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be referred to as a crumpled handlebody. Lemma 19 implies immediately
the following

COROLLARY 22. Any crumpled handlebody X has an L-spine, which
is the wedge of simple closed curves or a point and possesses a topological
regular neighborhood in X\BdX. )
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A characterization of Hurewicz space
by
C. Bandy (Saskatoon, Sask.)

Abstract. A characterization of Hurewicz spaces is given. In particular, in a regular
Lindel6f space the Hurewicz property is equivalent to each normal sequence having
a point-finite (or locally-finite) subcollection covering the space.

A topological space X is a Hurewicz space [2] if each sequence Gy, Gs, ...
of open covers of X has a subcollection H that covers X such that H
= H, v H, v ... where each H, is a finite subcollection of G,. A topo-
logical space X is totally paracompact (metacompact) provided each open
basis of X has a locally-finite (point-finite) subeollection covering X.
The sequence G;, @, ... is @ normal sequence provided @, ; star-refines G,
for each positive integer n. Let st(w, @) =1J{g: seg and ge@}. All
spaces are assumed to be Hausdorff.

The author would like to thank Professor A. Lelek for his encourage-
ment while working on this problem.

TaEOREM. A reqular Lindelsf space X is Hurewicz if and only if each
normal sequence of open covers has a poini-finite (or locally-finite) sub-
collection covering X.

Suppose X is such a space and let Gy, Gy, ... be a sequence of open
covers of X. Since X is paracompact and hence fully normal, let Uy, Us, ...

"be a sequence of open covers of X such that U, star-defines @, and for

each positive integer greater than 1, U, star-refines both U, , and G,.
Define int(st(aa, U,,)) to be {y: st(y, Uz) is contained in st(x, U,) for
some k}. Let (X, U) be the topological space having basis the set
{int(z, Un): ne N and « ¢ X}. The set int(st(m, Un)) is open in X since
if P is a point of int(st(m , Un)) then there is an integer k so that st(P, Ur)
is contained in st(z, Un) and st*(P, Uyy,) is contained in st(P, Ux) hence
st(P, Uy,,) is contained in int(st(m, U,,)). To show we have a basis sup-
pose the point P is common to both int(st(z, Us) and t(st(y, Tnm)
then there is an integer k so that st(P, Uy) is contained in st(z, Un)
and there is an integer j so that st(P, Uy) is contained in st(y, Um)- Sup-
pose k is greater than or equal to j, then int(st(P, Uy)) is common to
both int(st(z, Us)) and int(st(y, Um)). The set {()st(z, Un): neN} s
n
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a partition of X into pairwise disjoint closed sets. The set (M) st(x, Un)

n
is closed since st(®, U,,;) is contained in st(z, Us) so the closure of

st(2, U,,;) is contained in st(z, Us) hence Q st(z, Un) equals O (closure
of st(z, Ua)). To show the set {[sb(z, Un): % e N and 2 ¢ X} is pairwise
disjoint suppose there is a point a? common to (D st(p, Un) and Q 5t(q, Ua)
and a point y in [0 st(g, Ua) but not in (7 s6(p, Uy). Therefore there is

a positive integer m so that ¥ is not in st(g, Un). Sinece ¢ is in st(w, U,y,)
and y is in st(g, Uppy), ¥ 18 in st%(®, Uy,,) Which is a subset of st(x, Un)
for each positive integer # putting y in st(z, U, and since z is in
$5(9, Upy)y ¥ 15 in st3(p, U,,4a) giving the contradiction y isinst*(p, Upyy)
which is a subset of st(p, Um). Let X/R be the quotient space obtained
by identifying the points of [ st(z, Uy) for each » in X. Define a

function ¢ from (X, U) onto X/R by ¢(#)= [\st(z, Us). The function

n
p is continuous and q:‘int(st(m, U,,))) is open since ¢~ lp (int(st(m, Un)))
= int(st(z, Us))- To see this suppose y is a point not in int(st(z, Un))
this means {1 st(y, Uy) does not intersect int(st(w, Uy)) hence y cannot

be in g~ int(st (2, U))). Define H, = {pint(st(2, Un))): # € X}. Then H,
covers X/R and {Hn: n e N} satisfies Moore’s metrization theorem, that
is, {st*(y, Ha): n e N and y ¢ X/R} is a basis for the 7T, space X/E. This

follows because in (X, U) st"(p, {int(st(®, Upys)): we X }) is contained in
stp, {st(z, Upys): @ e X}) = sti(p, Upy,) Cint{st(p, Ua) .

Since X is Lindelof, (X, U) is Lindelof and therefore X/R is a separable
metric space. Let § be an open basis for X/R. Since X/R is metric and
hence paracompact g can be written in a normal sequence by letting g,
be 8, and for each integer n greater than 1 let 8, be a refinement, using
members of 8, of a star-refinement of f,_,. Therefore {p™(b): b € fu,
n=1,2,..} is » normal sequence of open covers of (X, U) and hence
also for X and therefore has a point-finite subcollection a covering X.
The set {p(a): aea} is a point-finite subcollection of B that covers X/R.
Hence by Theorem 2 of [2] X/R is Hurewicz. For each integer n greater
than 1 let o, be a finite subeollection of H, such that a, v a, U ... covers
ZX|R. Therefore {y"(a): a ¢ am, m >1} is an open cover of X such that
the finite set {g7™*(a): @ € aa, n fixed} refines U,_,. Hence there is a se-
quence A, Z,, ... such that 1, is a finite subcollection of G, and A, U A, v ...
covers X. Therefore X is Hurewicz.

To prove each normal sequence of open covers in a Hurewicz space
X has a locally finite subcollection covering X let @, G, ... be a normal
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sequence of open covers of X and let @ = G; v Gy v ... Using the Hure-
wicz property let H = H; v H, u ... where each Hy, is a finite subcollection
of Gyyq and H covers X. For each member & of Hy select one and only
one member g of Gy, _, so that st(h, Gy,,,) is contained in g. Let this
collection be denoted by K. Let L be the collection to which g belongs
only in case g belongs to K and if g is a member of &, then g is not a sub-
set of & member of Gy with 7 less than n. I is a locally-finite subcollection
of @ covering X because each member of H can intersect at most finitely
many members of L.

COROLLARY 1 (Theorem 3.1 of [11). A regular Hurewicz space is totally
paracompact. N

In a paracompact Hausdorff space each basis can be written as
a normal sequence.

COROLLARY 2. If each continuous one-to-one image of a regular Lindelof
space X is totally metacompact, then X is Hurewicz.

QuEsTioN 1. In 2 Lindelof space does total paracompactness imply
that each normal sequence of open covers have a point-finite subcollection
covering the space?

QUESTION 2. In a paracompact or a regular Lindelof space are total
paracompactness and total metacompactness equivalent?

An answer to Question 1 would answer problem 3.2 of [1].
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