),
@ eV. (Of course 2C u eV >z eV is needed in proving ZF C P, bub that
is not our concern here). Thus we have (S1). Now (S2) (the weak version
which S! has) follows immediately from (81) and (83.1).

The axiom (82) is immediate from (P2).

As a corollary of Theorem 5.11, we observe that

THEOREM 6.2. The theories S*, P are finitely axiomatizable.

After seeing Powell’s axioms, I observed the formal simplifieation
of the axiomatization of S given in the next theorem. The simplified
axioms no longer correspond directly to the ideas of Shoenfield or Acker-
mann.

THEOREM 6.3. The three amioms (80), xCyeV -z eV, and (83.2) of
the theory St (formulated in the language with e, V only) can be replaced by
the single awiom

(80") VVo(we@QoneQ)>Q =@

Proof. First we observe that (80') is a theorem of St (indeed of S°).
This is immediate from (80), (86), and Corollary 5.10.
Now assume (S0’). We show that

(@8] TV (x eQ)->Tz(xeq).

(Tt is easy to see, using (83.1), that this is stronger than (83.3).) By (83.1)
choose @, so that
Vit e Qpert # 1) .

Now if HYz(z @), clearly Q #@,. Thus by (80, H"2(x e Q). This
proves (1). Now an easy induction shows that

(2) BU(Qn ey Qn)"’GV(Qn wey @)
PFrom the definition of P, @ eV —P (), so (30') yields (for z,y V)

VVitenestey)oo=1y
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and
Viteaerte@)mo=20.

By (2) we can replace V by U here, and since P(xz)v U(x) it follows that
(80) holds.

Tt remains to show that #Cy eV —a V. Suppose ¥ Cy « V. By the
transitivity of ¥V, # C V. Thus by (88.3) there is @ so that

VVi(teQerten).

Thus by (80), @ = @, so P(x). We must now use (the weakened form of)
(82) to see that also U(z): y eV, so BHU2Vi(l e 2>t c yAl e m), therefore
2= 50 U(z). But now by (2), TVu(u= Q)" u(u = Q); thus since
x=0Q, zeV.

§ 7. Natural models of S', S*. In [4], Jech and Powell have discussed
standard models (M, ¢, 5%, V*y of P in which M is transitive (and « is
membership). Because of the discussion of § 6 this carries over to St

Here we briefly discuss natural models of St

DEFINITION 7.1. A model (M, *, V*)» of St is called natural if

i) there is an ordinal » such that V*=R,,
ii) on R,, ¢ is e @ ¢ R, implies Vi(t ¢* we>t e ),
iii) for all X C V¥, there is @ ¢ M such that

(VteV*(te Xt " Q) .

DErFINITION 7.2. A cardinal x is called n-extendable iff there is a car-

dinal 4, 4 >«, and a function f: R, ,—R,,,, such that
i) f(@) = o for z e R,

) if P= {f(2): @< R,;,}, then (P, ey < Byym, >
(where < means elementary substructure).

The n-extendable cardinals, and related topics, are to be discussed
in'a forthcoming paper by R. M. Solovay and the author, to be titled
“Strong axioms of infinity and elementary embeddings”.

THEOREM 7.3. a) There is a natural model of St with V* = R, +ff » is
measurable.

b) Let » be the first cardinal which admits a natural model of S*, 1 the
first 1-extendable cardinal, u the first measurable cardinal. Then u << x << A.

Proof. a) First suppose » iy measurable, and consider the structure
(By1s € (Which we write simply R,,,, suppressing the ¢). Let D be
& x-complete, normal, nonprinciple, ultrafilter D C §%, and considér the
ultraproduct (R,.,)%. It is well-founded, so we assume it is realized as
a fransitive set. We have R, =, M < (R,,,)5 by a cannonical em-
bedding (such that for @ ¢ R,, fo = »). Moreover, X CR, implies X ¢ M
(because X' = {te R,: te f(X)}). Let- P = {f(X): Xe R}, N=Ff(R)v P,
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and consider the structure 9t = (¥, ¢, V*» where ¥* = R,. This structure
ig easily seen to be a model of St

We can show moreover that 9t is never a model of St (By Theo-
rem 5.12 it is obviously not a model of St if % is the first measurable
cardinal). Let D= {XCu: = ef(X)}. Clearly DCR,.;eN, and D is
o definable subset of 9. Thus to show thab (S2) fails we need only show
that D ¢ N. Let % be the first » such that D ¢ (R,)7, for some D, as above.
Now in (R,)p, » it still the first such x, since the funections g: »— R, from
which the ultraproduct is constructed are in R, ;C(R)5. Now Dy the
elementary embedding, f(») is also the first such cardipal, but sinee
f(x) > = this gives a contradiction.

Next suppose St has a natural model R with V* = R,. Because each
X CR, is represented by a property of R, we have (R,, X)gep,
{ZU”*, Qx>xcr,, Where Qx is the property representing X. Clearly
t&* e R,~teR,, and thus by a characterization of measurability due
to Keisler [5, Oor 3.8], xis measurable. Alternatively, it is easy to checlk
that D = {X C w: » ¢Qx} is an ultrafilter of the required sort (e.g. follow
the argument of Theorem 5.12).

b) Remarks in a) show that p<w To see that »< A, suppose
R,.1—; Ry as in Definition 7.2. Ttig easy to see that if P = {f(2) ‘@ C Ry},
then (Byv P, e, B> is a model of S+. Moreover, the assertion that
there are A<< A, P C Ry, which form such a model can be expressed
in Ry,,, and hence is true in B,,. It follows that » is much smaller
than A. )

The next two theorems state conditions on a,f, P under which
R, v P is a model of S+ (taking R, for V, B, for ¥, P for P, and « for e?.
I 9 is a structure with underlying set A, and P CTA, we say that P is
closed under logical operations on U iff whenever Q' is definable (by a first
order formula) in the structure (U, @) .p then @'e P.

THEOREM 7.4. Suppose o< f and P CRy,y. Then R, P is a model
of 8% iff

i) P is closed under logical operations on {Byy €

i) P~ Ry= R,

ili) Ryyy = {@ ~ Byt @ ¢ P}

When these conditions are satisfied, a is measurable, with many measurable
cardinals below a. :

¢

Proof. This is simply a model theoretic restatement of the axioms
of S*, and of Theorem 5.12.
TrEOREM 7.5. Let a< B and P C Ryy,. Suppose that R, P, Ryu P

are (respectively) models of GB and GB emcept for (A1) (taking M to be R,
resp. Ry, Ols 1o be P, and € to be «). Then By v P isa model of S°. Moreover,
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if {Q ~ Ry Q e Py = R,,,, then Ry P is a model of S*, and a is measur-
able with many measurable cardinals below o.

Proof. Theorems 5.11, 5.12. Observe that for « fixed, the least g
providing & model of St (for some P C Ry,) will have cofinality o (by
the downward Lowenheim-Skolem theorem). Thus g will not in general
Dbe measurable. ‘

Intuitively, S appears stronger than ZF, since proper classes are
allowed in S but not in ZF. Nevertheless, S and ZF are equiconsistent
(by a finitary argument). However, S is stronger than ZF in a precise
‘sense given by the next theorem. Of course S is also stronger than ZF
in the (vague) sense that it more readily suggests strong theories such as S*.

Let us say a model (M, ", 7*> of S has standard sets in case

i) ¥ is e on Tt wert ew for all x * V*) and '

il) {a: @ " V*} is transitive and equal to V*.

Then {# ¢ V*: 2 ig an ordinal} is an ordinal, called the ordinal of the model.

THEOREM 7.6. The first a such that there is a model of S with standard

sets and ordinal o is greater tham the first ordinal providing & standard
model for ZF.

Proof. In 8* it is easily proved that there is § < V such that R, =7.
Indeed, if 7' is ThV, the first order theory of <V, e¢), then T ¢V and
Ha(T = ThR,) and 8o (Hf e V)(T = ThE,). Thus (Rs V¥, e is a stand-
ard model of ZF provided by < a.

§ 8. Philosophical remarks. The Zermelo-Fraenkel axioms express
self evident principles in a natural and reasonably simple manner. We
can say that the axioms successfully cannonize principles already accepted
without further justification by mathematicians. These principles are
in fact treated as self evident in mathematical practice, and were (with
a qualification explained in the next paragraph) when the axioms were
introduced. Moreover the axioms are adequate for classical mathematics,
including classical set theory. Zermelo argued for his principles on just
such grounds [12, especially § 2a]. One might hope for some more philo-
sophical considerations, but what could be more persuasive to the working
mathematician than to point out that he is already persuaded?

Three rather parenthetical remarks on “self-evident principles” may
be helpful here. (1) Some contemporaries of Zermelo felt that principles
coiuntenancing a universal set were -self evident; Zermelo saw that in
practice only the separation axiom was used, and that it implies there
is no universal set. (2) As every mathematician knows, one can have
a good or bad intuition about something, or no intuition at all. Also one
can have a good intuition about A which is misleading when brought
to bear on B. Tt makes sense to speak of developing intuition about
something. All this remains true when one deals with the basic (and
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frequently tacit) presuppositions of mathematical thinking. These of
course appear as axiomatic or self evident principles. (8) It is obvious
that in discussions about the philosophy of mathematics basic mathe-
matical principles were not (nor are they now) always treated as evident.
Rather, there is & tendency to shift the grounds of discussion to pre-
suppositions (usually still mathematical) which seem either even more
gecure, or even more basic, or even more general. Ideally, philosophy
ghould provide a correct analysis of the relevant concept (or coneepts) of
evidence. The evidence for the correctness of this analysis, however,
would presumably malke appeal to some basgic abstract (logical or mathe-
matical) principles. So philosophical considerations miight increase our
understanding of the evidence of (or for) some principles without making
it any more evident. Such considerations also might develop intuition
and suggest stronger axioms, and this might lead eventually to increased

* confidence in the validity of the principles.

Tn formulating fundamental principles today we are still concerned
with mathematical practice. The necessitiy for seeking such principles does
not lie in the inadequacy of known principles for formalizing exjc@nt
proots, but in their ineompleteness. Many questions of set theory arising
in current practice are independent of the old axioms, including some
from algebra and topology. The incompleteness extends also to number
theory. (Although the questions known fto e indepen(}ent are IMmore
considered by logicians than by number theorists, the existence of sgch
concrete problems makes incompleteness significant on nearly any philo-
sophy of mathematics.) The task before us is not to reproduce 'mafthe-
matical practice but to extend it by finding true f_undamentafl prmclples
which it can utilize. Nevertheless we seek as much as possible -to find
self evident ‘principles with antecedents in mathematical pI'a:CT.Jl(}e.. )

" Mhis section contains suggestions on the way in which our 111.tu1131v.e
mathematical ideas can provide a source for new basic assumptions 1'n
mathematics. These suggestions are unfortunately neither very gystematic
nor very precise, but they may be appropriate in the present st@te o.f.ou.r
knowledge. Also in this section are further remarks on t.he intuitions
behind S* and antecedents of these in mathematical practice.

The axioms of Zermelo ave true in Cantor’s universe: more spe.cuf.leally,:
in the cumulative hierarchy generated using Cantor’s “abso}utely limitless’
system. of ordinals. Here it is obvious that there is no umversal.set. Thﬁﬁ
specification of “set” is implicit in Zermelo [12, 13]'; he banished t e
univergal set and clavified the operations used in forming the qumgl?mlve
hierarchy. With this meaning of “set”, the axioms of ZFC are intuitively
evident. » )

Tt would be pleasant if “self evident” or “.intmtlvel-y eﬁdel;h”
principles were a) easy to find, b) a priori c) certain (especially in the
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sense of containing their own justification, as the term “self evident”

suggests). They need not be eagy to find, or Zermelo’s principles would
have heen formulated by the early Greeks. The sense in which funda-
mental principles in mathematics can be certain and or a priori is somewhat
problematic. A lack of absolute certainty in our basic presuppositions is
at léast suggested by the fact that it is possible to make mistakes in
formulating such principles. (Is the Fregean “ideal set comprehension
schema?” a correct formulation of a bad presupposition, or a bad formu-
lation of a correct principle?) Dedekind apparently felt.that the principle
of definition by recursion on integers was more certain after it was justified
set theoretically [2, points (7) and (8)]. This may seem strange today,
since there seems hardly anything more secure than such definitions.
(Dedekind was perhaps impressed by the greater generality or richness
of the set theoretic ideas. Or perhaps, for Dedekind, the evidence of the
principle was not immediate, but mediate in something like the way
indicated by his analysis.) Amplifying on an earlier discussion of Russell,
Godel suggested in [3a] that the justification for fundamental principles
may lie (as in physics) in their consequences more than in their self
evidence, and that this circumstance would affect the “absolute certainty”
of such principles. To the extent that the consequences in question must
be “looked for” in experience, it would also seem to affect the a priori
character of mathematical principles. Although we may not have absolute
certainty, we rightly have considerable confidence in the correctness of
say Zermelo’s principles or, if we adopt a reserved attitude about their
ultimate meaningfulness, in the correctness of their meaningfal — e.g.
numerical-consequences. Moreover this confidence ordinarily appears
very soon after one grasps the meaning of the principles (so that their
justification seems implicit in their statement). This circumstance gives
the principles an a priori flavor. They appear evident (as mentioned
above) on the basis of intuitions which arise from mno specific experience
and can be brought into play by a description (of the cumulative hier-
archy); this indicates that they are grounded in experience in a rather
indirect (and perhaps subtle) manner (*). It may be that new principles
will be found by expressing intuitions developed on the basis of experience
with explicit formulations of old principles (**). Something like this
appears to be the case with axioms of infinity in set theory (including,
I think, those discussed in this paper). Here it appears to make sense
to seek general principles which are either evident on mathematical

(*) There is a penetrating discussion of mathematical intuition in Godel [3b].

(**) Gdel has observed that “we understand abstract terms more and more precisely

a8 we go on using them, and that more and more abstract terms enter the sphere of
our understanding”. Cohen [la, p. 14, 15] also discusses the development of intuition
(emphasizing however “syntactic” intuitions developed considering formal axioms).

&
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intuition or implicit in the meanings of the concepts involved. It should
not be mecessary to emphasize that the danger in too free reliance
on appeals to intuition or meaning is that it will lead to arbitrary
results rather than scientific ones. We may Dbe able to extract mathe-
matical knowledge from our intuition, but exactly how is not clear, and
certainly it cannot be done in a scatter-brained manner. This is
much less apparent with axioms concerning the richness of the power
set operation, or with physical principles. In addition to seeking general
principles which are themselves evident on mathematical intuition, one
can also seek general principles with consequences in accord with particular
intuitions (¥). This is one way of implementing Godel’s suggestion
above, is like what is done in physics, and may be appropriate for axioms
on the power set. Many mathematicians believe in the sort of eonstructions
made possible by the Hausdorff maximal principle, and therefore accept
it, rather than finding it convinecing in itself or believing it because of
seeing the proof that it follows from the axiom of choice (which, despite
all that has been said about it, most mathematicians do find self evident,
when it is understood that the choice set need not be definable). Similarly
one might accept Zermelo’s separation prineiple because it unifies various
more special principles such ag definition by recurgion. Stronger axioms
of infinity can be obtained from weaker ones by angwering the question:
What general principle accounts for the particular axioms already pre-
supposed? Concerning axioms on the power set operation, there is
some tendency (independent of large cardinal considerations) to see
Ha(x Cw &o ¢ L) as intuitively correct. This may arise from the spef:iﬁ‘c
knowledge that it is a consistent assumption, or from some characteristic
of Cohen’s proof (which certainly develops some intuitions). The latter
case would perhaps be more similar to the possibility mentioned a,p(‘)ve,
although no suitably evident general principle based on thc‘ase in.tmmons
has yet been formulated. Concerning physics, the constraints imposed
by experience arise more specifically from certain experimggts. Although
many physical intuitions do have an a priori or “unspecitic” eha,raj,eter
(especially those appealed to in imaginary experiments), a good bit of
physical intuition is quite self consiously a posteriori.

The axioms for properties expressed in St are supposed to be true
in Cantor’s set theory, and I hope the reader will agree they have been
introduced in a natural way. Although properties and pro.per'classes (as
considered here) are not entrenched in mathematical pr?,ctlce in t¥1e way
sets are, there are some antecedents. OOnstructix're existence .prm.m.ples
for properties (such as (33.1)) are of course found in GB, and (lmphcn.:ly)
in Ackermann’s set theory. Also, reflection principles and the Shoenfield

(*) The two approaches would be very close if it ghould 'b.e. the? case that our
intuition tends to develop in the direction of unifying and generalizing its own contents.
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principle (83.2) seem very close to intuition. In order to see that a non-
constructive existence principle (such as (83.3)) holds for properties, one
must be clear what is meant by a property. (Just as with sets; for example
the axiom of choice is not obvious for definable sets. Incidentally, since
choice is true for sets, by reflection it is true algo for classes or “imagi-
nary” sets.) The discussion following Definition 5.3 may be helpful here.
Tt may also be helpful to point out that properties correspond to what
COantor called systems or multiplicities (Vielheiten). Cantor distinguished
between multiplicities whose extension can be comprehended in a unity
(Einheit), and those which are essentially incomplete or unfinished. The
former he called “gets”, the latter “absolutely limitless”. (Cantor also used
the terminology “inconsistent multiplicity”, since the agsumption that
a limitless multiplicity is a set leads to a contradiction.) The distinction
can be given very elegantly in Powell’s system: a property P is incomplete
provided that no matter what entity F one takes to represent
the extension of P, there will be an object ¢ F which has the
property P.

The impredicative GB (or Morse-Kelley-Tarski) theory in common
use incorporates nonconstructive existence principles for proper classes.
However it is frequently regarded philosophically not as a theory about
classes, but about subsets of some R, where 6 is inaccessible. Presumably
any extensional theory of properties should allow such a natural model.
Moreover, if it is the elements of B, which the model takes for sets, and
we are dealing with a theory of arbitrary properties of sets (or classes
of sets), then we expect that every subset of R, should correspond to
a property. On the other hand, if the model takes something other than
(all) elements of R, for sets, or if there is some restriction on the pro-
perties considered, then one need not expect that every subset of R, will
correspond to a property. In the case of S*, such a natural model would
have V= R, for some a<< 6, and VC PCR,,,. The model takes for
(existing) sets the elements of R, and properties of existing sets are
unrestricted, but properties of (imaginable) sets (i.e., of elements of Ry)
are Testricted to existing properties. Althomgh every subset of E, corre-
sponds to a property, P # R,,,. More generally, a theory with properties,
properties of properties, ete. to level » would have natural models with
VCPCRy,,. In this connection notice that a correct form for the re-
flection principle 5.9a in case there is quantification over P is

BVu6F(u) » BV (EP’ C Su) 67 (u) .

Concerning theories allowing properties of properties, ete. something
more can be said. One way of formulating such theories leads to theories
whose natural models are given by a, 6 as above which admit an ele-
mentary embedding j of B,,, into Ry, ., where jo= 6 and for all z ¢ B,
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jo =@ An o satisfying this last condition is called &-extendible to 0.
Results of Kunen [6] show that one cannot fix ¢ and consistently suppose
there is an embedding which works simultaneously for every ordinal &.
Thus & = & = OR is impossible; however, if ¢f1 = w, it is open whether
= &' = )1 is possible.

, - Although today measurable cardinals are widely considered in set
theory, most readers will not find the assumption “there exists a measur-
able cardinal” particularly, natural as an axiom for Cantor’s set theory.
T know of no more natural way to introduce measurable cardinals than
via properties as in Theorem 5.12. Of course the reader who is surprised
that a proposed fundamental principle leads to measurable cardinals may
either accept measurable cardinals or doubt the correctness of the funda-
mental principle. It seems that the acceptability of assumptions in
mathematics, as in physics, is more influenced by the consequences
derived from them than by their derivability from first principles. Here
I refer to the opportunism mentioned by Cohen [la], as much as to the
circumstance mentioned above by Godel. This opportunism may not be
altogether bad, of course. Nevertheless I hope that considerations which
base the existence of measurable cardinals on more fundamental principles
may help clarify the proper place of measurable cardinals and other
large cardinals in Cantor’s set theory.

I would like to thank a number of people for comments and cor-
rections on early drafts of this paper, especially K. Godel, G. Kreisel,
J. Malitz, J. Mycielski, and W. Powell.
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Abstract. J. G. Ceder recently proved a theorem from which it follows that if 4 is
an uncountable subset of the reals R, then for every f: A—R, there exists a bilaterally
dense in itself set B C 4 such that f|B is differentiable (infinite derivatives are allowed).
Uncountability of A is necessary, and B cannot be made to have cardinality ¢ (the
cardinality of R). The main purpose of this paper is to characterize those sets A CR
for which it is true that for every f: A-»E, there exists a bilaterally ¢-dense in itself
set W C.4 and a dense in W set B such that f|W is differentiable on B. A new notion
of density results, and this notion is compared to lmown types of categoric density in
metric spaces.

1. Introduction. A set B is bilaterally dense (c-dense) in itself if every
closed interval containing an element of B contains points (¢-many points)
of B. A real function f is differentiable at  if and only if f is continuous
at #, # is a limit point of the domain D; of f, and it is true that there is
an extended number m (possibly 4+ oo or —oo) such that if {w.} is a se-
quence of elements of D,— () converging to o, then {(f(@)—f(@n))/(x— )}
converges to m.

In [4] Ceder gives the following:

TaEOREM C. If A is an uncountable number set, then for every f: A— R,
there ewists a coumtable set O C A such that for each x e A— C there ewists
a bilaterally dense in itself set BC A—C containing @ such thet f|B is
differentiable and monotonic.

B cannot be made to have cardinality ¢. Ceder’s argument for the
monotonicity part of Theorem C has a mistake in it, but a correction
is given in [7], and a short alternative correction is given in this paper.
Tt is easy to show that if A CR is countable, there ewists f: A >R which
has no contimuous restriction to any dense in itself subset of A.

The primary purpose here is to prove the following two theorems:

TEEOREM 1. If A is an L, set, then for every f: A — R, there exisis an L,
set ¢ C A such that for each »e A— C there ewists a bilaterally o-dense in
itself set W C A—C and a dense in W set B containing @ such that f |W is
differentiable on B.
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