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4. Extension and lifting problems. As a further illustration of the close
relation Detween small multifunctions and their simplicial approximations
we finish with some results on extension and lifting of multifunctions.

TrEoREM 4.1. (Extension problem). Let X, ¥ be polyhedra, and let .

A be a subpolyhedron of X. Let : A—Y be a small, usc and point-closed
multifunction, and f: A—Y be a simplicial apyprozimation of @. If f can
be extended to a map from X to ¥, then ¢ can be extended to a small, nse
and point-closed multifunction from X to Y.

Proof. If g: XY is an extension of f, then its restriction to 4
equals f. Hence Theorem 2.4 shows the existence of & small homotopy
$: AxI-»Y with ®(a,0)=g(a) and P(a,1)=@(a) for all aec 4. Leb
r: XxI+(XX0)u (4dxI) be a retraction, define 9': (X X 0) v (4 x I)

-»Y by " ; 0
, Z 1 =0,
P, 1) = {g(:v),t) i 1>0,
and define ¥: X xI->Y by Y= ¢ or. Then ¥ is small, usc and point-
closed, and ¥(x,1) = ¢(z) if © e A. Therefore yp(z) = P(z,1) is an ex-
tension of ¢.
Remark. Tt is also easy to prove the converse, i.e. the fact that the
existence of an extension of ¢ implies the existence of an extension of f.
THEOREM 4.2. (Lifting problem). Let X, B, B be polyhedra and ¢: X - B,
%: B—B be small, usc and poini-closed multifunctions. Let f: X - B and
p: B B be simplicial approzimations of ¢ and . If f can be lifted to a map
g: X - E with p o g = f, then @ can be lifted to a small, usc and point-closed
multifunction p: X —E with moyp & @.
Proof. Take p = g, 50 that w oy = 7 o g. Liet ITI: B X I - B be a small
homotopy from = to p (see Theorem 2.4), and let 1;: I —1T be the identity
map. Then 7o (g X 17): X x I - B is a small homotopy from =z o g to p » g.

As pogefand f;qz (Theorem 2.4), we have mop = ¢.
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Stone lattices: a topological approach
by
H. A. Priestley (Oxford)

Abstract. A {0, 1}-distributive lattice I can be represented as the lattice of clopen
inecreasing subsets of an appropriate ordered topological space X. It is shown that,
when L is a Stone lattice, the dual space X is characterized by subspaces ¥ (X), Z(X)
of X and a continuous increasing map m (X): ¥ (X)-Z(X). This enables the structure
of Stone lattice dual spaces to be analysed in terms of simpler components and leads
to a construction theorem for such dual spaces which is in the same spirit as, but not
directly dual to, Chen and Gritzer's triple construction theorem for Stone lattices.

1. Introduction. Chen and Gritzer show in [5] that a Stone lattice I
can be studied by investigating an associated triple of simpler components,
(¢(L), D(L), (L)), where C(IL), D(L) are appropriate subsets of I and
@(L) a connecting map. In this paper the duality between {0, 1}-distri-
butive lattices and compact totally order disconnected spaces developed
in [19] and [20] is applied to Stone lattices and the dual space X of a Stone
lattice L is shown to be characterized by subspaces Y (X), Z(X) of X and
a continuous increasing map m(X): ¥(X)—Z(X). The ordered spaces
Y(X), Z(X) are the duals of the lattices D(ZL), O(L); m(X) and @ (L)
are related, but are not mutually dual maps.

The Construction Theorem in [5] asserts that, given a suitably defined
triple (0, D, @), there exists a Stone lattice I with (L) = C, D(L)= D,
D(L) = @. Problem 55 of [97] seeks a less computational proof of this
theorem than that given in [5]. Motivated by this problem, we show how
to construct a space dual to a Stone lattice from a “dnal triple” (¥, Z, m)
and hence obtain a new method of constructing Stone lattices from simpler
components.

Dual triples also provide new information on free Stone algebras
and a short proof of Theorem 2 of [2], characterizing injectives.

2. The dual space of a Stone lattice. We refer to [19], [20]for the ordered
topological space concepts needed, recalling only two crucial definitions
concerning a set X endowed with a partial order < and a topology J.
A subset B of X is decreasing (increasing) if 2 <y e E(z > y ¢ E) implies
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seB (X3, <) is lotally order disconnected (abbrgviatetjl. to t.o.d.) if,
given z, y in X with & < y, there exists & J-clopen inereasing set U such
that € U, ye U. ‘ .

For the lattice theoretic terminology used without explanation,
{91, or [4], may be consulted. Let I be a {0, 1}-fiistri'butive. lattice. The
main theorems of [19] allow L to be identified with the lattice of clopen
increasing subsets of a compact t.0.d. space (X, 3, <) (the dual space
of L); we shall assume this identification to have been ma.;de. Henceforth
we adopt a compromise between the incompatible nota,tlol}s of- [9] and
of [19], [20], and use set theoretic symbols for lattice operat10n§ in I and
lower case roman letters a, b, ... to denoteé subsets of X, reserving z,y, 2
for points of X. cl(a) (or, where desirable, cly(a)) denotes the closu;.re
of a in the J-topology of an ordered space (X,3, <). The closure of @ in
the upper topology U on X (consisting of the U-open increasing sets)
is written U-cl(a) or Us-clx(a).

A {0, 1}-distributive lattice L is said to be pseudocomplemented if,
for each element @ eI, there exists a* ¢ I such that

anb=0 ifand onlyif d»Ca".

A Stone lattice T is a {0, 1}-distributive lattice which is psendocomple-
mented and such that, for all ael, a*ua™ =1

ProposiTioN 1. A {0, 1}-distributive lattice L is pseudocomplemented
if and only if, for each clopen increasing subset o in the dual space X of L,
d(a)= {x e X: &<y for some y ¢ a} is open in X.

Proof. Let a el and suppose that d(a) is open. Then t(d(a)) is
disjoint from « and is clopen increasing (d(a) is closed since a is closed
and X is compact t.0.d.). Also, if b is increasing, a o b = @ implies that
d{a)~ b= 0. It follows that a has pseudocomplement t{d(a)) in L.

Conversely suppose that each a in L has a pseudocomplement a*
in L. To show that d(a) is open we show that d(a)=td". an =0
and ¢* is increasing, so a* C t{d(a)). If @ does not belong to the closed
decreasing set d{a), then total order disconnectedness of X provides
a clopen increasing set b such that x ebCt(d(a)). anb=@, s0 bC a.
Hence t(d(a)) C a*.

A compact t.o.d. space (X,3,<) will be called an SLD-space if
a ¢ U implies d(a) € U.

PRoPOSITION 2. X is an SLD-space if and only if X is the dual space
of @ Stone lattice.

Proof. Suppose that the lattice I of clopen increasing subsets of
a compact t.0.d. space X is a Stone lattice. L is then pseudoconiplemented
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and, for all ael, a" v a*™ = X. The last condition gives d{a)= a**,
which is open increasing. Any open increasing set is the union of its clopen
increasing subsets and the operator d preserves unions. Thus d(a) e W,
whenever a e UWb.

For the converse, note that, if a <L implies that d(a)e U, then
a* = l‘,(d([(d(a)))) = d(a).

ProrosITION 3. Let X be the dual space of a pseudocomplemenied
distributive lattice and let X, denote the set of points in X which are maximal
with respect to the partial order on X. Then the following statements are
equivalent:

(i) X is an SLD-space;
(il) for each x e X there exists a unigue m(z) e X with z < m(x);
(iif) for amy increasing sets p,qC X, d(p ngq) = d(p) ~ d(g).

Proof. (i)= (ii): A Zorn’s lemma argument shows that each z ¢ X is
majorized by at least one element in X,. Suppose #<y,# where
Y,2¢Xm, y # 2 There exist clopen increasing sets a,b with yean
n b, zebnla, xed(a)~d(b), which is an increasing set by (i). Hence
y e d(a) ~ d(b) and so, by maximality, ¥ € a n b, which is a contradiction.

(ii) = (iii): Let p and ¢ be increasing, and let z € d{p) » d{g) ((iii) holds
trivially if d(p), d(¢) are disjoint). # is majorized by maximal points
Yep, zeq. (i) forces y =2=m(x), 50 zed(p »q). Trivially d(p ng)
Cd(p) ~d(g).

(iii) = (i): We show that d{p) is increasing for each increasing set p.
Letwed(p),y=>2. Theno <y<zeXp. Aoz <z, epnXn.wed({s}) n
~ d({z}) = d({z} ~ {z}), by (iii). Hence z=12, s0 y e d(p).

The equivalence (i)<>(ii) is related to the characterization of Stone
lattices as those pseudocomplemented distributive lattices in which, for
all lattice elements a, b, a* v b* = (& ~ b)* (see [8]). (i)« (iii) is the dual
of the theorem of Varlet [22] stating that a pseudocomplemented distri-
butive lattice is a Stone lattice if and only if every prime ideal contains
a unique minimal prime ideal. An equivalent form of this theorem was
earlier obtained by Gritzer and Schmidt [11]: a pseudocomplemented
distributive lattice is a Stone lattice if and only if the join of any two
distinet minimal prime ideals in T is L. That the restriction to pseudo-
complemented lattices is necessary was shown by an example by Ka-
trifak [13]. Bxamples of a different type can be constructed as follows.
Let X, be the dual of any {0, 1}-distributive lattice which is not pseudo-
complemented. Then there is a clopen increasing subset a of X; such
that d(a) is not open. Let X, = {y, 2} be a two element space with discrete
topology and order. Form the topological sum X of X; and X, and order X
10 — Fundamenta Mathematicae, T. LXXXIV
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by requiring that the given order relations be induced on X, and X,

and that

y=oeX, if and only if zea,

¢>reX, if and only if wela.

X is compact and t.0.d. and satisfies condition (ii) of Propos'ition 3..'1‘he
set @ U {y} is clopen increasing in X and the smallest decreasing set.m X
containing it is d(a) v {}, which is not open in X. Hence the 18:1?131(2(3 of
clopen increasing subsets of X is not pseudocomplemented, but is such
that any prime ideal contains a unique minimal prime ideal.

PrOPOSITION 4. In an SLD-space X, Xy is 3-closed zmd the map
m: (X, W)= (X, I Xn),

assigning lo each point @ ¢ X the unique maximal point majorizing &, is
continuous.
Proof. Let a= a, ~ X, where @, is open increasing in X.

mHa) = d(a, ~ Xp) = d(ay) © A(Tm) = d(a)

which is 3-open. Hence m is continuous when X has the topology 3, Xn
the relative U-topalogy. It follows that Xy, is U-compact. Take » ¢ Xy
For each 7 € Xy, choose a clopen increasing set a, with ¥ e a,, z¢ a,.
X, can be covered by a finite number of the sets a,. The intersection of
the complements of these sets is a J3-open neighbourhood of @ disjoint
from Xp, 50 Xy is J-closed.

Finally, if b is closed in X,, (in the relative J-topology), then b is
J-closed in X. m~Y(b) = d(b), which is closed.

We remark that compactness of X, (in either J- or Ub-topology) is
implicitly obtained by Speed in [21].

A Stone algebra is a Stone lattice in which 0, 1 are regarded as nullary
operations and * as a unary operation. Morphisms in the category of
Stone algebras are consequently lattice homomorphisms which preserve
these operations. If L, I, are {0, 1}-distributive lattices with dnal spaces
X, X,, there is ([19], [20]) & one-to-one correspondence between {0, 1}-
preserving lattice homomorphisms @: I;—L and continuous increasing
maps f: X - X; such that fa,) = P(a,) for all a, e L.

ProposrTiON 5. If X, X are SLD-spaces and f: X - X, is continu-
ous and increasing, then the dual map ©: L, — L is a Stone algebra morphism
if and only if f maps Xp into (X)m.

Proof. For a, el,,

D(ay) = B{(a)]"

if and omly if

I (d (al)) = d(Q(al)) .

Stone lattices: a topological approach 131

If 2 <y e®(a), then f(o) <f(y) ea, and so A(B(a,)) CfYd(ay) always.

Suppose now that f preserves maximality, so that, for all z in X, f(m())

is the unique maximal point majorizing f(x) in X;. This implies that,

it @ e f~d(ay)), m(z) e f @) = B(a;). Thus z e d(P(a,)), s0 @ preserves *.
Conversely, let o ¢ X,,. Then

f@)eq s wedla) e d(D(a,)} < fz) e d(ay) .

If f(») were non-maximal and majorized by y # f(«), there would exist
a clopen increasing set a, such that f(x) ¢ a,, ¥ € a,. But then f(z) e d(a,)
~ lay, which is impossible.

3. The dual triple associated with a Stone lattice. Two subsets of a Stone
lattice L are of special importance: the centre of I,

OL)= {a*: a eI},
and the dense set,

D(L) = {a: a* = 0}.
Any element ¢ of Z may be represented as

a=a*n{aua*).

a** ¢ C(L)and a v a* e D(L). Thus if ¢(L) and D (L) are given and the relation
between C(L) and D(L) is known, then T is completely determined. The
map used by Chen and Gritzer in [5] to link ¢(L) and D(I) is $(L), which
is the {0, 1}-homomorphism mapping C(L) into the lattice of filters
of D(L) defined by

(P(I))(a) = {b e D(L): D a*}.

Chen and Gritzer show in § 3 of [5] that L is determined up to isomorphism
by its triple (C(L), D(L), (L)) (or see [9], p. 163). One would therefore
expect the dunal space X of I to be determined by the dual spaces ¥ (X),
Z(X) of D(L), O(L) and an appropriate connecting map m(X).

a* is given by ¢* = td(a) in X. It follows that C(L) iz the Boolean
algebra of those clopen subsets of the dual space X which are atonic
(i.e. simultaneously increasing and decreasing), while D(L) consists of
those clopen increasing subsets of X which contain X,. ¢(L) and D(L)
= D(L) v {0} are {0, 1}-sublattices of L and their dual spaces are, ac-
cording to [20], § 7, appropriately ordered quotient spaces of (X, J).

We now identify the dual of C(IL). This is (homeomorphic to) the
discretely ordered quotient space X/R where z Ry if and only if, for
every clopen atonic set a, # € a if and only if y € a. If m(z) = m(y), then
any atonic set containing # contains y, and vice versa, so ¢ Ry. On the
other hand, if m(z) # m(y), then a clopen increasing set a can be found
with m(z) ea, m(y) ela. d(a) is clopen atonic and zed(a), y¢d(a).
10*
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Thus z,y belong to different R-equivalence classes. We conclude that
the elements of X/R are the sets d(z), where ze€Xm.

ProposITION 6. The dual space of C(L) is homeomorphic to Xn (with
the relative J-topology).

Proof. The map ¢: Xn—X/R defined by g(z) = d(w) is one-to-one
and onto. A set of equivalence classes {d(z): # e¢C Xy} is open in X[R
if and only if d(e) is open in X. When d(o) is open, ¢ = d(¢) N X is open
in X, and so g is continuous. Since X, is compact and X/E Hausdorff,
¢ is a homeomorphism. ’ :

Next we turn our attention to D(L). An equivalence relation B’ can
be defined on X by letting # R’y if and only if either # = y or #, y both
belong to X . X/R’ is a compact t.0.d. space under the quotient topology
and quotient order (cf. [20], Proposition 14 (ii)), and it i clear that the
lattice of clopen increasing subsets of X/R' is isomorphic to D(IL). Hence
the dual space of D(L) can be identified with X/R'.

X/R’ is homeomorphic and order isomorphic to the space obtained
by taking the one-point compactification of X\X, and ordering it by
requiring that the given order be induced on X\X, and that the adjoined
point majorize every point of X\X, (see [20], p. 510 and also [15], [16]).
That the dual of D(L) takes the form of a one-point order compactification
reflects the fact that D(L) is obtained from D(ZL) by the adjunction of 0.
Since the prime ideals of D(ZL) are the prime ideals of D (L) with 0 added
to each, together with the zero ideal, X\X,, is the dual space of D(L),
according to the definition in [20], § 10. We sum up these results in

PrOPOSITION 7. The dudl space of D(L) is the ordered quotient space
obtained from X by identifying the points of Xn, or equivalently, is a one-
point order compactification of X\X,. The dual space of D(L) is X\Xpm.

We now define the dual iriple associated with an SLD-space X to
be {¥(X), Z(X), m(X)), where ¥(X)= XXy, Z(X)= Xn (both with
relative topology and order from X) and m(X): ¥ (X)- Z(X) is the con-
tinuwous increasing map defined by the restriction of m to X\X,. We
shall denote by Y(X) the one-point order compactification of ¥ (X) in
which X, iz adjoined to ¥Y(X) as a universal maximal point.

Before describing, in Theorem 9, how X is determined by its dual
triple, we explain the relation between m(X) and Chen aund Gritzer's
strueture map @(L). Recall that $(L) is defined by

(D(L))(a) = {b e D(L): 5D a™}.
(@(L)}(u) is a proper filter in D(L) and may be identified with the non-
empty closed increasing subset F(a) of ¥(X) obtained by taking the

intersection of the gets in (P(T))(a) (regarded as clopen increasing sub-
sets of F(X)) (cf. [12], § 19, [19], [20]). Reverting to D(L) and Y (X),
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we see that ((D (L))(a) may be identified with the closed increasing subset
of Y(X) obtained by deleting the point X, from F(a). With this inter-
pretation of (®(L))(a) we have

PROPOSITION 8.

(@) (a) = {m(X))(a')

for each set a clopen in Z(X).

(X)) (@)= {a: a is clopen in Z(X) and x < (D (I))(a")}

for all z e ¥ (X).
(a’ denotes the Boolean complement of ¢ in C(L).)

Proof. The first assertion is an immediate consequence of the de-
finitions; the second can be deduced using compactness and total dis-
connectedness of Z(X).

THEOREM 9 (Dual structure theorem). If X is an SLD-space with
dual triple (Y(X) y Z{X) ,m(X)), then X is homeomorphic and order iso-
morphic to the increasing subspace

X = Gy v ((Z(X)} x 2(X))
of Y(X)x Z(X).
(Gmx denotes the graph of m(X).)
Proof. A map o from X onto X is defined by

£ eZ(X) = Xm -

(ml m(w)) ’

o(w) = (X, ),

, Y (X) and Z(X) can be regarded as ordered quotients of X; o is then the
product of the associated quotient maps and so is continuous.

The proof iz completed by showing that ¢ is an order isomorphism.
If 2, <o in X, m(n)=m(x). It follows that o(z,) < (). Now let
ol@s) = (Y1, 21), 1 =1,2. 21 = m(@); yi = @ if 25 ¢ XX, y; = Xn other-
wise. Suppose that o(;) < o(,). This implies that y, <y, and m(z,)
= m(xy). If #;, 2y ¢ X, 0, < 2, trivially and if o, 2, € Xy, 0 = 2. 2, € X,
Ty & Xp, is impossible, while #, ¢ X, @, € X gives 2y < m(y) = M (%) = 2,.

Henceforth, if-X and L are dual, with X an SLD -space and L a Stone
lattice, weshall refer to (¥ (X), Z(X), m(X)) and (C(Z), D(L), B(L)) as
being dual to one another and to each as being associated with X and
with I. In this sitnation, it can be inferred frem [9], Theorem 12.2, that
the dual space of the free {0, 1}-distributive product of D(L) and C(L)
is the ordered cartesian product of ¥ (X) and Z(X). The formation of
a closed subspace of a dual space eorresponds to the formation of the
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quotient by a congruence relation of the corresponding lattice. Theorem 9
may then be interpreted as asserting that

L= (D(I)x 06,

where 8 is a congruence (cf. [17] and [9], p. 191).

In § 4 of [5], Chen and Griitzer abstract the idea of a triple associated
with a Stone Iattice. They define a triple (0, D, @) to consist of (i) a Boolean
algebra €, (ii) a distributive lattice D with 1, (iil) & {0,1}- homeomorphism [0/]
from O into the lattice of filters of D, and they show how a Stone latitice T
can be built out of this triple. I is defined by

L={(d,0): ccC, beP(c)}-

The difficult part of Chen and Gritzer’s Construction Theorem is the
proof than I can be partially ordered so as to form a distributive lattice.
This difficulty can be by-passed if one constructs initially not a Stone
lattice but an SLD-space. The collection of clopen increasing subsets of
this space then forms automatically a Stone lattice.

4. The dual contruction theorem. An abstract dual triple (¥, Z,m)
consists of

(i) an ordered space (Y, Jy,<) in which the topology of open de-
creasing sets has a Jy-compact base;

(ii) 2 non-empty compact totally disconnected space (Z, 3z);

(iii) an increasing map m: ¥ —Z, continuous with respect to the
topologies Jy, 3.

The condition in (i) allows us to form by one-point compactification
a compact t.0.d. space ¥, where Y= Y w {Z} and Z >y for all y ¢ ¥.
Guided by Theorem 9, we prove

THREOREM 10 (Dual construction theorem). Let (¥, Z,m) be an ab-
siract dual triple. Then there exists an SLD-space X such that, up to homeo-
morphism and order isomorphism, ¥ = Y (X), Z = Z(X) and m = m(X).

Proof. Take

X=0Gnuw({Z}XZ)CYXZ.

If (y,2) e (Y X ZN\X, then y # Z and 2 # m(y). Take an open subset
ain Z containing m(y) but not z. m~*(a) is open in ¥ and so also in Y.
Consequently m™"(a) X a is an open neighbourhood of (y, 2), disjoint from X.
X is thus a closed subset of the compact t.0.d. space ¥ x Z, and so is
itself compact and t.o.d.

Let a be a non-empty increasing subset of X:

a={ly,m) yebC ¥} v {(Z,2): zecC 2},
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where m(b) glc since y < Z for all ye Y. Then a non-empty implies ¢
non-empty, and we conclude that, in X, d(a)= (¥ X ¢) n X, which is
atonic. Suppose in addition that « is open in X and that # e ¢. It is possible

to find p open in ¥, ¢ open in Z with
(Zzz)E(PXQ)“XQ_“,

zeqC ¢, which shows that ¢ is open in Z. It follows that d(a) is open
inereasing in X whenever a is open increasing in X, so that X is an SLD-
space.

B We now identify the triple (¥(X), Z(X), m (X)). (115 2) < (¥a, %) In
YxZ if and only if y, <y, and 2 =2, Thus Xn= {(Z,2): zeZ}
Clearly Z is homeomorphic to X,, = Z(X) under the map o: z »(Z, 2).
Further, the 7: ¥ »(y, m(y)) is a homeomorphism from ¥ onto X\Xn
= Y (X); 7 is also an order isomorphism by condition (iii) above. Finally,

(m(-X)) (?/7 m(y)) = (Zy m(y)) 3
le.
v (m(X))(x(y) = olm(y)) .
A morphism from a triple (¥, Z, m) to a triple (YILZI, m,) is a pair

{f, g) where f is a continuous increasing map from Y into Y,, g is & continu-
ous map from Z into Z, and the diagram

m
gy
‘ 1

f |

v oo

Y, —— %
my

commutes. Analogous to Theorem 1 of [5] we have Proposition 11. We
omit the routine proof.

ProposITION 11. Let X, X; be SLD -spaces with dual triples (¥, Z, m),
(Y1, Z,, my). Then if (f,g) is a triple morphism, the map

fxg: TXZ->T,x %,

induces by restriction an SLD-space morphism h: X — X,. Conversely, an
SLD-space morphism h: X —X, induces maps f: ¥Y—7Y,, g2 Z~Z, (re-
garding T, Z as quotient spaces of X, ¥,, Z, as quotient spaces of X,). The
resulting pair (f, g) is a triple morphism. The correspondence so established
between SLD -space morphisms and triple morphisms is one-to-one and onto.

Ir is onto if and only if each of f, g is onto. If f(y) = Z, implies y = Z,
then h is an order isomorphism if and only if f is an order isomorphism
and g is one-to-one.

We remark that dual versions of the “fill-in” theorems in [6], § 6,
can be obtained by straightforward diagram-chasing.
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Given a triple (€, D, &) associated with a Stone lattice L, the reduced
triple associated with L is (Cy, D, &,), wheve 0, is the quotient of C by 0,
the congruence determined by &, and &,(6[a]) = P(a) for all @ ¢ C ([6],
§ 5; see also [7]). Dually, given a dual triple (¥, Z,m) with associated
SLD-space X, we define the reduced dual iriple to be (¥, Z,, m) where
Z, = cly(m(X)). ‘

ProposrToN 12. If (C, D, @) and (¥, Z,m) are dual to one another,
s0 too are the reduced triples (Cy, D, ®;) and (¥, Z;, m).

Proof. It is enough to show that ) and Z, are mutually dual. For
a, b clopen in Z,

: a~b(0) < D(a)= D(b)
< m7@) = m7Hb)
< a nm(Y)=b ~nm(Y)
sanm(Y)=bnm(X)
{dashes denote complements in Z). Since a is open
ancdm(X)C clla nm(X)),
and because a is closed,
cla ~m (X)) C an el{m(Y)).

It follows that a~b(6) if and ouly if a~el{m(X))=bnel(m(X)}. We
deduce that €; = (/6 is isomorphic to the Boolean algebra of sets a ~ Z,,
where a is clopen in Z and %, = cly{m(¥)). An application of Lemma 17.1
of [12] completes the proof.

5. A description of Z in terms of (Y, Z, m). Proposition 2 and Theo-
rem 10 together show that Stone lattices may be built from dunal triples:
the lattice I of clopen increasing subsets of X = Gy U ({Z} X Z) is a Stone
lattice for any abstract dual triple (¥, Z, m). -

Theorem 14 characterizes order and topological properties of subsets
of X. It provides an explicit description of I in terms of its dual triple;
this is used in Theorem 16, which concerns completeness of L. In addition
Theorem 14 yields an explicit, thongh unwieldy, description of the ideals
and filters of I (respectively open increasing, closed increasing, subsets
of X) and of the minimal Boolean extension of I (clopen subsets of X).

A typical subset of X is

a={ly,m@): yebC Y} U {(Z,2): zecCZ};
more concisely, @ = Gy, w ({Z} X ¢). For each bC ¥, we define

b=lereZ: 2= Limm(y,) for some net {y,} in b,y,~% in T} .
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b = @ whenever Z ¢ clg(b); this happens for all bC Y if Z is an isolated
point of ¥ (equivalently if D(T) has a smallest element). We note one
property of b:

PrOPOSITION 13. For each bC Y, b is closed in Z.

Proof. Let zeecly(h) and let p be any open neighbourhood of Z
in ¥, q any open neighourhood of z in Z. There exists a point yu, »ebnp
such that m (Y, ) € ¢ Y, oF forms a net in ¥ when the indices are di-
rected by pairwise set inclusion. By compactness of ¥, we can find a con-
vergent subnet {Yu o} 0f Y, ot Necessarily Yurgn — 2 and m(Yy,p) =2,

THEOREM 14. Let a = Gy, ({2} X 0).
(i) a is increasing if and only if b is increasing in XY (equivalently

b {Z} increasing in Y) and m(b)Cc;

(il) @ is decreasing if and only if b is decreasing in Y (equivalently b
decreasing in Y) and m™(c) C b;

(iif) clx(a) = {{y, m(y)):y e clz(b)} © {(Z,2): 2 b ©elz(0)};

SN
(iv) ais open if and only if b is open in ¥, ¢ is open in Z and (X\b) C ¢';

N /\ .
(v) bC ¢ whenever ¢ is closed and m (D) C ¢; (Y\) C ¢" whenever ¢ 1s
open and m~(¢)'C b.

Proof. (i) and (i) are elementary. To prove (iii) let
clx(a) = G, © ({Z} X 01) - -

If g ecly(d), [y, m(y))eclz(a), by continuity of m. Hence cly(b)Cb,.
On the other hand, if = (y, m(y)) € elx(a) then it is possible to choose
a net {(y,, m(y,))} of points in & converging to . Hence y € cly(b).

Tt ig clear that each point (Z,2) with 2 e elz(e) is in Glx(f/) and that,
by definition of b, 80 too is each point (Z,2) for which ze b. Now take
@ = (Z, #) e elx(a) and {#},.4 @ net of points in ¢ with z;-»2z. We may
write A= A, v 4,, where @; € Gn for Aedy, T e {ZyX Z for Aed,. Ab
least one of A4,, A, is cofinal. If 4, is cofinal, 2 € b; if A, is cofinal, 2 € cl(c).
We conclude that ¢, = b u clg{e). - )

(iv) is proved by applying (i) to ta. Finally, (v) is obvious from (i),
(ii) and the definitions.

COROLLARY 15. a= Gy, v ({Z}x ¢} el if and only if
(i) b is clopen increasing in Y;

(ii) ¢ ¢s clopen in Z;
PN
(i) (I\b) Cc's

(ivy m(b) C e.
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To illustrate Corollary 15 we consider the lattice B®, By definition
([2], [97), for any Boolean algebra B, B® i3 the sublattice

{(b,¢): byeeB,bCo}

of By B. B is a Stone lattice with pseudocomplement given by (&, ¢)*
= (¢, ¢'). Clearly C{B®) = B, D(B®) = B. It X is the dual space of B,

then the dual triple for B® is (X, X, j), j being the identity map on X.
The dual space of B® is

IO = {(z,2): se X} {(X,2): 2 X},
A subset @ of X® is described by a pair b, ¢ of subsets of X. a is clopen

increasing if and only if b and ¢ are clopen in X and b= j(b) Ce¢ (con-
dition (iii) of Corollary 15 is vacuous here). Thus we Tecover

B® ~ {(b,c): b,oeB, bCo}.

We remark finally that X® can be identified with the ordered topo-
logical sum X, @ X,, where Y =X,=Xande<yifand onlyif z=y
mIY,@©X,orweXy,yeX, and o=y in X. This interpretation of the
dual of B® will be used in § 6.

Completeness of a Stone lattice I iy discussed using the triple for L
in § 4 of [6]. We conelude this section with an analogous theorem using I’s
dual triple. We recall that a {0, 1}-distributive lattice is complete if and
only if its dual space X is extremally order disconnected (i.e., for each
set a open and decreasing in X, U-cl(a) is open ([20], Proposition 16).

THEOREM 16. Let T be a Stone lattice with dual triple (¥, Z, m). Then
L is complete if and only if ‘

(i) Z is extremally disconnected;

(i) ¥ is extremally order disconnected;

(ili) for each b open decreasing in X, b is open in Z.

Proof. The first step is to show that (ii) is equivalent to (ii') d(clx(b))
is open in ¥ whenever b is open in ¥ and Z ¢ cly(b). (ii) holds if and only
if, for all b open in ¥, d(clx(h)) = W-cly(b) is open in Y. Suppose b is
open in Y. Tf Z e clg(b), d{clx(b)) = ¥. So assume Z ¢ clz(b). Then

d(cly(D)) = d(elz(b)} ~ ¥ = d{clx(b))

which is open in Y if and only if it is open in Y. Hence (ii) is equivalent
to (ii').
Let ¢ be open decreasing in X. By [20], Lemma 2,

U-el{a) = dicl{a))
= {ly, m)): ¥ e dlcded) um(bucly(o)} w {(Z, 2): 2ebuclyo)},

-+ ©
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by Theorem 14. U-cl(a) is open if and only if

(a) d(cly(b)) v m™Yb w cly(e)) is open in ¥ and

(b) b U cly(c) is open in Z
{Theorem 14, (iv), (v)).

Since, when & is open decreasing, b is open decreasing in ¥ and ¢ is
open in Z, the sufficiency of conditions (i)-(iii) is now clear.

For the converse, assume that a open decreasing in X implies Us- clx(a)
is open. Let ¢ be open in Z.

a= Gpion-1cy v ({2} X 0)

is open decreasing in X and

(Tﬂ)) C elgle) .

Hence, by (b) above, cly(e) is open, so (i) holds.

Now take b open decreasing in Y. a = @, is open decreasing in X.
By (b), b is open in Z, whence (i) holds. Now suppose also Z ¢ clx(b).
Then b = @. By (a), d{clx(b)) is open in ¥. Therefore (ii’) holds and the
proof is complete. :

Comparing Theorem 16 with Theorem 5 of [6], we see that our con-
ditions (i), (ii) are the duals of conditions (1), (2) in Chen and Grétzer’s
completeness theorem. The relation of their condition (3) to our con-
dition (iii) is however not clear. Finally we note that the corollaries to
Chen and Gritzer’s theorem are equally easy consequences of Theorem 16.

6. Free and injective Stone algebras. The Stone sp&cb of a free Stone
algebra I has been used by Grétzer and Lakser [10] to examine the
structure of I (see also [1], [3], [9], [18]). Our approach is a variant on
that adopted by Gritzer and Lakser, Qmphasifzihg the order structure.
The dual space of FSL(a), the free Stone algebra on a generators, is the
ordered cartesian product of a copies of a discretely topologized 3-ele-
ment space S = {@, #;, %,} in which #; > z; if and only if i =j, or i =1,
j =2 (cf. [9], Theorem 17.5). 8 is the disjoint union of the partially ordered
sets 8y, = {w,} and S, = {z;, %z}

If 7 is finite, the 3-topology on X (n), the dual of FSL(n), is discrete
and only the order concerns us. We see (cf. [9], Theorem 17.6) that

n
X (n) is order isomorphic to Zn(}r(&)’,
=0

where summation denotes the disjoint union of partially ordered sets,
(8,)° = 8,, and, for r > 1, (8,)" is the cartesian product of r copies of §y,
and the binomial coefficient nCr indicates the number of copies of (§,)
occurring in the sum. The dual triple for FSL(n), (Y(n),Z(n),m(n)),
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is easily recognized. Forr > 1, (8,)" has a unique maximal point (zy, ..., ;).
Henee‘Z(n) has o elements. Let T, be the partially ordered set obtained
by deleting the maximal element from (8,)". It is clear that, to within
order isomorphism,

Y(n)= 3 nCrT,.
=1

We may write

an—1

Ym)=D W

§=1

r—1 r B
where, for r>1, W,=T, for 3 a0k<s< > nCk;
#=0 =0

Zn)= {s: s=0,..,2"—1}.
Then m(n) i8 given by
(mm)@)=s it and only it 2eW,.

O(n) is the lattice of subsets of Z(n); D(n) is the lattice of all increasing
subsets of ¥ (n), as is the lattice of filters of D(n). We sum up our results
in Proposition 17 (cf. [6], Problem 1), using the notation of [9].

Proposrron 17. Let FSL(n) have triple (C(n), D(n), ®(n)). Then
O(n) = Fygn) and D(n) = []((Fpeoll4ADN0}): 4C {1, 2, .y n}). If a
€ O(n) is a p-element set, (O(n))(a) is an increasing subset of ¥ (n), iso-
morphic as a partially ordered set to the dual of a product either of 2°—p or
of 2"—p—1 laitices, each of which is a free {0, 1}-distributive lattice with
zero deleted.

Proof. The statement coneerning &(n) is obtained from Propo-
sition 8.

In answer to & question posed by Chen and Grétzer ([6], Problem 2)
we state

ProvostrioN 18. Let (Cyn), D(n), Bi(n)) be the reduced triple as-
sociated with BSL(n). Then Ci(n) = Fg(n—1). If a e Cy(n), (P(n))(a) can
be represented by & product.of 2"~ —p lattices, each of which is a free {0, 1}-
distributive product with zero deleted.

We have been unable to find any worthwhile description of the
dual triple for FSL(a) when « is a general cardinal (although it is clear
that Z(a) is the Cantor space 2%).

Finally we present a new proof of Theorem 2 of [2], which charac-
terizes injective Stone algebras as Stone lattices expressible in the form
B, x B®, where B,, B, arz complete Boolean algebras (see also [14]).
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THEoREM 19. If X is a projective SLD-space then the dual triple for X
takes the form (X;, Yo @ Yi,]), where ¥y, ¥, are compact, discretely ordered
and ewtremally disconnected and j: Y,— ¥, @ Y, the embedding map.

Proof. Let (X, 3, <) be projective, with dual triple (¥, Z, m). The
first step is to show that the order on ¥ is discrete (cf. the proof of Propo-
gition 21 of [20]). Suppose not, and take y,,y,e ¥, ¥ # Y2y Y1 = Y2
9, & Ys, 50 we can find a clopen increasing set X; such that # ¢ X;, ¥ € X,
= X \X,. We may assume that X; D Z. Define an order relation <’ on Xby

z<'y if and only if (i) z=y9,
or (i) #,ye Xy, 2<y,

or (iii) zeX,, yeZ, 2<y;

this gives a genuine partial order. We claim that (X, 3, <) is t.0.d. Take
o<’y and note that a set increasing (<) is increasing (<'). In either of
the cases (i) @,y ¢ X, (i) #¢X,, ¥y ¢ Z, o<y and so there is a clopen'
increasing (<’) set containing 2 but not y. If # € X;, y ¢ X,, X, is clopen
increasing (<’) and contains @ but not y. Finally let v e Xy, y ¢ X; n X.
There is a clopen decreasing (<) set p disjoint from Z and containing y,
p n X, is decreasing (<') and contains y but not z.

Let d'(a) be the smallest decreasing (<) set containing the clopen
increasing (<’) set a. Then a ~ X, is increasing (<). Take 2 <"y ¢ @ and
suppose first that @,y ¢ X;, z < y. Since X, is increasing (<),

zed{a)n X, Cd'{a).
Secondly, it zeX,, ye2Z, 2< Yy,
zed(a)n X, Cd'(a)

(to obtain this inclusion, note that if zed(a)nX,, <z eanZ, be-
cause a is increasing). Thus d’(a) is open, since d(a) is open. It follows
from Proposition 3 that (X,J, <’) is an SLD-space, since each point
in X is majorized in the order <' by a unique maximal point.

The identity map from (X,3J, <') onto (X, J, <) is an SLD-space
morphism. Projectivity of X implies that <’ and < coincide. But this
is false sinee y, > ¥., ¥ 3#'Ys. Therefore Y has the discrete order.

Let 5 denote the discrete topology on X. The identity map from
(X, 3) to (X, 3) extends to a continuous map a from BX (the Stone-Czech
compactification of (X, 3)) to (X, 7). BY and ﬁ(Z\m(Y)) may be regarded
as totally disconnected subspaces of fX. Let X=X & X,® X, where
X, = X,= X and X,= ﬁ(Z\m(Y)). We can ccpstruct a continuous
map a from X onto (X, 3) by stipulating

aX, = dpY, a|Xy= df(Zm(Y)), a| X, = m(aifY),
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where 7: X —Z is the projection map. X may be ordered .by defin}ng
s<yif and only if =y in XorzeX,, yeX, and v=y in Y. X is
then an SLD-space with dual triple (X, X, ® X,,1), with i(z) = & for
all z = X,. Purther, a is easily seen to be an SLD-space morphism. By
projectivity of X, the identity map from X into X is an SLD-space
morphism. We conclude that Y, Z~m(Y) dre compact and that e?,eh
point in m(Y) majorizes precisely one point in ¥. Thus the dual triple
of X is of the form (¥, ¥, @ ¥,,j), with ¥, ¥, Boolean spaces and
j the natural embedding. That ¥,, ¥; are extremally disconnected is clear
since X is, a priori, projective in the category of Boolean spaces ([17];
of. also [20]). ‘
COROLIARY 20 ([2], Theorem 2). A Stone algebra is injective if and
only if it can be represented in the form By X B®, where By, B, are complete
Boolean algebras.

Proof. Necessity follows from Theorem 19 since the dual triple for
B,x B® is of the form (¥;, ¥, @ Y, J) (see the discussion of B®in § ).
For sufficiency we refer to Lakser’s paper [14], remarking that a dual
version of Lakser’s proof can easily be constructed to prove directly the
converse of Theorem 19.
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