

be referred to as a crumpled handlebody. Lemma 19 implies immediately the following

COROLLARY 22. Any crumpled handlebody X has an h-spine, which is the wedge of simple closed curves or a point and possesses a topological regular neighborhood in $X \backslash BdX$.

References

- J. W. Alexander, On the subdivision of 3-space by a polyhedron, Proc. Nat. Acad. Sci. 10 (1924), pp. 6-8.
- [2] R. H. Bing, Approximating surfaces with polyhedral ones, Ann. of Math. 65 (1957), pp. 456-483.
- [3] Improving the side approximation theorem, Trans. Amer. Math. Soc. 116 (1963), pp. 511-525.
- [4] K. Borsuk and A. Kirkor, Two remarks concerning retracts of ANR-spaces, Coll. Math. 17 (1967), pp. 325-326.
- [5] M. Brown, A mapping theorem for untriangulated manifolds, Topology of 3-Manifolds and Related Topics, Englewood Cliffs 1962.
- [6] R. Craggs, Small ambient isotopies of 3-manifolds which transform one embedding of a polyhedron into another, Fund. Math. 68 (1970), pp. 225-256.
- [7] C. H. Edwards, Jr., Concentricity in 3-manifolds, Trans. Amer. Math. Soc. 113 (1964), pp. 406-423.
- [8] A. Kirkor, Every topological (n-1)-sphere is a deformation retract of an open neighborhood in the n-sphere, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 17 (1969), pp. 801-807.
- [9] A positional characterization of the 2-sphere, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 18 (1970), pp. 437-442.
- [10] On mild and wicked embeddings, General Topology and Its Relations to Modern Analysis and Algebra III, Academia, Prague 1972.
- [11] V. Nicholson, Mapping cylinder neighborhoods, Trans. Amer. Math. Soc. 143 (1969), pp. 259-268.
- [12] C. D. Papakyriakopoulos, On solid tori, Proc. London Math. Soc. 7 (1957), pp. 281-299.
- [13] On Dehn's lemma and the asphericity of knots, Ann. of Math. 66 (1957), pp. 1-26.
- [14] F. Waldhausen, Heegaard-Zerlegungen der 3-Sphäre, Topology 7 (1968), pp. 195-203.
- [15] J. H. C. Whitehead, Simplicial spaces, nuclei, and m-groups, Proc. London Math. Soc. 45 (1939), pp. 243-327.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 7. 2. 1973

A characterization of Hurewicz space

by

C. Bandy (Saskatoon, Sask.)

Abstract. A characterization of Hurewicz spaces is given. In particular, in a regular Lindelöf space the Hurewicz property is equivalent to each normal sequence having a point-finite (or locally-finite) subcollection covering the space.

A topological space X is a Hurewicz space [2] if each sequence G_1, G_2, \ldots of open covers of X has a subcollection H that covers X such that $H = H_1 \cup H_2 \cup \ldots$ where each H_n is a finite subcollection of G_n . A topological space X is totally paracompact (metacompact) provided each open basis of X has a locally-finite (point-finite) subcollection covering X. The sequence $G_1, G_2 \ldots$ is a normal sequence provided G_{n+1} star-refines G_n for each positive integer n. Let $\operatorname{st}(x,G) = \bigcup \{g\colon x \in g \text{ and } g \in G\}$. All spaces are assumed to be Hausdorff.

The author would like to thank Professor A. Lelek for his encouragement while working on this problem.

THEOREM. A regular Lindelöf space X is Hurewicz if and only if each normal sequence of open covers has a point-finite (or locally-finite) subcollection covering X.

Suppose X is such a space and let G_1, G_2, \ldots be a sequence of open covers of X. Since X is paracompact and hence fully normal, let U_1, U_2, \ldots be a sequence of open covers of X such that U_1 star-defines G_1 and for each positive integer greater than 1, U_n star-refines both U_{n-1} and G_n . Define $\inf(\operatorname{st}(x, U_n))$ to be $\{y\colon \operatorname{st}(y, U_k) \text{ is contained in } \operatorname{st}(x, U_n) \text{ for some } k\}$. Let (X, U) be the topological space having basis the set $\{\operatorname{int}(x, U_n)\colon n\in N \text{ and } x\in X\}$. The set $\inf(\operatorname{st}(x, U_n))$ is open in X since if P is a point of $\inf(\operatorname{st}(x, U_n))$ then there is an integer k so that $\operatorname{st}(P, U_k)$ is contained in $\operatorname{st}(x, U_n)$ and $\operatorname{st}^2(P, U_{k+1})$ is contained in $\operatorname{st}(P, U_k)$ hence $\operatorname{st}(P, U_{k+1})$ is contained in $\operatorname{int}(\operatorname{st}(x, U_n))$. To show we have a basis suppose the point P is common to both $\operatorname{int}(\operatorname{st}(x, U_n))$ and $\operatorname{int}(\operatorname{st}(y, U_m))$ then there is an integer k so that $\operatorname{st}(P, U_k)$ is contained in $\operatorname{st}(x, U_n)$ and there is an integer j so that $\operatorname{st}(P, U_k)$ is contained in $\operatorname{st}(y, U_m)$. Suppose k is greater than or equal to j, then $\operatorname{int}(\operatorname{st}(x, U_n))$ is common to both $\operatorname{int}(\operatorname{st}(x, U_n))$ and $\operatorname{int}(\operatorname{st}(x, U_n))$ and $\operatorname{int}(\operatorname{st}(x, U_n))$. The set $\{\cap \operatorname{st}(x, U_n): n\in N\}$ is

a partition of X into pairwise disjoint closed sets. The set $\bigcap \operatorname{st}(x,\,U_n)$ is closed since $\operatorname{st}^2(x,\,U_{n+1})$ is contained in $\operatorname{st}(x,\,U_n)$ so the closure of $\operatorname{st}(x,\ U_{n+1})$ is contained in $\operatorname{st}(x,\ U_n)$ hence $\bigcap\operatorname{st}(x,\ U_n)$ equals \bigcap (closure of $\operatorname{st}(x,\,U_n)$). To show the set $\{\bigcap\operatorname{st}(x,\,U_n)\colon n\,\epsilon\,N\,\text{ and }\,x\,\epsilon\,X\}$ is pairwise disjoint suppose there is a point x common to $\bigcap \operatorname{st}(p,\,U_n)$ and $\bigcap \operatorname{st}(q,\,U_n)$ and a point y in $\bigcap_{n} \operatorname{st}(q, U_n)$ but not in $\bigcap_{n} \operatorname{st}(p, U_n)$. Therefore there is a positive integer m so that y is not in $st(q, U_m)$. Since q is in $st(x, U_{n+1})$ and y is in $st(q, U_{n+1})$, y is in $st^2(x, U_{n+1})$ which is a subset of $st(x, U_n)$ for each positive integer n putting y in $st(x, U_{m+1})$ and since x is in $\operatorname{st}(p,\,U_{m+1}),y$ is in $\operatorname{st}^2(p,\,U_{m+1})$ giving the contradiction y is in $\operatorname{st}^2(p,\,U_{m+1})$ which is a subset of $st(p, U_m)$. Let X/R be the quotient space obtained by identifying the points of $\bigcap st(x, U_n)$ for each x in X. Define a function φ from (X, U) onto X/R by $\varphi(x) = \bigcap \operatorname{st}(x, U_n)$. The function φ is continuous and $\varphi(\operatorname{int}(\operatorname{st}(x,\,U_n)))$ is open since $\varphi^{-1}\varphi(\operatorname{int}(\operatorname{st}(x,\,U_n)))$ = int(st(x, U_n)). To see this suppose y is a point not in int(st(x, U_n)) this means $\bigcap \operatorname{st}(y, U_n)$ does not intersect $\operatorname{int}(\operatorname{st}(x, U_n))$ hence y cannot be in $\varphi^{-1}\varphi(\inf(\operatorname{st}(x,\ U_n)))$. Define $H_n=\{\varphi(\inf(\operatorname{st}(x,\ U_n))): x\in X\}$. Then H_n covers X/R and $\{H_n: n \in N\}$ satisfies Moore's metrization theorem, that is, $\{\operatorname{st}^2(y, H_n): n \in \mathbb{N} \text{ and } y \in X/R\}$ is a basis for the T_1 space X/R. This follows because in (X, U) st² $\{p, \{int(st(x, U_{n+3})): x \in X\}\}$ is contained in

C. Bandy

$$\operatorname{st}^2(p, \{\operatorname{st}(x, U_{n+3}): x \in X\}) = \operatorname{st}(p, U_{n+1}) \subset \operatorname{int}(\operatorname{st}(p, U_n)).$$

Since X is Lindelöf, (X, U) is Lindelöf and therefore X/R is a separable metric space. Let β be an open basis for X/R. Since X/R is metric and hence paracompact β can be written in a normal sequence by letting β_1 be β , and for each integer n greater than 1 let β_n be a refinement, using members of β , of a star-refinement of β_{n-1} . Therefore $\{\varphi^{-1}(b)\colon b\in\beta_n, n=1,2,\ldots\}$ is a normal sequence of open covers of (X,U) and hence also for X and therefore has a point-finite subcollection α covering X. The set $\{\varphi(a)\colon a\in\alpha\}$ is a point-finite subcollection of β that covers X/R. Hence by Theorem 2 of $[2]\ X/R$ is Hurewicz. For each integer n greater than 1 let α_n be a finite subcollection of H_n such that $\alpha_1\cup\alpha_2\cup\ldots$ covers X/R. Therefore $\{\varphi^{-1}(a)\colon a\in\alpha_n, n \text{ fixed}\}$ refines U_{n-1} . Hence there is a sequence $\lambda_1,\lambda_2,\ldots$ such that λ_n is a finite subcollection of G_n and $\lambda_1\cup\lambda_2\cup\ldots$ covers X. Therefore X is Hurewicz.

To prove each normal sequence of open covers in a Hurewicz space X has a locally finite subcollection covering X let G_1, G_2, \dots be a normal

sequence of open covers of X and let $G = G_1 \cup G_2 \cup ...$ Using the Hurewicz property let $H = H_1 \cup H_2 \cup ...$ where each H_n is a finite subcollection of G_{2n+1} and H covers X. For each member h of H_n select one and only one member g of G_{2n-1} so that $\operatorname{st}(h,G_{2n+1})$ is contained in g. Let this collection be denoted by K. Let L be the collection to which g belongs only in case g belongs to g and if g is a member of g is not a subset of a member of g with g less than g is locally-finite subcollection of g covering g because each member of g can intersect at most finitely many members of g.

COROLLARY 1 (Theorem 3.1 of [1]). A regular Hurewicz space is totally paracompact.

In a paracompact Hausdorff space each basis can be written as a normal sequence.

COROLLARY 2. If each continuous one-to-one image of a regular Lindelöf space X is totally metacompact, then X is Hurewicz.

QUESTION 1. In a Lindelöf space does total paracompactness imply that each normal sequence of open covers have a point-finite subcollection covering the space?

QUESTION 2. In a paracompact or a regular Lindelöf space are total paracompactness and total metacompactness equivalent?

An answer to Question 1 would answer problem 3.2 of [1].

References

[1] D. Curtis, Total and absolute paracompactness, to appear.

[2] A. Lelek, Some cover properties of spaces, Fund. Math. 64 (1969), pp. 209-218.

UNIVERSITY OF HOUSTON, Houston, Texas, USA UNIVERSITY OF SASKATCHEWAN, Saskatoon, Sask. Canada

Recu par la Rédaction le 3. 3. 1972