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Abstract. In this paper the generalized base of countable order theory of H. H. Wicke

and J. M. Worrell, Jr. is simplified. This theory allows to understand what the role of

' paracompactness is in the theories of metrizability and complete metrizability. We

consider four classes of spaces and prove that they are closed under the action of perfect

mappings and open and compact mappings. Furthermore we give a mapping characteri-

zation of these classes and show that in the class of paracompact spaces they are equal

to the classes of metrizable spaces, completely metrizable spaces, paracompact p-spaces

and paracompact Cech complete spaces. Besides, we construct an example of a locally
completely metrizable metacompact space which is not Cech complete.

The aim of this paper is to introduce new characterizations of some
classes of spaces investigated by H. H. Wicke and J. M. Worrell, Jr.
Our characterizations allow us to simplify the theory of these authors.

‘We shall use the terminology and notation from [12]. By a mapping
we always mean a continuous function. All spaces are assumed to be
regular. If Mt and N are families of subsets of a certain space X and if
for an arbitrary N e N there exists an M ¢ M such that M C N, then we
write that 69t << N. The letter A will always denote a centred family;
centred families of closed sets will be denoted by .

Let B = {B,}s>; be a sequence of bases of a given space X. We
recall that if for each sequence {B,};; such that B, B, one of the
following conditions is satistied:

(d) M Bn> =, then {B,};, is a base at =,

n=1

(p) M Bx>w and 0F < {B.,,}f=1, then M § # 9,

n=1
(e) 0¥ < {B,}oo, then N F # G,
then X is a Moore space or a p-space [17], or a Cech complete space
[12, Theorem 3.8.2], respectively. If the conditions (d) and (c) are satisfied
simultaneously, then X is a complete Moore space.
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To get our monotonic generalizations we shall restrict ourselves to
the sequences {B,}<, such that B,., C B,.

1. Monotonic properties. A property P of sequences of sets will be
called monotonie if the following condition is satisfied

Hae,eP and  o{W i, < {Hpfpoyy then  {Wup,eP.
Let X CX’; the sequence &= {(Gn, Ao, 7w}y Will be called
a sieve of X in X' if, for an arbitrary n, Gn = {G.lecq, (M) is & covering
of X open in X' and mn: 4,4, Ay is such that .
1) acAn, then X n G = J{X 0 Gy: an(a’) = a},
%) aedyyy, then &, C G, .

A sequence {G, }2,, where ay € Ay and wa(a,4;) = tn, Will be called

a thread of ®. We say that ® is a strong sieve if each thread of @ is

a strongly decreasing sequence, which means that G, C G,,.

If each thread of G satisfies a monotonic property (nt), then @ will
be called a (strong) (m)-sieve.

A sequence {%,}2>, of bases of X in X' will be called an (m)-sequence
if each decreasing sequence {W,}> . such that W, e 2, satisfies (m).

The following lemma will play a fundamental role in our conside-
rations:

Levuva 1.1. Let (m) be a monotonic property and let X CX'. The
following conditions are equivalent: -

() X has an (nt)-sieve in X',

(b) for every sequence {B,}n, of bases of X in X' there exists a sequence
{1}, of bases of X in X' such that W, C By and each sequence {W, I,

- such that Wy ¢ W, and W,., C W, (2) satisfies (m),

(¢) - X has an (m)-sequence of bases in X',

(@) X has o strong (m)-sieve in X'.

Proof. It is obvious that (b) implies (c), (¢) implies (d) and (d)
implies (a). We have to prove that (a) implies (b).

Let 6 = {(Gyn, 4n, m)}p-, be an (m)-sieve of X in X'. We can
well-order each A4, such that, for «,a’ e€d,,;; a<<do implies mu(a)
< wala’). If @ e X we pub on(2) = min{e ¢ 4,: 2 € @}, then it follows that
%oy (@1(7)) = an(®). To simplify the notation we shall write Gy(z) instead
of Gy Let Wala)={WeBp: 2e WC WC Gu(w)} and let W,
= | J{Wa(z): © X} . Suppose that {W,}rL, is ‘such that W, <2, and
W41 C Wa. For each m take the firsh am ¢ An Such that §{W,}2, < {G,,}-

() It is possible that for , a’ € 4, we have « # o’ and Gy= Gy .
® .The clogure is taken in X’. When we do not assume regularity, our proof shows
the equivalence of (a) and (c). ‘

icm®
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Since (m) is a monotonic property and 6{W,}o, < {G,.}m=1, the proof
will be complete if we show that {, }m-, is a thread of G. For an ar-
bitrary m take n >m such that WoC G, and W,C 6@, . Let xX be

guch that W, € Wa(z). From the definition of Wy(x) and the fact that
{G(2)}r., is a thread of & we have

Mn C @ (2) CGppalz) C G () -
Thus Gp.q(#) and G,(z) do not preceede G, .,
On: the other hand,

zeW,CG,

am+1

and G, , respectively.

and e W,C G, ;

hence G, = Gpi(2), G, = G,(#) and we deduce that {G,}7.; is
a thread of ® (3).

Let us notice that if a sequence {B,}3, is constant, then W, ., C W,
and it follows that each subsequence of a sequence {B,}5., is an (m)-
sequence. ’

COoROLLARY 1.2. If X has an (m)-sieve and. am (mm)-sieve in X',
then X has a stromg (m) and (mm)-sieve in X'

COROLLARY 1.3. If X = X' is x-Lindelof (*) (hereditarily s,-Lindeldf)
and has an (m)-sieve, then X has a (strong) (m)-sieve ® = {{Bn, Adn, Tnd}pur
such that each ®n has cardinality not greater tham %,.

We will often use the following, well-known lemma (see [12, Theo-
rem 3.2.10])

LEMuma 1.4, The inverse limit of a sequence {{A,, 7w, e of nON-eMPLY
finite sets is non-empty.

2. Monotonic spaces. We shall consider the following monotonic
properties of sequences of subsets of a given space X:

o0
(md) (N B, > %, then {B,;}5.; is a base at #,

n=1]
(mp) N B, 2z and 0A< {B,},, then [ {4: AU} +0,
n=1

(me) 6U << {B), then () {4: A A} # 0,
(4) there exists an % e X such that if U is open and # < U, then,
for a certain n, B, C U.

(3) This method is often used in the papers of H. H. Wicke and J. M. Worrell, Jr,
We can prove that (a) and (d) are equivalent and deduce Corollaries 1.2 and 1.3 without
using this method but this would be a technical proof, and without the equivalence
of (a) and (c) we would not obtain the equivalence of our theory with the theory of
‘Wicke and Worrell.

(4) A space X is 5, -Lindelof if every open cover of X has a subcover of cardinality
not greater than .
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Drrintmion 2.1. A space X is said to be monotonically developable
(a monvlonic p-space, a monotonically Cech complete space, & space with
a A-base) if it has an (md)-sieve ((mp), (me), (1)-sieve respectively) (5).

Note that, by virtue of Corollary 1.2, X has a (4)-base if and only
i#f X is monotonically developable and monotonically Cech complete.

For a given space X and & monotonic property (m) it is much easier
to construct an (m)-sieve than to construct a -corresponding mono-
tonically contracting sequence [22]. For example the following propo-
sitions are obvious (compare with [32] and [23, Theorem 7.3])

PROPOSITION 2.2. If @ space X has, locally, one of the properties listed
in Definition 2.1, then X has that property.

ProposrrioN 2.3. Each property listed in Definition 2.1 is hereditary
with respect to closed subsets and the property of being monotonically de-
velopable is hereditary with respect to arbitrary subsets.

The connections between the monotonic and non-monotonic pro-
perties are illustrated in the following diagram: :

complete Moore space ——— Moore space

A 4
H (A) = (md)
| Y Y
h (mc) = (mp) H
\ 7 N
Cech complete space =—===——= p-space

All the implications are obvious. To show that the monotonic pro-
perties do not imply the corresponding non-monotonic properties we
shall give an example of a space X which has a A-base and is not a p - space.

ExAMPLE 2.4. Let ¥ = {a: ¢ < on} X {a: a< w,}. Obviously ¥ is
locally compact. Let

X = T\{e+1: a< o} X {w} .

The space X is locally metrizable in a complete manner; hence, by virtue
of Proposition 2.2, X has a A-base. To show that X is not a p-space it
is sufficient to prove that X' does not have any feathering in ¥. Suppose
that X has a feathering in ¥; then the set I of the limit ordinals in 7
= {a: a < o} has a feathering in V. Assume that {U,}3., is a feathering

(*) These classes were investigated, for example, in [22]. We introduce here a new
terminology: in particular, a space is monotonically developable iff it has a base of
countable order (see [1] and [32]). For the sake of simplieity we shall not consider spaces
which are called m [22] g, and ,-spaces. All our results can be extended to these spaces.

iom°®

On monotonic generalizations of Moore spaces 111

of L in V and each U, congists of intervals. If there exists a » ¢ L such
that for every = »eSt{un, Us) for a certain limit ordinal u, >v, then

oo
for p= min{u,};., we have v+1e[) St(u, ",). Thus there exists an
n=1
uncountable subset Z' of I and »’ such that for every v ¢ L' and every
limit ordinal u > » we have » ¢ St (u, Up,), but this is, of course, a contra-
dition. :

Before giving conditions under which monotonic properties imply
corresponding non-monotonic properties we introduce some new mono-
tonie properties.

DrrinitioN 2.5. Let ¢ C X. We say that ( is a W,-set in X if it

(=~
has a (W)-sieve in X, where {B,};., ¢ (W) iff 1) B, C ¢ [26]. We say
n=1
that € has a monotonic feathering in X if it has an (mf)-sieve in X, where
00 o0
{B,)% e (mf) iff () By € # @ implies that N B, C ¢ [22].
n=1 n=1 .
Let us notice that, by virtue of Lemma 1.1, these properties are
monotonic equivalents of the property of being a @,-subset and having
a feathering respectively. ‘

DerINITION 2.6. A sequence {B,}2> . satisfies (4) iff ) B, contains
[n=1

at most one point.

Since, by virtue of Lemma 1.1, if the diagonal 4 is a W,-set in
X x X, then we can choose a (W)-sieve frem a hase {UxU: U open
in X} of 4 in X x X, we get (compare with [8])

ProrosrtioN 2.7. Let AC XX X be the diagonal; then 4 is a Wy-sel
in XXX iff X has a (4)-sieve.

THEOREM 2.8. Let X be a 0-refinable (%) space; then

(a) X being monotonically developable implies that X is a Moore space,

(b) X being a monotonic p-space implies that X is a p-space,

(¢) X having a W;-diagonal implies that X has a G,-diagonal,

(d) F being a closed Wy-subset of X implies that F is a G,-subset of X.

Part (a) of Theorem 2.8 is proved in [32], and part (b) is announced
in [28]; Theorem 7.4. If can be noticed that the proof from [32] can be
applied to all cases listed in Theorem 2.8. This, roughly speaking, is due

(¢) A space X is said to*be 0 -refinable if for each open cover U of X there exists
a sequence {Uy,}ne, of open covers of X refining U such that for each z « X one of the

-covers U, contains only a finite number of elements containing z [82]. Clearly meta-

compact (weakly paracompact) spaces are 0-refinable, and also subparacompact
{Fs-screenable) and hence Moore spaces are §-vefinable [32].
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to the fact that we consider properties which contain all sequences with
intersection ().

e Z‘I;lll;gem 2.8 does Saz)t hold for the properties (1) and (me) even if
X is agsumed to be a metacompact Moore space. To eonstruct an example
we shall put together a method from [28] and a method from [197. Let
us notice that the example, constructed in [13, Theorem 9], of a locally
completely metrizable Moore space which is not Cech complete is locally
separable and therefore is not metacompact [20].

Examrre 2.9. We shall construct a metaconipact Moore space X

which is locally completely metrizable bub not Cech complete. ‘
Let V = {a: a< w;} and let ¥ be a maximal family Qf monotonically
increasing functions from the set N of natural numbers into V gueh that
y,y ¢ Y implies y(¥N) ny'(N) ig a finite subset of V. We shall 1ntrodu.ee
a topalogy for the set X = ¥ v V"', where V" is a set of all ordered pairs
(a, @) satistying aeV and ¢ 18 & finite subset of Y.
For ye ¥ and neN let

D(y,n)=y({meN: m=n})CV,
Uy,n)=gto{e,peX: yep and aeD(y,n)} and
Uy ={Uly,n): ye X}v {{v}: veV'}.

Tt is now easy to check that the sequence { )., of point ﬁ.nite coverings
of X is a development for the set X with the topology introduced by

a base B= D W,. Clearly X is metacompact, completely regular and
=1 .
locally eompﬁetely metrizable. Tt remains to show that X is not Cech
complete. . .
Suppose that X is Cech complete and let {H,}2; be a sequence of

coverings of X such that $;C B, = U, and if Hy e $r; then {Hplin
n=k
satisties (me). For each & let
D= {D(y,n): Uy, n)e D} -

We shall show that D= UDxC V is non-empty. If this is not the
k=1

() For the sake of completeness we shall indicate heve a method of proving Theo-
rem 2.8 which seems to be more natural than that from [32]. We shall outline the proof
of part (a), and the same method can be applied in the other cases. Let {En}:f_l be an
(md)-sequence of bases of X. We ghall construct a development {1 (t)}er, Where T de-
notes a family of finite sequences of natural numbers. Let U (@)= {X} and assume
that 1 (t) is defined for { e N™; then take {2 (¢, K)oy as a 0-refinement of B(f), where
% (¢) is an arbitrary covering of X contained in By and refining U (). From Lemma 1.4
it follows that {W(f)}er is a development of X.

iom”®
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case, then we can find for each a eV a number %(a) such that a¢ | Dy

and consequently there exists a monotonically increasing function z from N
into ¥ and a number %, such that z(¥) n | D, = @. From the assumption
of the maximality of ¥ it follows that for a certain y ¢ ¥ the set y(¥) n
~ z(N) is infinite and it is easy to check that ye | Hg,. The contra-
dition shows that D iz non-empty. Let 8 be a fixed element of D. For
each % we can find a point yze¢ Y and a number nz >k such that
e D(yx, nx) and U(yx, m) = Hy e Hr. It suffices to prove that {Hylg,
does not satisfy (me). To do this, let us notice that the conditions imposed
on ni and yr ensure that the set {y,}j., is infinite. Hence the family
Pz, where Fy={(f,¢): j>k} and g;= {yi}ig;, has the empty
intersection. On the other hand, each Fy is closed in X and FxC Hg.
Thus X is not Cech complete. -

It is easy to notice that the space X constructed above is an open
finitely multiple image of a complete metric space; hence Example 2.9
solves Problem 7.14 of [16].

We shall show in the next section (Remark 3.9) that in the class
of paracompact spaces the monotonic properties are equivalent to the
corresponding non-monotonic properties.

Let us finish this section with some easy propositions.

ProrosITION 2.10. If a sequence {B,}>; is strongly decreasing, then

{B,}>_, satisfies (mec) iff B = {7} By is a non-empty compact set and {B,}y
o n=1 :
o0

is a base at B, {B,)Y_, satisfies (mp) iff (¥ Bn is empty or {B,}5., saiis-
n=1
fies (me).

_ Prorpostrron 2.11 [26]. 4 completely reqular space X is monotonically
Cech complete iff X is W, in some (or, equivalenily, in each) of its com-
pactifications.

Proposition 2.11 and Example 2.9 show that Theorem 2.8(d) is not
true for arbitrary subsets of X. The remark following the proof of
Lemma 1.1 allows us to prove that if X is a Moore space and 4 CX is
a W;-set in X, then 4 is a G,-set in X [26] (see also [13]).

PROPOSITION 2.12 [22]. A completely regular space X is a monotonic
p-space iff it has a monotonic feathering in some (or, equivalently, in each)
of its compactifications.

PROPOSITION 2.13. All the properties listed in Definition 2.1 are
hereditary with respect to W,-subsets.

PROPOSITION 2.14 ([23], Theorem 4.1). Bvery closed subset of a mono-
tonically developable space X is a W,y-subset of X.

9 — Fundamenta Mathematicae, T. LXXXIV
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3. Mappings and monotonic spaces. Let s _firstlintroduce a notion
of monotonieally complete mappings (compare with [11], [23] and [22]).

DerINITION 3.1. A mapping f: XY is said to be monotonically
complete if X has an (mef ) -sieve, where (mef) is a monotonic property
such that {B,), satisfies (mcf) iff for each yeY a sequence
{B,, ~ fH{y)} oy satisfies (me) in F~y). )

Obviously every mapping on & monotonically CeehA complfate space
is monotonically complete and every compact mapping (8) is mono-
tonieally complete. )

From Corollary 1.2 we easily get

TagoREM 3.2 ([25], [26], [221). Let f: X~ X be an open and mono-
towically complete mapping of X onto Y (%). If X has one of t?w prop.em'es-
listed in Definition 2.1, then Y has that property. If ACX is Wy in X,
then f(4) is W, in Y.

THEOREM 3.3 (compare with [25], Theorem 7, and [9]). If f: X > Y is
an open (or closed) monotonically complete mapping of a monotonic p-space
X onto a monotonically Cech complete space X, then X is a monotonically
Gech complete space.

Proof. To show that X is monotonically Cech complete we have
to find an (mp)-sieve on X such that each thread of that sieve has the
non-void intersection.

Tet ® be a strong (me)-sieve on ¥ and let (m) be a monotonie pro-
perty such that a sequence {B,}n satisfies (m) iff for a certain thre?,d
6,22, of ® we have §{f(Bn)ia=, < {G, }n- It is easy to see that f in-
duces an (m)-sieve on X. By Corollary 1.2 X has a strong sieve @' satis-
fying simultaneously the conditions (m), (mef) and (mp). It is easy to
check that the closedness of f implies that each thread of G’ has the
non-void intersection. If f is open, we have to construct a strong sieve &”
on X satisfying, in addition, a certain non-monotonic condition, namely
for each thread {G, }, of B the sequence {f(&.,)}n-1 has to be strongly
decreasing. This can be done by induction since, by Lemma 1.1, X has
an (m), (mef) and (mp)-sequence of bases and f is an open mapping.

Let us recall that a perfect image of a Moore space (Gech complete
space) is a Moore space (Cech complete space) [29] ({12, Problem 3.Y)
and a perfect image of & p-space need not be a p-space [28]. For mono-
tonic properties we have the following

TaEoREM 3.4. All the properties listed in Definition 2.1 are invariant
under perfect mappings.

(%) A mapping is said to be compact if all inverses of points are compact.
(1) One can assume that the restriction of f to a certain X’ C X such that f(X)
== Y is open and monotonically complete.

e ©
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It is proved in [31] that the perfect image of a monotonically de-
velopable space is monotonically developable. The invariantness of the
other monotonie properties is announced in [27] and [22].

Proof. Let us first assume that f: X—»Y is a perfect mapping of
a monotonic p-space X onto a space ¥. We shall prove that ¥ is a mono-
tonic p-space. .

By Lemma 1.1 X has an (mp)-sequence {8,}2, of bases. Hence we
can construct a sieve & = {(®n, An, )}, on ¥ such that 4,C ¥ x {n},
and for each (¥, n) e A, there exists a finite subfamily B(y, #) of B, such
that the following conditions are satisfied:

1) G(y,n) = Y\f(X\U By, n));
2)ye G(u,,n)’)
3) B« B(y,n) implies B~ f™(y) # G,

4) if 7 (Ypi1, n+1) = (Yn, n), then the closures of elements of the
family B (Y,41, n-+1) refine B (yn, n).

Now assume that {G, ,lne is 2 thread of ®, y, ¢ Y is contained in
its intersection and éA << {G,, e, for a certain centred family . We
have to show that (1) {4: 4 «A} # @. Since each B(y,, n) is finite, we
can deduce from 1 that for some B ¢ B(yn, n) the family {B} v {f~%(4):
A €A} is centred. By Lemma 1.4 there exists a sequence {Bn}o.,, Where
By e B(Yn,n) C Bn and B,,, CB,,; such that A = (B}, v {f7HA):
A %} is centred. Since {B,}3, satisfies the condition (mp), the proof
will be finished if we show that the intersection of {B,};>, is non-empty.

Using conditions 1 and 4 we can find, applying Lemma 1.4, a se-
quence {W,}> , such that f~(y,) » W, is non-empty, Wy e B(yn, n) and

o
Wps1 C Wu. Thus W =) W, is non-empty and by virtue of Propo-

n=1
oo
sition 2.10 the set Z= W v {J (W, »f ' (ya)) is compact. It is easy to
n=1
check that condition 3 implies that each B, intersects the compact seb

F7f(Z)). Hence [ By= (" Bn @ and the proof is finished.
n=1 n=1
Using the same method, we can prove that a perfect image of
a monotonically developable space is monotonically developable (%)
In the case of manotonically Cech complete spaces the proof is simple,

o0
for we need not show that [} B, # @.
n=1
Since a space has a Z-base if and only if it is monotonically de-

(%) The proof from [31] does not involve the regularity of X but it eannot he
extended to monotonic p-spaces. '
o
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velopable and monotonically Gech complete, the proof of Theorem 3.4
is complete ().

One can easily prove the following two propositions.

PROPOSITIOV 3.5. Let f: X~ Y be a perfect mapping of X onlo Y.
If f7Y4) is W, in X, then A is W, in Y.

PROPOhITIO\I 3.6. The inverse image of & monotonically Cech complete
space (a monotonic p-space) under @ perfect mapping is ¢ monolonically
Cech complete space (@ monotonic p-space).

Tet us recall 2 mapping characterization for monotonic spaces [22]
(see also [25], [21] and [27]).

TaroREM 3.7. For an arbitrary space X there exist a metric space M,
a space X' C X X M and an open monotonically complete mapping ' of X'
onto X such that

(a) if X is monotonically developable, then X' is meirizable,”

(b) if X has a A-base, then X' is metrizable in a complete manner,

( if X is a monotonic p- space, then X' is a paracompact p-space,

d)if X is a monotonically Cech complete space, then X' is a para-
compact Cech complete space.

From part (d) of Theorem 3.7 and Theorem 8 from [18] we get

COROLLARY 3.8. If X is a paracompact monotonically Cech complete
space, then X is Cech complete.

Remark 3.9. Theorem 2.8 tog‘ether with a metrization theorem
from [4], Theorem 4.3.11 from [12] and Corollary 3.8 imply that for
a paracompact space X we have

(a) X is monotonically developable iff X s metrizable [1],

(b) X has a A-base iff X is metrizable in a complete manner [25],
(e) X is a monotonic p-space iff X is a p-space,
(d) X is monotonically Cech complete iff X is Cech complete.

4. Applications. The theory of monotonic spaces allows us to under-
stand the real sense of some well-known theorems. For example from
Proposition 2.2 and Remark 3.9 we can deduce that a locally metrizable
paracompact space is metrizable [12, Problem 5. J], and a locally Cech
complete paracompact space is Cech complete [12, Problem 5. P]. From
Theorem 3.4 and the invariantness of paracompactness under closed
mappings [12, Problem 5. B], it follows that a perfect image of a metriz-
able space is metnza,ble [12, Problem 4. 8].

Using Theorem 2.8, Theorem 3.4 and the fact that metacompactness
(subparacompactness) is invariant under closed mappings [30] ([B]), we
get a generalization of a theorem from [14] (see also [28]).

(1) Qur method allows us to show that a perfect image of & Hausdorff space with
a A-base has a A-base.
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THEOREM 4.1. A perfect image of a metacompact (subparacompact)
p-space is a metacompact (subparacompact) p-space.

Let us notice that by wvirtue of Proposition 2.7 and Lemma 1.1
a monotonic p -space with a W,-diagonal is monotonically developable [24].
This, together with Theorem 2.8, generalizes Theorem 3.3 from [15].
We shall give another, more general method of proving this fact.

THEOREM 4.2. Let £ be a class of spaces such that if X' C X x M, where
X is from & and M is a metric space, then X' belongs to L. If paracompact
p-spaces from L are metrizable, then monotonic p-spaces from L& are mono-
tonically developable.

Proof. Theorem 4.2 follows directly from Theorem 3.2 and Theo-
rem 3.7(¢).

The following classes are hereditary with respect to arbitrary sub-
sets and closed under the product with a metric space:

(a) spaces with a point-countable base,

(b) spaces with a point-countable separating open cover (12),

(e) quasi-developable spaces,

(d) spaces with a G4-diagonal,

(e) spaces with a W,-diagonal.

Theorem 4.2 generalizes a number of theorems. For example, for
spaces with a point-countable base we get a generalization of Theorem 2.7
from [7] and Theorem 2.10 from [6].

By wvirtue of Theorems 3.2 and 3.4 we can apply our results to the
investigation of classes OCP(IN) defined in [16] as minimal classes closed
under open compact and perfect mappings and containing the class M (*°).
Namely each space in OCP (Moore spaces) is monotonically developable
and each space in OCP (p-spaces) is a monotonic p-space. Thus Theo-
rem 2.8 is a generalization of Theorems 6.1 and 6.4 from [16] and gives
a positive answer to Problem 7.15 from [16].

The following theorem can be used in the proof of Theorem 4.1
from [16] (14).

THEORENM 4.3 (compare with [10]). If f: X - X is an open monotonically
complete mapping from a monotonic p-space X onto ¥, then f is compact-
covering (¥).

(2) A covering W of X is said to be separating if for distinet points x, z” ¢ X there
exists a Ue U such that xe U and z'¢ U.

(**) As in [16], we assume that all mappings in the definition of OCP () have
a regular domain and a regular range.

() Theorem 4.3 together with Theorem 3.7 give a solution of Problem 7.16
from [16].

() A mapping f: X — ¥ is said to be compact-covering if for each compact subset K
of ¥ there exists a compact subset Z of X such that f(Z) =
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Proof. Ohviously we can assume that ¥ is compact and it suffices
to show that f(Z) = X for a certain compact subset Z of X. From Theo-
rems 3.3 and 3.7(d) it follows that there exist a pa,racompsiwt Cech com-
plete space X' and an open mapping f' of X' onto X. By virtue of Theo-
rem 1.2 from [3] we can find a compact subset Z’ of X' such that flF @)
—~ Y. The compact set Z = f'(2') CX satisfies the condition f(Z)= ¥.

From Theorem 3.4 and Proposition 2.10 we get (compare with
Theorem 5.4 in [16})

ProPOSITION 4.4. If X is a monotonic p-space, then X is of count-
able type.

Corollary 1.3 implies

PrOPOSITION 4.5. If @ monotonically developable space X is s,-Lindeldf,
then X has a base of cardinality not greater than ,.

PROPOSITION 4.6. If @ monotonic p-space X has a net of cardinality s,
then X has a base of cardinality not greater than ,.
Proof. By wvirtue of Corollary 1.3, X has a strong (mp)-sieve G
= {(Bn, An, )}, such that each A4, is of cardinality not greater than &, .
Sinee @ space M from Theorem 3.7 can be constructed as the inverse limit
of a sequence {(An, wa)}>,, Where each A, is a discrete space, X x M has
" a net of cardinality not greater than &,. Thus X is an open image of
a paracompact p-space X' which has a net of cardinality not greater
than x,. From [2] X’ has a base of cardinality not greater than x, and
the proof is finished.
' Propositions 4.5 and 4.6 give a positive answer to Problems 7.13
and 7.10 from [16]. :
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